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Abstract

Inhibition of macrophage-mediated phagocytosis has emerged as an essential mechanism for 

tumor immune evasion. One mechanism inhibiting the innate response is the presence of the 

macrophage inhibitory molecule, signal regulatory protein-α (SIRPα), on tumor-associated 

macrophages (TAMs) and its cognate ligand cluster of differentiation 47 (CD47) on tumor cells in 

the tumor microenvironment. On the basis of a recently discovered programmed death protein 1 

(PD-1) in TAMs, we discuss the potential inhibitory receptors that possess new functions beyond 

T cell exhaustion in this review. As more and more immune receptors are found to be expressed on 

TAMs, the corresponding therapies may also stimulate macrophages for phagocytosis and thereby 

provide extra anti-tumor benefits in cancer therapy. Therefore, identification of biomarkers and 

combinatorial therapeutic strategies, have the potential to improve the efficacy and safety profiles 

of current immunotherapies.
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Introduction

The field of immuno-oncology has dramatically reshaped the landscape of cancer therapy 

since the development of antibodies that block immune checkpoint proteins, which activate 

anti-tumor immunity by enhancing T cell cytolytic activity [1]. To date, dozens of immune 

checkpoint blockades have been developed for clinical trials in treating leukemia, 

lymphoma, and solid tumors [2,3]. In particular, antibodies targeting immune checkpoint 

protein programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) have 

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the 
appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, which 
indicates if changes are made.

Correspondence: Mien-Chie Hung, mhung@mdanderson.org. 

Compliance with ethics guidelines
Chia-Wei Li, Yun-Ju Lai, Jennifer L. Hsu, and Mien-Chie Hung declare no conflict of interest. This article does not contain any 
studies with human or animal subjects. This manuscript is a review article and does not involve a research protocol requiring approval 
by the relevant institutional review board or ethics committee.

HHS Public Access
Author manuscript
Front Med. Author manuscript; available in PMC 2020 January 03.

Published in final edited form as:
Front Med. 2018 August ; 12(4): 473–480. doi:10.1007/s11684-018-0657-5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


been approved by the Food and Drug Administration (FDA) to treat 25 types of cancers in 

over 120 000 patients [4]. Despite their clinical success in producing durable responses, the 

overall response rate of immunotherapy is 15%—20% [5]. Many combinatorial strategies 

were thus rationally designed and tested in the clinic in attempt to enhance the therapeutic 

outcome of cancers [3]. Moreover, issues such as missing targets, intrinsic/acquired 

resistance, hyper-progressive diseases, the lack of reliable biomarkers, autoimmune diseases, 

and neurotoxicity, have now become the new challenges awaiting further investigation [6–8]. 

Therefore, furthering our understanding of the mechanisms underlying cell-cell interaction 

may help identify responsive cohorts of patients and enhance the response rate of 

immunotherapy. Immune defense is typically divided into two categories: innate and 

adaptive response. Innate immunity refers to the nonspecific recognition that reacts 

immediately after antigen exposure whereas adaptive immunity involves more complex 

processes, including antigen recognition and T cell activation in order to eliminate the 

specific antigen. The field of cancer immunotherapy has primarily focused on the molecular 

interaction between cancer and the effector T cells in the tumor microenvironment; however, 

targeting the signaling that allow cluster of differentiation 47 (CD47)-mediated inhibition of 

macrophage engulfment has emerged as a new type of immunotherapy strategy [9]. Virtually 

expressed in all types of cancers, CD47 is a transmembrane molecule that engages with 

signal regulatory protein-α (SIRPα) on the dendritic cells and macrophages [10]. Through 

overexpression of CD47 on their surface, cancer cells defend themselves against 

phagocytosis by macrophages. High expression of CD47 has been shown to correlate with 

poorer disease survival in many cancer types, including acute myeloid leukemia [11], breast 

carcinoma [12,13], esophageal carcinoma [14], and gastric cancer [15]. Low expression of 

CD47 is correlated with positive disease outcome of ovarian carcinoma [16]. Indeed, 

pathological evidence has consistently shown that expression of CD47 is a pro-tumorigenic 

factor. In a therapeutic setting, monoclonal antibodies that block the interaction between 

CD47 and SIRPα robustly reawakens the innate immunity in mice [11]. Furthermore, 

combining anti-CD47 with anti-PD-1 induced stronger antitumor immunity than anti-CD47 

alone [17]. Currently, ten clinical trials are underway to test the efficacy of anti-CD47 agents 

(Hu5F9-G4, TTI-621, or CC-90002) as monotherapy or in combination with chemotherapy 

or target therapy to treat acute myeloid leukemia, colorectal cancer, solid tumor, and non-

Hodgkin’s lymphoma [18]. Because CD47 is also expressed in normal tissues, toxicity has 

been observed in the pre-clinical study, but the adverse events are manageable [11]. A 

multiple dose escalation study of Hu5F9-G4, a humanized monoclonal antibody against the 

human CD47, for advanced solid malignancy or lymphoma (NCT02216409) indicated that it 

was well tolerated. Mild anemia was observed in some patients but can be managed without 

blood transfusion. Together, targeting innate immune checkpoint CD47 is a safe and 

excellent strategy as a monotherapy or in combination with other anti-cancer therapy [18]. 

Multiple clinical trials targeting macrophage have been initiated since 2014 for the treatment 

of several types of cancers [18].

Similar to CD47-SPIRα, Barkal et al. identified an essential role of major histocompatibility 

complex (MHC) class I in controlling the phagocytic function of macrophages through the 

expression of β2-microglobulin (β2M) by cancer cells. They found that leukocyte 

immunoglobulin-like receptor B1 (LILRB1) on the surface of TAMs binds to a portion of 
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MHC-I on cancer cells, which inhibited the ability of macrophages to engulf the cancer 

cells. Blocking both MHC-I and LILRB1 pathways stimulated macrophage engulfment in 
vitro and in vivo and significantly slowed tumor growth in mice [19].

It was previously thought that PD-1 is expressed primarily on T cells and induces T cell 

exhaustion via the single immunoreceptor tyrosine-based inhibitory motif (ITIM) within its 

cytoplasmic tail [20]. When engaged with cancer cell PD-L1, the ITIM domain of PD-1 

activates SHP2 to inhibit ZAP70 resulting in suppressing the activity of CD3/CD28 T cell 

receptor [21]. However, a recent study published in Nature by Gordon et al. reported the 

identification of PD-1-expressing TAMs [17]. In a mouse CT26 syngeneic mouse model, the 

authors found that 70% of TAMs express PD-1 on the cell surface compared with 2% and 

1 % of that in the blood and spleen macrophages, respectively [17]. In the human colorectal 

cancer samples, the levels of PD-1+ TAMs are positively correlated with tumor malignancy. 

Functionally, the authors further demonstrated that PD-1+ TAMs are less capable of carrying 

out phagocytosis by (1) ex vivo phagocytosis assay using cocultures FACS-sorted PD-1+ and 

PD-1− TAMs from CT26 tumors with GFP+Staphy-lococcus aureus bioparticles; (2) in vivo 
phagocytosis analysis using immunocompromised BALB/c Rag2−/−/γc−/− mice engrafted 

with PD-L1-knockout CT26/YFP+ cells. The results from these two models suggested that 

tumor cells showing loss of PD-1/PD-L1 axis are phagocytized.

In addition, Gordon et al. further performed a bone marrow transplantation experiment to 

demonstrate the origin of the macrophage-induced tumor cell phagocytosis. To do this, 

donor bone marrow from RFP+ C57BL/6 mice was engrafted into irradiated host GFP+ 

C57BL/6 mice, which were then inoculated with MC38 colon cancer cells to the mice. After 

three weeks, they found that significantly higher fractions of PD-1+ TAMs were derived 

from donor RFP+ bone marrow, suggesting that PD-1+ TAMs originated from circulating 

leukocytes but not from resident immune cells in the host. They also showed that the 

combined therapy of HAC (anti-human PD-L1 small protein) and anti-CD47 enhanced anti-

tumor efficacy and survival rate in a human DLD/GFP+ colon cancer xenograft mouse 

model with NSG mice. These well-executed studies provided important molecular insights 

into a potentially effective therapeutic strategy by elevating phagocytosis against cancers by 

targeting the PD-1 pathway with PD-L1 protein or anti-PD-1 and sensitizing CT26 cells to 

anti-CD47 therapy [17].

An old dog with a new trick

The study by Gordon et al. identifying a new mechanism of anti-PD-1, which can enhance 

the engulfment of cancer cells through TAM activation, has opened a new avenue toward the 

improvement of immunotherapy. Their findings suggested that the interaction between PD-

L1 on tumor cells and PD-1 on PD-1+ TAM produces a “don’t-eat-me” signal that inhibits 

macrophage-mediated phagocytosis. Because macrophage-related immunity represents an 

innate immune response, this may partially explain why the efficacy of anti-PD-1 is more 

efficient than other types of immunotherapies as it can stimulate the phagocytosis of the 

cancer cells (Fig. 1). However, it remains unclear how much of the anti-PD-1 efficacy is 

attributed to phagocytosis. If the anti-PD-1-mediated antitumor effect requires phagocytosis, 

tumors with more TAM may respond better to anti-PD-1. In addition, proinflammatory 
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cytokines or CD47 could serve as predictive markers for the anti-PD-1 therapy. It is likely 

that the innate immune response of TAMs induces phagocytosis of a particular type of 

cancer cells that share similar features to foreign pathogens. The engulfment of these cells 

by TAMs will (1) increase secretion of cytokines to attack T cell infiltration and 

subsequently (2) present tumor antigens for T cell activation.

Interestingly, the pro-inflammatory cytokine, IFNγ, which is secreted by CD8+ T cells, 

induces cytotoxicity against cancer cells. On the other hand, cancer cells are known to 

express high levels of PD-L1 on the cell surface to suppress the effector T cells via PD-1 

[22]. This negative feedback regulation allows cancer cells to escape immune surveillance 

[23]. Likewise, a recent study suggested that another pro-inflammatory cytokine, TNFα, 

which is secreted by macrophages, induces stabilization of PD-L1 on cancer cells through 

COP9 signalosome subunit 5 (CSN5)-mediated de-ubiquitination [24]. If TNFα stabilizes 

cancer cell PD-L1 to engage with PD-1+ TAMs, the activated macrophages are subsequently 

inhibited. Therefore, the TNFα-PD-L1-PD-1 axis may be a new negative feedback loop that 

occurs between TAMs and cancer cells.

Cooperation between innate and adaptive immunity

The findings by Gordon et al. also point to an important concept of the crosstalk between 

innate immune response and adaptive immunity (Fig. 1). Innate immunity represents a 

nonspecific defense mechanism that comes into play immediately when a foreign antigen 

appears in the body. Adaptive immunity refers to the antigen-specific immune response that 

requires more complex immune reaction for activation. Although the two immune systems 

crosstalk, it is not yet clear how they work with one another in the tumor microenvironment. 

To date, some studies have shown that CD8+ T cells play a critical role in mouse anti-CD47 

blockade-induced tumor reduction even though the target is not directly on the T cells [25]. 

Depletion of CD8+ T cells diminishes the anti-tumor activity of mouse CD47 antibody in a 

syngeneic mouse model [25,26]. Moreover, IFNγ was significantly upregulated when mice 

treated with anti-CD47 [9], suggesting that while TAMs are engulfing cancer cells, the 

antigen presenting function of the macrophages induces CD8+ T cells to further eradicate 

cancer cells [18]. Similar to the notion, the presence of TAMs is critical for anti-PD-1 

therapy. Because TAMs present tumor antigen for T cell activation, the more TAMs are 

present in the tumor area, the better the therapeutic outcome of anti-PD-1 [6]. On the basis 

of the findings by Gordon et al., the presence of both innate and adaptive immune cells is 

critical for the anti-tumor activity. Molecules that are expressed on both TAMs and T cells 

may be useful to induce two types of the immune response against tumor progression.

TAM, a two-edged sword

TAMs, mostly composed of M2 type macrophages, have been shown to provide a favorable 

microenvironment for tumor progression, angiogenesis, metastasis, and drug resistance in 

the hypoxic environment [27]. TAMs can suppress the CD8+ T cell immune response against 

cancer by directly interacting with T cells via the PD-1 pathway or by secreting 

immunosuppressive factors, e.g., IL-10 and TGF-β [28,29]. Clinicopathological studies 

often link the expression of TAMs with poorer disease outcomes [30,31]. The study by 

Gordon et al. showed PD-l- TAMs can engulf cancer cells, adding new insight into the 
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current anti-PD-1 therapy. However, some concerns still exist regarding the oncogenic 

function of TAMs. First, it remains to be determined whether activation of TAMs by anti-

PD-1 for phagocytosis also promotes tumor aggressiveness or creates apoptotic insensitive 

tumor cells that escape T cells surveillance. In this regard, colony-stimulating factor 1 

receptor (CSF-1R)-targeted therapy, such as RG7155 or PLX339, may be an alternative to 

reduce TAM polarization [32,33]. In addition, since TAMs produce the chemokine CCL22 

to attract regulatory T cells and myeloid-derived suppressor cells to the tumor site, 

neutralization of CCL22 may reduce this potential adverse effect. If TAMs engulf cancer 

cells before its oncogenic activity, triggering TAMs self-apoptosis after phagocytosis can 

overcome the risk of TAMs activation. Thus far, more and more subsets of 

immunosuppressive cells have been identified, and are shown to be regulated in part by 

TAMs [34]. Harnessing TAMs-mediated tumorigenic phenotype may be more complicated 

than we expected.

Other potential “don’t-eat-me” signals

Given the importance of TAMs and T cells’ immune reaction, we searched for other known 

T cell immune receptors that are also expressed on the macrophages and TAMs. Ideally, for 

molecules expressed on both T cells and TAMs, their therapeutic agents should be those that 

can stimulate both TAMs and T cell activation. According to the current published studies, 

we summarized 14 groups of immune checkpoints in Table 1. The PD-L1-PD-1 (Group 1), 

CD47-SIRPα (Group 6), and MHCI-LILRB1 (Group 8) are known to induce the “don’t-eat-

me” signals that have been described above. Inhibition of these signaling can enhance both 

innate and adaptive immunity, so in-depth analysis should first focus on these three groups 

as their therapeutic agents may share similar efficacy and response profile. PVR-TIGIT 

(Group 4), B7–1/2 (Group 5), and OX40L-OX40 (Group 12), on the other hand, are 

expressed only on macrophages but not TAMs; thus, it is unclear whether they are involved 

in the function of phagocytosis. If so, how those activated macrophages migrate to the tumor 

area is an important question to be addressed. As for the other eight groups from the list, 

they are expressed on the TAMs, which is present in the tumor microenvironment to quickly 

act on tumor cells once activated. Importantly, some of their targeting agents are available 

and/or currently being evaluated in the clinical trials, e.g., anti-CTLA4, anti-VISTA, anti-

TIM3, and anti-CD40, among others. It is therefore of interest to know whether those 

responders experience innate immune reactions during the treatment. Markers such as serum 

levels of CD163 (sCD163), the presence of CD68+ or CD163+ CD204+ macrophages in the 

tumor region can be used as indicator of macrophage or TAM activation following drug 

treatment [35].

Future prospective

Uncontrolled outgrow by signaling deregulation is a hallmark of cancer. For many years, 

therapies targeting signaling pathway or protein activities have been promising strategies for 

many types of cancers. As a new type cancer therapy, immunotherapy, which enhances our 

immunity to fight against cancer, has been shown to be a relatively safe and tolerable choice. 

Thus, combination immunotherapy with chemotherapy or targeted therapy is an appealing 

strategy for combating the heterogeneity of tumors. To date, several therapeutic strategies 

have been successfully developed based on the understanding of the regulatory mechanism 
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of immune checkpoints. Through the understanding of molecular regulation of immune 

receptors, TAM-mediated tumorigenesis may be limited.

In respond to IFNγ, cancer cells express PD-L1 to launch a feedback inhibition on T cells. 

Despite the understanding on the transcriptional regulation, post-translational modification 

of PD-L1 and its impact on cancer immunosuppression has emerged as an important 

mechanism for immune evasion. Based on the mechanisms underlying the post-translational 

regulation of PD-L1, many combinatorial strategies can be rationally designed with strong 

clinical value. Through EGFR and NF-κB signaling, we have previously reported several 

safe and effective combinations, such as gefitinib plus anti-PD-1 [36], curcumin plus anti-

CTLA4 [24] and PARP-1 plus anti-PD-L1 [37] that may be worthy of being tested in clinical 

trials. Moreover, a study by Zhang et al. showed that stabilization of PD-L1 by CDK4/6 

inhibitor sensitizes CT26 to anti-PD-1 [38]. CMTM6 [CKLF (chemokine-like factor)-like 

MARVEL transmembrane domain containing family member 6] maintains the membrane 

PD-L1 protein turn over, thereby reducing anti-tumor immunity [39,40]. The discovery of 

PD-L1 glycosylation also reveals that N-linked glycosylation protects proteins from GSK30-

mediated degradation [36]. Monoclonal antibody targeting N192 and N200 glycosylation of 

PD-L1 can internalize PD-L1, which serves as a potential candidate for antibody-drug 

conjugate [41]. In this regard, identifying small molecule inhibitors that can effectively 

block posttranslational modification events may improve the effectiveness of current 

immune checkpoint blockades.

Conclusions

The discovery of TAM PD-1+ by Gordon et al. shed new light on the inhibitory function of 

PD-1 beyond its role in T cell exhaustion. In addition to rejuvenating the cytotoxic T cell 

activity, anti-PD-1 therapy can also now stimulate TAMs to engulf cancer cells. The findings 

of that study suggested that coordination of innate and adaptive immune response is vital for 

anti-tumor immunity. Here, we identify several other immune receptors that are expressed 

on both TAMs and T cells. Therapeutic agents against these targets may induce a dual 

immune response and broaden the patient population for immunotherapy.
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Fig. 1. 
Anti-PD-1 therapy induces both TAMs and CD8+ T cell activity. (A) The expression of 

PD-1 on the tumor-associated macrophages (TAMs) and T cell inhibits antitumor immunity. 

(B) PD-1 antibody induces innate immunity by TAM phagocytosis and adaptive immunity 

by T cell cytolytic activity.
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