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In Saccharomyces cerevisiae, all H3K4 
methylation is performed by a single 

Set1 Complex (Set1C) that is composed 
of the catalytic (Set1) and seven other 
subunits (Swd1, Swd2, Swd3, Bre2, 
Sdc1, Spp1 and Shg1). It has been known 
for quite some time that trimethylated 
H3K4 (H3K4me3) is enriched in the 
vicinity of meiotic double-strand breaks 
(DSBs), but the link between H3K4me3 
and the meiotic nuclease Spo11 was 
uncovered only recently. The PHD-
containing subunit Spp1, by interacting 
with H3K4me3 and Mer2, was shown 
to promote the recruitment of potential 
meiotic DSB sites to the chromosomal 
axis allowing their subsequent cleavage 
by Spo11. Therefore, Spp1 emerged as 
a key regulator of the H3K4 trimeth-
ylation catalyzed by Set1C and of the 
formation of meiotic DSBs. These find-
ings illustrate the remarkable multi-
functionality of Spp1, which not only 
regulates the catalytic activity of the 
enzyme (Set1), but also interacts with 
the deposited mark, and mediates its bio-
logical effect (meiotic DSB formation) 
independently of the complex. As it was 
previously described for Swd2, and now 
for Spp1, we anticipate that other Set1C 
subunits, in addition to regulating H3K4 
methylation, may participate in diverse 
biological functions inside or outside of 
the complex.

Introduction

In vertebrates, di- and tri-methylation of 
H3K4 are generally restricted to euchro-
matin and occur in discrete zones in 
the proximity of transcriptionally active 
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genes. H3K4 methylation is thought 
to facilitate transcription through the 
recruitment of nucleosome remodel-
ing complexes and histone modifying 
enzymes, or by preventing repressors 
from binding to chromatin.1,2 Besides 
transcription, H3K4me3 has been found 
to influence meiotic recombination,3-5 
mammalian V(D)J recombination and 
pre-mRNA splicing, through the recog-
nition of H3K4me3 by the PHD domain 
of RAG2 and CHD1, respectively.6,7 
This led to realize that the H3K4me3 
mark can recruit proteins for a variety 
of processes, other than transcriptional 
activation. However, whether these his-
tone marks are the cause or consequence 
of these processes is not always certain. 
Here we review the dual role of the PHD-
containing Set1C subunit Spp1 in the 
regulation of H3K4 trimethylation and 
in the formation of meiotic double-strand 
breaks (DSBs).

Spp1 as a Key Regulator  
of H3K4 Trimethylation

The Set1C or COMPASS (for Complex 
of Proteins Associated with Set1) is assem-
bled around Set1 that acts as a scaffold for 
seven other subunits (Swd1, Swd2, Swd3, 
Bre2, Sdc1, Spp1 and Shg1).8-10 Several 
studies showed that loss of individual 
Set1C subunits differentially affects Set1 
stability, complex integrity, the pattern of 
global H3K4 methylation, and the distri-
bution of H3K4 methylation marks along 
active genes.11 Particularly, the absence of 
the PHD-containing protein Spp1 was 
shown to strongly decrease H3K4me3 
levels.12-14
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from the cells expressing Set1 construct 
carrying a truncation of the SET domain 
suggested an interaction between Spp1 
and the Swd1-Swd3 module.14 Along the 
same line, bacterial two-hybrid data from 
our laboratory suggest that Swd3 interacts 
with Spp1 and Bre2 (shown in Fig. 1A). 
Unless the Swd1-Swd3 module also inter-
acts with the n-SET, one interpretation 
of these results would be that the com-
munication between the n-SET domain 
and the SET-domain could be mediated 
by interactions between Spp1 and Swd3. 
This model is also consistent with the fact 
that Spp1, as well as Swd1-Swd3 prevent 
proteolytic degradation of Set1.14 In sum-
mary, Spp1 bound to the n-SET domain 
may indirectly interact with the SET-c via 
Swd3 to alter the catalytic pocket of Set1 

used purified components of the Set1C 
to demonstrate that Swd1, Swd3, Bre2 
and Sdc1 efficiently co-purify with the 
isolated SET domain while none of these 
proteins alone can interact with Set1 
suggesting that subunit interactions are 
required for these four proteins to bind 
the SET domain.17 Spp1 and Shg1 on 
their side directly interact with the nSET 
domain and the second RRM motif 
of Set1, respectively.14,15,17,18 Strikingly, 
Roeder and colleagues also showed that 
the n-SET of Set1 interacts with the SET 
domain covered by Swd1, Swd3, Bre2 and 
Sdc1 (here called the SET-c) in a way that 
depends on the prior binding of Spp1 to 
the n-SET domain.17 Although Spp1 alone 
was not shown to interact in vitro with 
SET-c, a previous TAP-Spp1 purification 

The Set1C has a remarkable mode 
of assembly since it is initiated during 
translation in the cytoplasm.15 While the 
nascent Set1 polypeptide emerges from 
the ribosome, it is bound by Shg1, Spp1 
and Swd1 explaining why Set1 is found 
associated to its own mRNA and to ribo-
somal proteins in TAP purifications.15 
This study also suggests that Shg1, Spp1 
and Swd1 bind directly to the Set1 poly-
peptide, an assumption further confirmed 
by recent studies.16,17 The complex is then 
completed by the subsequent binding of 
Swd2, Swd3, Bre2 and Sdc1.15 Within the 
complex, Swd1 and Swd3 as well as Sdc1 
and Bre2 interact independently of Set1, 
and each pair of proteins associates with 
the SET domain of Set1.8,14 In a recent 
tour de force study, Roeder and colleagues 

Figure 1. organization of the Set1C and role of its subunits. (A) Protein/protein interactions within the indicated subunits of the Set1C were detected 
by the E. coli two-hybrid system.14 interactions are revealed by the presence of β-galactosidase activity visualized on X-gal plates. (B) this scheme de-
picting the binding of the different Set1C subunits to Set1 is mainly based on 8, 11, 15, 17 (see text). the two RRM domains were positioned according 
to trésaugues et al.18 Direct binding of Swd2, Shg1 and Spp1 to the indicated regions of Set1 has been established by Kim et al.17 the SEt-c comprises 
Swd1-Swd3 and Bre2-Sdc1 modules that are likely to interact each other17 (see text and Fig. 1A). in this model, Spp1 bound to the n-SEt domain 
interacts with the SEt-c via Swd3 to alter the enzyme catalytic pocket to facilitate H3K4me3. the SEt-c could bind H3 through cooperative interactions 
between its subunits. note that the PHD domain of Spp1 is not required for the H3K4 methylase activity of the Set1C. the n-terminal region of Set1 is 
thought to modulate the Set1C activity in a way that remains to be elucidated. Swd2 and Spp1 are known to interact independently of Set1 with APt 
and Mer2, respectively. we anticipate that Shg1 and the subunits of the SEt-c may in turn establish alternative protein/protein interactions to regulate 
other processes than H3K4 methylation. Red bars indicate the position of putative PESt sequences. numbers indicate amino acid residues.
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To understand how Set1C might regu-
late meiotic DSB formation, we decided 
to tether Set1 and each Set1C subunit to 
cold regions for meiotic recombination. 
We showed that the tethering of Spp1 
to regions that do not usually experience 
recombination was sufficient to induce 
DSB formation even in the absence of 
H3K4 methylation. Furthermore, we 
found that Spp1 physically interacts 
with Mer2 at a time contemporary to 
DSB formation (Fig. 2). This led us to 
propose that Spp1, by interacting with 
both Mer2 and H3K4me3, through its 
PHD domain, bridges potential meiotic 
DSB sites to the chromosomal axis where 
Spo11-associated factors are enriched.37 
In a related study, genome-wide local-
ization of Spp1 was shown to be clearly 
different during meiosis compared with 
exponentially growing cells.38 While in 
rich medium, Spp1 is enriched on actively 
transcribed genes together with RNAP 
II and Set1,39 during meiosis Spp1 does 
not co-localize with RNAP II.38 Instead, 
Spp1 was found along with Mer2 at chro-
mosome axis-associated sites in a way 
that is, at least partially, independent of 
Set1.38 Taken together, these results sug-
gested that the interaction between Spp1 
and Mer2 could occur independently of 
Set1 raising the intriguing question of 
the key regulatory modifications that 
promote Spp1 association to Mer2 at the 
expense of the one with the Set1C (Fig. 
3). The Spp1 PHD domain is probably 
not involved in the interaction with Set1 

the homologs mediated by the process 
of homologous recombination leading to 
crossovers. Thus, in meiosis, recombina-
tion plays a dual role in promoting novel 
haplotypes and ensuring proper chromo-
some segregation.29 Meiotic recombina-
tion begins with the introduction of DSBs 
catalyzed by Spo11, a meiosis-specific 
nuclease highly conserved throughout evo-
lution.30,31 In budding yeast, DSBs cluster 
in discrete regions called hot spots that 
are mostly located in nucleosome depleted 
intergenic regions, near promoters.32 DSB 
formation also relies upon several Spo11-
associated proteins that appear to form 
sub-complexes but whose interactions are 
not yet fully elucidated.33 Among them, 
the sub-complex Mer2/Mei4/Rec114 has 
been proposed to link the DSB sites located 
on chromatin loops to the meiosis-specific 
axial chromosome structures.34

H3K4me3 was shown to be an impor-
tant mark for the initiation of recombina-
tion in yeast and mice.4,5,35 In S. cerevisiae, 
this assumption was initially based on the 
fact that Set1 loss severely reduces meiotic 
DSB frequencies, and that H3K4me3 level 
is constitutively higher near DSB sites.3,5 
In agreement with these observations, 
deletion of RAD6 as well as the substitu-
tion of the ubiquitylation site of histone 
H2B, both affecting H3K4 methylation, 
also reduced DSB frequencies at various 
hot spots.36 However, beyond these corre-
lations, the functional link between H3K4 
trimethylation and the activity of Spo11 
remained unclear.

in a way that allows the trimethylation of 
H3K4 (Fig. 1B). Monoubiquitylation of 
H2B would favor the proper positioning 
of the whole Set1C on the nucleosome or 
lead to a conformational change in the 
nucleosome to facilitate Set1 activity.17

In addition to the role it plays in H3K4 
methylation, the WD40 repeat protein 
Swd2 belongs to the RNA 3'-end process-
ing and termination complex called APT 
(for associated with Pta1) which co-puri-
fies with the cleavage and polyadenylation 
factors.8,19-23 The APT complex contributes 
to transcriptional termination of snoR-
NAs and other noncoding transcripts that 
is primarily performed by the Nrd1-Nab3-
Sen1 complex.20,21,24-26 Within the Set1C, 
Swd2 was also recently shown to directly 
interact with the N-terminal part of Set117 
in agreement with previous results show-
ing that Swd2 prevents Set1 degradation 
and robustly co-purifies with TAP-tagged 
Set1.8,14,26 Unexpectedly, in vitro omis-
sion of Swd2 from the reconstituted Set1C 
increases the level of H3K4 methylation 
assayed on recombinant H2Bub chroma-
tin suggesting that Swd2 may counteract 
a positive action of the N-terminal region 
of Set1 on the H2Bub-dependent H3K4 
methylase activity.17 In an independent 
study, Swd2 was shown to be ubiquitylated 
by Rad6/Bre1.27 A Swd2 ubiquitination 
mutant (K68,69R) exhibited reduced lev-
els of H3K4me3 and a concomitant reduc-
tion of Spp1 recruitment to chromatin.27 
The mechanism by which ubiquitylation 
of Swd2 at K68,69 facilitates H3K4me3 
remains to be fully elucidated. It opens the 
possibility of a complex regulation medi-
ated by Set1C subunits to bring in interac-
tion the N- and the C-terminal regions of 
Set1, as suggested.17,28

Spp1 Links H3k4me3 with Meiotic 
Double-Strand Break Formation

Meiosis is a specialized cell division, in 
which a single round of replication is 
followed by two rounds of chromosome 
segregation. First, during the reductional 
division, the homologous chromosomes 
segregate. Then, the sister chromatids 
segregate through an equational division 
leading to the formation of haploid nuclei 
and gametes. Importantly, the reductional 
division requires physical links between 

Figure 2. Schematic representation of Spp1. the positions of the PHD and the Mer2 interacting 
domain of Spp1 are based on.37,55 Deletion of the CxxC (C263GYC266) motif was shown to affect 
Spp1-Mer2 interaction. Coiled-coil regions are indicated above the scheme.55 the regions of Spp1 
responsible for its interaction with Set1 and the Swd1-Swd3 module are unknown.
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play an active role in targeting histone 
deacetylases.

In this review, we have described the 
essential role of Spp1 in the regulation of 
H3K4me3 and in the formation of mei-
otic DSBs. The Set1C and H3K4 meth-
ylation have been involved in addition 
in multiple other processes such as DNA 
repair,48-50 telomere position effect and 
telomere length regulation,48,51 cell wall 
biogenesis,40,51 chromosome segregation,52 
transcription termination,53 and DNA 
replication.3,54 These pleiotropic effects 
raise the question of the role of the differ-
ent Set1C subunits in addition to H3K4 
methylation in these various processes. 
We foresee that subunits other than Spp1 

methylation patterns with enrichment of 
H3K4me3 at their 3' end.40,41 This repres-
sion was coupled to Set1-dependent 3' end 
antisense transcription.40 This observation 
was in agreement with several other stud-
ies indicating that ncRNAs can repress 
gene expression by influencing the epigen-
etic state of chromatin.42-46 These stud-
ies came up with the concept that H3K4 
methylation mark deposited by antisense 
transcription acts as a repressive mark that 
signals the recruitment of histone deacety-
lase thereby attenuating sense transcrip-
tion.47 Although such complexes may 
contain PHD finger proteins that bind 
methylated H3K4, one cannot exclude 
that Set1C subunits could by themselves 

since its inactivation or deletion does not 
affect H3K4me3.37,38

Other Roles for Set1C Subunits?

The role of the different Set1C subunits 
in transcription was analyzed by deter-
mining genome-wide mRNA expression- 
profiles of Set1C subunit mutants. In 
contrast to metazoan, trimethylation 
loss induced by the inactivation of Spp1 
had on its own virtually no effect on 
steady-state mRNA expression lev-
els. Surprisingly, the combined loss of 
H3K4me3 and H3K4me2 resulted in a 
steady-state upregulation of a small group 
of genes40 that exhibit distinct H3K4 

Figure 3. Spp1 swaps function. (A) 1- At activated genes, the Paf1 complex mediates the association of Bre1/Rad6 and Set1C to RnAP ii39 allowing the 
transient ubiquitylation of H2BK123 and H3K4 trimethylation of the first nucleosomes of transcribed genes (see 11 for a review). two and 3- Along the 
coding regions of the genes, di- and then monomethylation of H3K4 correlate with a gradual reduction of the binding of Set1C.22 we envisage that 
unknown post-translational modifications facilitate the specific release of Spp1 from the Set1C. (B and C) During meiotic differentiation, the interac-
tion of Spp1 with H3K4me3 and the chromatin axis-associated protein Mer2 offers an explanation of the mechanism that select the potential meiotic 
DSB sites that are brought to the chromosome axis for further cleavage by Spo11.37,38 our results indicate that H3K4me3 is required for the function of 
Spp1 probably through its recognition by the Spp1 PHD-domain, a requirement that can be bypassed by tethering Spp1.37 nDR, nucleosome depleted 
regions; Mer2 iD, Mer2 interacting domain; Mer2-p, Phosphorylated Mer2.
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outside the one they have in regulating 
H3K4 methylation.
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