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Networks are increasingly central to modern science owing to their ability to conceptualize
multiple interacting components of a complex system. As a specific example of this, under-
standing the implications of contact network structure for the transmission of infectious
diseases remains a key issue in epidemiology. Three broad approaches to this problem
exist: explicit simulation; derivation of exact results for special networks; and dynamical
approximations. This paper focuses on the last of these approaches, and makes two main con-
tributions. Firstly, formal mathematical links are demonstrated between several prima facie
unrelated dynamical approximations. And secondly, these links are used to derive two
novel dynamical models for network epidemiology, which are compared against explicit sto-
chastic simulation. The success of these new models provides improved understanding about
the interaction of network structure and transmission dynamics.
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1. INTRODUCTION

The vast majority of infectious diseases can be con-
sidered as spread through a network of contacts
between individuals or groups. These network concepts
have been used, to great effect, in scenarios where the
network of relevant contacts can be readily ascertained:
for sexually transmitted infections, the network of
human sexual contacts [1–3]; and for bovine diseases,
the network of animal movements as captured by the
Cattle Tracing System [4–6]. More recently, attention
has focused on the implications of network structure
for human infections transmitted through close contact
(such as influenza, SARS and smallpox) using diary-
based social encounter information [7], contact tracing
[8] or predicted patterns of movements [9] to infer the
appropriate network structure. In all cases, it is impor-
tant to acknowledge the effects of network structure,
both because of its impact on the uncontrolled epidemic
[10,11] but also because of its utility in targeting con-
trols and tracing the spread of infection [12]. It is,
therefore, important that we develop methods of model-
ling infection dynamics on complex structured
networks. Stochastic simulations obviously provide
the most accurate and versatile models, but at the
expense of tractability. There has, therefore, been con-
siderable focus on developing less computationally
intensive approaches that can help us interpret the
difference between network-based predictions and
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those of mean-field (random mixing) models where
local structure is ignored.

A recent review paper [13] counterposed three dyna-
mical approaches to the study of epidemic dynamics on
networks. These are: pairwise approaches [10], dynamic
probability generating function (PGF) formalism
[11,14] and heterogeneous mixing [15,16]. Following
this approach, we demonstrate here that each of these
three approaches is an approximation to the more gen-
eral pairwise model of Eames & Keeling [17]. We then
use the relationships between approaches to derive
two new moment-closure-based models for network epi-
demics: a ‘clustered PGF’ model, which is capable of
capturing epidemic dynamics on clustered networks of
heterogeneous link distribution using a relatively small
number of ordinary differential equations (ODEs),
and a ‘heterogeneous susceptible–infectious–suscep-
tible (SIS)’ model, which makes a significant but less
dramatic reduction of dimensionality where acquired
immunity is not long-lasting. Finally, we compare
these two models to simulation on exemplar networks
similar to those considered in more applied contexts.
2. DERIVING OTHER APPROACHES FROM
PAIRWISE MODELS

We start by considering a general heterogeneous con-
tact network with N nodes. Using the notation
developed in Keeling [10] and Eames & Keeling [17],
we use square brackets [] to represent the expected num-
bers of nodes, pairs or triples of any particular type; all
notation used is summarized in table 1. The local struc-
ture of this network can be defined in terms of three
This journal is q 2010 The Royal Society
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Table 1. Notation.

symbol description

N number of nodes in the network
M maximum node degree
[k] number of nodes of degree k (equal to

P
A [Ak])

[kl] number of pairs with one member having degree
k, and with the other having degree l (equal
to
P

A, B[AkBl)
n̄ average degree distribution (equal to

P
kk[k]/N)

dk proportion of nodes with degree k (equal to [k]/N)
Ckl correlation matrix between nodes of degree k

and degree l
f clustering coefficient of the network (equal to

the number of triangles divided by the
number of triples)

[Ak] number of nodes in state A with k neighbours
[A] number of nodes in state A (equal to

P
k [Ak])

[Ak Bl] number of pairs with one member in state A
and with degree k, and with the other
member in state B and with degree l

[Ak B] number of pairs with one member in state A
and with degree k, and with the other
member in state B (equal to

P
l [Ak Bl])

[AB] number of pairs with one member in state A,
and with the other member in state B (equal
to
P

k [AkB])
[Ak Bl Cm] number of triples with one edge member in state

A and with degree k, with the middle member
in state B and with degree l, and with the
other edge member in state C and with
degree m

u(t) the fraction of degree one nodes that remain
susceptible at time t

Y(t) auxiliary variable used in clustered PGF model
(equal to

P
k k[Ik])

g(x) PGF for the network degree distribution (equal
to
P

dkx
k)

t rate of transmission of infection across a
network link

g rate of recovery from infection
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main measures: the degree of distribution dk (where dk is
the proportion of nodes having k network contacts), the
clustering of contacts f that measures the ratio of tri-
angles (groups of three nodes all connected to each
other) in the network to triples of all types (lines of
three nodes with or without a transitive link) and the
assortativity within the network as captured by the
matrix

Ck;l ¼
�n½kl�N
k½k�l½l� ;

where n̄ is the mean node degree, which compares the
true number of pairs of a given degree with the expected
number if half-links connected at random. The matrix C
represents the extent to which the number of [kl] pairs is
over- or under-represented with respect to a random
process of pairing half-links [18]. We wish to explore
how these three forms of local structure influence the
types of model formulation that can be successfully
applied.
J. R. Soc. Interface (2011)
The full pairwise equations of Eames & Keeling [17],
from which we begin our analysis, are given for
SIR-type infections by

½ _Sk � ¼ �t½SkI �;

½ _I k � ¼ t½SkI � � g½Ik �;

½Sk
_Sl � ¼ �t

X
m

ð½SkSlIm� þ ½SlSkIm�Þ;

½Sk _I l � ¼ t
X
m

ð½SkSlIm� � ½ImSkIl �Þ � ½SkIl �
 !

� g½SkIl �;

½Ik _I l � ¼ t

 X
m

ð½ImSkIl � þ ½ImSlIk �Þ

þ ½SkIl � þ ½SlIk �
!
� 2g½IkIl �;

½Sk _Rl � ¼ �t
X
m

½ImSkRl � þ g½SkIl �;

and ½Ik _Rl � ¼ t
X
m

½ImSkRl � ¼ gð½IkIl � � ½IkRl �Þ;

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð2:1Þ

where [Ak] refers to the number of nodes of type A with
degree k; a disease state without a subscript implicitly
contains the sum over all possible degrees (e.g.
[AkB] ¼

P
l[AkBl]); t is the transmission rate; and g is

the recovery rate. (The equations for infections that
obey SIS-type dynamics are derived by modifying how
recovery acts.) As with many moment-based methods,
these equations are exact but unclosed. If we continue
to write higher-order equations for triples, quads, etc.,
then these equations will close only once we reach the
network size N, destroying the main motivation for
the use of ODEs to describe epidemics on networks.
We, therefore, must seek approximations that will
allow us to close these equations at a lower dimension
(approximating the number of triples in terms of pairs
and singles), which will aid computation and analytic
understanding.
2.1. Dynamical and network assumptions

We present now a series of different assumptions about
network structure and epidemiological dynamics that
allow other approaches to be derived from this general
pairwise model, discussing the reasoning behind each
assumption and its range of validity. We pay particular
attention to the number of equations required to simu-
late SIR dynamics in terms of the maximum node
degree M.
2.1.1. Triple closure. Closure schemes for pairwise
models, which have become essentially standard, have
been presented for networks of significant clustering
but with homogeneous degree [10] and also for unclus-
tered networks with heterogeneous degree [17]. The
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natural combination of these two schemes is

½AkBlCm� �
ðl � 1Þ

l
ð1� fÞ ½AkBl �½BlCm�

½Bl �

�

þf �nN
km
½AkBl �½BlCm�½CmAk �
½Ak �½Bl �½Cm�

�
;

ð2:2Þ

where A, B and C stand for arbitrary disease states.
While this closure is the natural extension of existing
approximations, it does pose a question of interpret-
ation compared to existing closures, since the term
proportional to f cannot be rigorously interpreted as
a prevalence of triangles owing to the lack of symmetry
between the k, l and m nodes. An extended discussion of
how to interpret asymmetric clustered closure appears
in House & Keeling [19]. It is also worth noting that
the unclustered pairwise equations can be reinterpreted
in terms of neighbourhoods [20], although this approach
has yet to be extended to the clustered case.

The closure scheme (2.2) acting on the full pairwise
equations (2.1) produces a closed ODE system of
(5M þ 2)M independent equations for SIR dynamics,
which can quickly outstrip even modern computational
resources for graphs with ‘fat tailed’ degree distributions
such as scale-free networks, where M is often very large.
This motivates the investigation of further approxi-
mations that can allow us to reduce the system size.

One additional, commonly made assumption that
will be used in deriving other approaches is the absence
of triangles in the network, that is,

f ¼ 0: ð2:3Þ

2.1.2. Deconvolution of pairs. The assumption intro-
duced by Eames & Keeling [17] was to express the
joint probability of a fully described pair as a product
involving pair types and network structure:

½AkBl � �
½AkB�½BlA�
½AB�

½kl��nN
k½k�l½l� : ð2:4Þ

Under this assumption, pairs with a single indexing
degree are the main variables, which significantly reduces
the number of independent ODEs needed in the pairwise
equations to 10M for SIR dynamics. A priori the accuracy
of this assumption is not assured, since it depends on the
precise dynamical process taking place on the network;
however, for all epidemiological scenarios so far considered
in the literature, the results using this approximation are
in extremely closequantitativeagreementwith the full pair-
wise model. Most importantly, this assumption allows the
consideration of assortative mixing and heterogeneous
degree, in a systemwhere a numberof differential equations
is linear rather thanquadratic in themaximumnodedegree.

2.1.3. Detailed balance. The most general prevalence of
pairs of connected nodes with degrees k and l is given by

½kl� ¼ Ck;l
k½k�l½l�

�nN
;

that is, if Ck, l can take any value for combinations of k
and l, then all possible distributions for [kl] can be
J. R. Soc. Interface (2011)
enumerated. However, an assumption is often made
that the correlation matrix C obeys

Ck;l ¼ 1 8k; l: ð2:5Þ

In mean-field (non-network) models, such an assump-
tion has been used, to great effect, to study the spread of
sexually transmitted infections in risk-structured popu-
lations defined by individual-level data on sexual
contacts [21]; however, it is recognized that, in general,
most populations are assortative such that Ck, l . 1 for
similar k, l and Ck,l , 1 for dissimilar k, l. In network
models, the assumption that Ck, l¼ 1 means that link
‘stubs’ from each node are connected randomly, which is
typically called detailed balance with respect to swapping
randomly picked edges in physical science [18], although
terminology and definitions concerning assortativity can
be different in other subject areas, for example, the sexu-
ally transmitted infection literature (e.g. [22]).

2.1.4. Pair closure. If network dynamics are effectively
dominated by assortative mixing of risk classes, then
we may wish to remove pair-level variables through
the assumption

½AkBl � �
½kl�
½k�½l� ½Ak �½Bl �; ð2:6Þ

which allows us to keep assortativity but loses the effects
of network structure—the correlation between the states
of connected nodes is lost—although some of these can
be maintained through extra factors, as in Kiss et al.
[23]. Application of this closure reduces the number of
equations needed to 2 M for SIR dynamics.

2.1.5. Deconvolution of individuals. The final approxi-
mation we consider has not been previously explicitly
stated in this form, but can be used to derive the PGF
approach from a general pairwise model. It can be viewed
as the main assumption that allows the PGF formalism
to approximate disease dynamics on heterogeneous net-
works within a low dimensional framework. This involves
writing the joint probability [AkB] (defined above) as a pro-
duct, and is analogous to the concepts used to generate
equation (2.4), in that its validity depends on the
independence of dynamics and network structure.

½AkB� � ½AB� k½Ak �P
l l½Al �

: ð2:7Þ

The underlying approximation is that given a node (of
type Ak), the type of connected node (taken here to be B)
is independent of k and therefore independent of the local
network structure. For SIR dynamics, this assumption
creates a set of equations whose dimension does not
depend on the maximum node degree M, although the
exact number of equations required depends on whether
clustering is present, and which quantities one wishes to
calculate over the course of an epidemic.

2.2. Relating ordinary differential
equation-based approaches

Starting with the general pairwise model (2.1), the
assumptions above can be used to derive other
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Figure 1. Numerical test of the clustered PGF model against
simulation and other ODE approaches. The network has
size N � 104, its degree of distribution is Poisson with
mean n̄ ¼ 6 and the clustering coefficient is f ¼ 0.2. The
transmission rate is t ¼ 0.8 at unit recovery rate. We shift
time for each of 103 stochastic simulations, so all curves
agree on when a cumulative incidence of 200 is reached,
and the simulation mean and prediction interval can be
meaningfully visualized. Clearly, the clustered PGF
approach is in excellent agreement with simulation. Solid
line, simulation mean; dashed line, simulation 95% PI; red
line, homogeneous pairwise; green line, PGF; blue line, clus-
tered PGF.
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approaches. Taking the assumptions (2.2)–(2.5) and
(2.7) allows us to derive the PGF equations originally
formulated from first principles in [14] (full equations
given in electronic supplementary material). This is
an interesting and unexpected result since the under-
lying arguments used originally to derive the pairwise
J. R. Soc. Interface (2011)
and PGF models are quite different. The standard het-
erogeneous-mixing models associated with risk-
structured populations (given in electronic supplemen-
tary material) are derived by putting the assumption
(2.6) into the pairwise equations and ignoring the
pair-level variables.

We also note that for networks with no clustering
and degenerate degree distribution (often called
either regular graphs or homogeneous random net-
works), the PGF and pairwise approaches are
formally identical, since assumption (2.7) is trivially
satisfied.
3. CONSTRUCTION OF NOVEL MODELS

While the formal links between prima facie distinct
epidemic models are intrinsically interesting, the
main motivation for our work is to derive novel, par-
simonious models for epidemics on a range of
complex networks without having to argue the for-
mulation from first principles. The fact that full
pairwise models are simply written down, together
with the new explicit form of the assumption under-
lying PGF models (2.7), means that it is possible to
produce systematically much simpler ODE-based
models for network-based epidemics. We now con-
sider two such models, together with the potential
limits on this methodology.
3.1. Incorporation of clustering

The relationships between different ODE approaches
to network epidemics presented above open up the
intriguing possibility of extending the PGF approach
to include clustering so that both heterogeneity in
link distribution and clustering can be analysed
using a low-dimensional model with a small
number of dynamical variables. This is indeed poss-
ible: using (2.4) and (2.7) together with the
standard pairwise closure (2.2), the two triples that
appear in the unclosed pairwise SIR equations can
be closed through

½SSI � � ½SS�½SI � g00ðuÞ
N ðg0ðuÞÞ2

ð1� fÞ þ f�n
½SI �

ug0ðuÞY

� �
;

and ½ISI � � ½SI �2 g00ðuÞ
Nðg0ðuÞÞ2

ð1� fÞ þ f�nN
½II �
Y 2

� �
;

9>>>>>>>>>=
>>>>>>>>>;
ð3:1Þ

where we define u(t) as the fraction of degree 1
nodes that remain susceptible at time t and

Y ¼
X

k

k½Ik �; ð3:2Þ

and g(x) ¼
P

k dk xk is the PGF for the node degree
distribution. This gives a new dynamical system
that, together with the closure relations (3.1),
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determines the epidemic behaviour:

_u ¼ �t ½SI �
Ng0ðuÞ ;

½ _I � ¼ t½SI � � g½I �;

_Y ¼ t
ug00ðuÞ
g0ðuÞ þ 1

� �
½SI � � gY ;

_½SS� ¼ �2t½SSI �;
_½SI� ¼ tð½SSI � � ½ISI � � ½SI �Þ � g½SI �;

and _½II� ¼ 2tð½ISI � þ ½SI �Þ � 2g½II �:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð3:3Þ

The number of susceptibles can be tracked non-
dynamically through the relationship

S½ � ¼ NgðuÞ: ð3:4Þ

The primary significance of this result is that, regard-
less of the maximum node degree on a network, a
system of six ODEs together with the non-dynamical
relationship between [S] and u can be used to calculate
an expected prevalence curve for heterogeneous,
clustered networks.
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Figure 2. Numerical test of the heterogeneous SIS model and
other ODE approaches. The network has size N � 104, and is
scale-free with parameters m0 ¼ 20 and m ¼ 2. The trans-
mission rate is t ¼ 1.0 at unit recovery rate. We shift time
for each of 103 stochastic simulations, so all curves agree on
when a prevalence of 200 is reached, and the simulation
mean and prediction interval can be meaningfully visualized.
Clearly, the heterogeneous pairwise approach is in excellent
agreement with simulation. Solid line, simulation mean;
dashed line, simulation 95% PI; red line, homogeneous
pairwise; green line, heterogeneous mixing; blue line,
heterogeneous pairwise.
3.2. Incorporation of other disease natural
histories

In addition to the clustered PGF model derived above,
which assumes SIR (susceptible–infectious–recovered)
dynamics, other extensions of the PGF approach will
clearly be possible, for example, the inclusion of a
latent class or multiple infectious classes as in Kamp
[24]. While this requires more variables, the system
will still be of far lower dimension than the equivalent
full pairwise model.

However, other commonly studied disease beha-
viours, such as the SIS paradigm, which is ideal for
sexually transmitted infections and has been exten-
sively studied using pairwise approaches, are not
straightforwardly reduced to the PGF formulation.
This is because, under SIS dynamics, the set of ODEs
governing the evolution of quantities such as

P
kk

a

[Ak] is not closed. This does not, however, preclude
the use of approximation (2.7). Inserting this assump-
tion into the standard pairwise SIS model gives the
following new model:

½ _Sk � ¼ �t½SI � k½Sk �P
l l½Sl �

þ gð½k� � ½Sk �Þ;

and _½SI� ¼ t½SI �
X

k

k½Sk � � 2½SI �
 !P

l lðl � 1Þ½Sl �
ð
P

m m½Sm�Þ2

� ðtþ gÞ½SI � þ g
X

k

ð½k� � ½Sk �Þ � ½SI �
 !

:

9>>>>>>>>>>=
>>>>>>>>>>;

ð3:5Þ

Unlike the clustered PGF model above, the number of
these equations that need to be manipulated numerically
is M þ 1, that is, linear in the maximum node degree;
however, their dimensionality is still significantly lower
J. R. Soc. Interface (2011)
than standard pairwise models and, perhaps more impor-
tantly, there are only two equations that need to be
manipulated in analytic work on this system.
3.3. Assortativity

Deviation from null assortativity is a complexity that
simply cannot be naturally incorporated in the PGF
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equations without vastly increasing the dimensionality
of the system. We provide a numerical demonstration
of the importance of this observation in the electronic
supplementary material. Nevertheless, as shown in
Eames & Keeling [17], by using networks (2.2) and
(2.4), an assortative model can be created that is
linear in maximum node degree.

3.4. Comparison with simulation

We now test each of the two new models above (clus-
tered PGF and heterogeneous SIS) against simulation
and compare to other relevant ODE approaches.

For the clustered PGF, we start with a random graph of
approximately 104 nodes and with Poisson parameter l¼
6. We then introduce a clustering coefficient of f ¼ 0.2
using the ‘big V’ rewiring [19,25], which does not change
the degree distribution. Following [26], we bias node selec-
tion by k(k 2 1), so individual-level clustering is constant;
while this will make Ckl slightly deviate from unity, at the
level of clustering we consider this should have negligible
dynamical impact. We choose these network parameters
because they separate the ODE approaches without being
so large that concerns about global network properties
like giant component size are posed. While it is probable
that realistic networks for respiratory infection have more
variable degree distributions, larger numbers of mean
nodes and higher clustering coefficients, our approach is
to start with a system with few underlying parameters
andatransparentmethod for the introductionof clustering.
Epidemic ratesweret¼ 0.8,g¼ 1.Figure 1 showsthe com-
parison of the clustered PGF model, which is in good
agreement with simulation, and two other ODE
approaches. The homogeneous pairwise model underesti-
mates early growth in cases and, conversely, the
unclustered PGF model overestimates early growth. This
is as would be expected from general arguments about the
effects of clustering [10] and population heterogeneity
[15]. The electronic supplementary material shows how
these other, existing, ODE approaches remain in good
agreement with simulations on appropriate networks and
also considers the impact of assortativity.

For the heterogeneous SIS model, we generate a
scale-free network of approximately 104 nodes by
using the standard [27] method with parameters m0 ¼

20, m ¼ 2, and removing nodes of degree 0. Since the
scale-free property is consistent with observed sexual
contact networks [28], and for sexually transmitted
infections recovered individuals often fail to acquire
long-lasting immunity, pairing scale-free networks
with SIS dynamics is natural. Epidemic rates were t ¼

1, g ¼ 1. Figure 2 shows that models incorporating het-
erogeneity both fit to simulation much better than the
homogeneous pairwise model and that the addition of
just one extra equation for the heterogeneous pair-
wise when compared with heterogeneous mixing
significantly improves the fit to early growth behaviour.
4. DISCUSSION

We have analysed the conditions under which PGF and
heterogeneous-mixing models can be derived from a
general pairwise approach. These split into assumptions
J. R. Soc. Interface (2011)
about the network itself, such as zero clustering (2.3)
and non-assortativity (2.5), and assumptions about
the interaction of dynamics with network structures
such as (2.2), (2.4), (2.6) and (2.7). We have used
these conditions to derive a clustered PGF model and
a low-dimensional heterogeneous SIS model, which are
likely to be of significant utility in the study of epi-
demics on networks owing to their relatively low
dimensionality.

In general, the starting point for analysis of disease
transmission on a network has to be the available
data. Where the full network is known, or can be
imputed with confidence, then explicit stochastic simu-
lation of the epidemic process is likely to be the best
approach. When only statistical properties of the net-
work, such as degree distribution dk, correlation
between degrees Ckl or clustering coefficient f, are
known, then there are two complementary approaches:
either generate exemplar networks for simulation with
the appropriate statistics or make use of ODE-based
models of the kind considered here, which can be para-
metrized directly from the network statistics, are
numerically tractable and mathematically transparent.

Within this second approach, each ODE-based
model used to study network epidemics will have its
own domain of validity. While the most general pair-
wise model can be applied to all compartmental
paradigms, with clustering, degree heterogeneity and
assortativity included, this comes with increased and
potentially unnecessary computational overhead. The
more tractable models, on the other hand, may suffer
from important inaccuracies when the implicit assump-
tions they make are not justified.

A question is also posed, however, about the ultimate
justification of even the general pairwise model. At pre-
sent, it is widely believed that in an appropriate regime,
this model will be ‘exact’ in the same way that the stan-
dard SIR equations for an epidemic tend to the mean
behaviour of an exact stochastic epidemic model in
the appropriately constructed large-population limit.
Whether such a regime can be defined remains an
important open problem, and one that will hopefully
be resolved in the near future.

In conclusion, we hope that this study has clarified
the relationship between diverse ODE-based models
and extended the repertoire of models available for use.

This work was funded by the UK Engineering and Physical
Sciences Research Council (grant no. EP/H016139/1) and
the UK Medical Research Council (grant no. G0701256).
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