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The epithelial-to-mesenchymal transition (EMT) plays a critical role
during normal development and in cancer progression. EMT is in-
duced by various signaling pathways, including TGF-β, BMP, Wnt–β-
catenin, NOTCH, Shh, and receptor tyrosine kinases. In this study,
we performed single-cell RNA sequencing on MCF10A cells under-
going EMT by TGF-β1 stimulation. Our comprehensive analysis
revealed that cells progress through EMT at different paces. Using
pseudotime clustering reconstruction of gene-expression profiles
during EMT, we found sequential and parallel activation of EMT
signaling pathways. We also observed various transitional cellular
states during EMT. We identified regulatory signaling nodes that
drive EMT with the expression of important microRNAs and tran-
scription factors. Using a random circuit perturbation methodology,
we demonstrate that the NOTCH signaling pathway acts as a key
driver of TGF-β–induced EMT. Furthermore, we demonstrate that
the gene signatures of pseudotime clusters corresponding to the
intermediate hybrid EMT state are associated with poor patient out-
come. Overall, this study provides insight into context-specific driv-
ers of cancer progression and highlights the complexities of the
EMT process.
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During cancer progression, activation of epithelial-to-
mesenchymal transition (EMT) results in cancer cells ac-

quiring mesenchymal and stem cell properties. These altered cells
can dissociate from the primary tumor mass, invade surrounding
tissue, and intravasate into blood vessels (1, 2). Upon extravasa-
tion at the distant site, these disseminated cancer cells, depending
on the local microenvironment, either begin to proliferate and
revert to a more epithelial phenotype or remain in a quiescent
phase for an extended period, thereby providing an opportunity
for recurrence. In either case, this leads to metastatic disease, the
leading cause of death in cancer patients. The stem cell properties
that develop during EMT may also impart resistance to various
therapies (3, 4).
Cells that have undergone EMT lose adherent junctions due to

both transcriptional repression of E-cadherin and the elimination
of cell-surface E-cadherin (5). In addition, epithelial markers, such
as epithelial cellular adhesion molecule (EpCAM), desmoplakins,
and cytokeratins are down-regulated during EMT, and there is an
increase of mesenchymal markers, such as Vimentin, N-cadherin,
fibronectins, and matrix metalloproteinases (6). These sequential
events of EMT are tightly regulated by a set of transcription fac-
tors, including Slug, Twist, Snail, Zeb1, and Zeb2, and are highly
context-specific (7, 8).
Expression and activation of EMT-inducing transcription

factors occur in response to various signaling pathways, including
those mediated by TGF-β, BMP, EGF, FGF, PDGF, Wnt, Shh,
NOTCH, and integrins (9–14). Signaling pathways have been
shown to interact at various levels and a number of feedback
activation/repression mechanisms have been demonstrated in

different EMT contexts, with each potentially having over-
lapping/context-specific outputs (15, 16). It is therefore critical to
characterize the induction of pathways in various subpopulations
of cancer cells over a temporally resolved time course following
EMT induction.
Here we used single-cell RNA sequencing (scRNA-seq) to

capture the changes in epithelial cells (17) over an extended
time course of TGF-β1–induced EMT. The experimental data
were analyzed using unsupervised bioinformatic methods to
decipher the pseudotime progression. We also utilized a
regression-based approach and a circuit randomization proce-
dure to predict couplings between different pathways and the
consequences of perturbations to various EMT-related factors.
We demonstrate the involvement of several EMT-promoting
signaling mechanisms in the cross-talk that integrates the tu-
mor microenvironment with the tumor cells themselves to drive
their reprogramming. This study identifies the signaling events
and regulators at multiple intermediate stages during EMT and
advances our knowledge of tumor progression by elucidating
targets for developing novel treatment strategies to combat
treatment-resistant and metastatic cancer.

Significance

The epithelial-to-mesenchymal transition (EMT) is a critical cell
biological process that occurs during normal embryonic devel-
opment and cancer progression. Our study combines single-cell
RNA-sequencing analysis and mathematical modeling to iden-
tify critical regulators of EMT. Detailed analyses of TGF-
β1–induced EMT by single-cell RNA-sequencing data revealed
simultaneous activation of EMT signaling pathways. We cre-
ated mathematical approaches to identify the master regula-
tory pathway of EMT and key downstream mediators of this
process. This study sheds light on the signaling architecture
that governs EMT and informs ongoing efforts to delineate
drivers of cancer initiation, progression, and metastasis.
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Results
During TGF-β1–Induced EMT, Multiple Signaling Pathways Are Activated
Simultaneously. To characterize molecular changes during EMT
progression, we used the human immortalized breast cell line
MCF10A, which has been well-characterized during TGF- β1–
induced EMT. Specifically, when stimulated with TGF- β1,
MCF10A cells undergo morphologic and phenotypic EMT-like
changes, including cytoskeleton reorganization, mesenchymal
marker up-regulation, and cadherin switching (18, 19). MCF10A
cells were stimulated with TGF-β1 for 1, 2, 3, 4, or 8 d (Fig. 1A).
We initially monitored for changes in the epithelial marker
E-cadherin (CDH1) and the mesenchymal marker N-cadherin
(CDH2) (Fig. 1B). Almost all uninduced cells expressed
E-cadherin without the expression of N-cadherin. N-cadherin was
induced in a subset of cells after 1 d of TGF-β1 treatment and
within 2 d most of the cells expressed N-cadherin. A decrease in
E-cadherin levels began to appear in a subset of cells after 4 d of
exposure to TGF-β1 (Fig. 1B), while the complete cadherin switch
was observed only after 8 d of TGF-β1 treatment.
To identify the signaling pathways that get sequentially in-

duced during EMT in a time-dependent manner, we performed
scRNA-seq at the same time points using MCF10A cells un-
treated (day 0) and treated with TGF-β1 (days 1 to 8) (Fig. 1C).
The experiments were performed in two batches; the data were
batch-corrected and curated before further analyses (SI Appen-
dix, Fig. S1 and Dataset S1). The force-directed layout (20)
embedding of the scRNA-seq data demonstrated a clear shift in
the global gene-expression trajectory from epithelial to mesen-
chymal features, as expected, over the time course (Fig. 1D and
SI Appendix, Fig. S2A).
During EMT, E-cadherin and other junctional proteins, in-

cluding claudins and desmosomes, are repressed, and this facili-
tates the general dedifferentiation program (5, 6). Therefore, we
first analyzed the expression of well-defined epithelial and mes-
enchymal markers. As previously described, TGF-β1 treatment
immediately induced loss of S100 calcium-binding protein A9
(S100A9) expression (21), and also induced the gradual loss of
epithelial markers CDH1 and EpCAM (5, 6) (Fig. 1E), as well as
other genes linked to the epithelial phenotype (SI Appendix, Fig.
S2B). We also observed the gain of mesenchymal markers (CDH2,
FN1, FAP) and EMT-associated transcription factors (e.g.,
SNAI2) and S100 calcium-binding protein A6 (S100A6), a known
marker of EMT (22, 23), starting after 2 d of EMT induction
(Fig. 1E and SI Appendix, Fig. S2B). Observations of increases in
N-cadherin and fibronectin and reduced E-cadherin and EpCAM
expression are consistent with previous findings (24, 25).
TGF-β1 signaling is pleiotropic and interacts with various

other pathways (26). Not until 2 d after the start of TGF-β1
treatment did we observe increases in specific mRNAs encoding
factors involved in NOTCH, Shh and Wnt signaling cascades,
with a robust activation after 4 d of stimulation in the total cell
population (Fig. 1 F and G) and in the majority of individual
cells (SI Appendix, Fig. S2C). We next calculated an EMT score
of the cells across different time points using the Kolmogorov–
Smirnov metric identified based on epithelial and mesenchymal
gene lists, which quantifies the difference between the empirical
cumulative distributive functions for the two gene lists. Thus, this
EMT score indicates a comparative analysis of the “EMT-ness”
of a given sample (27, 28). We observed that the EMT score
distribution changed with time, with single cells at each time
point showing a range of negative to positive EMT scores in-
dicative of cell-level heterogeneity at each time point. At day 8,
the mean EMT score was higher than at other time points, in-
dicating a shift toward a more mesenchymal phenotype at an
ensemble level (Fig. 1H). Together, these data show that many
EMT regulatory pathways are induced simultaneously, suggest-
ing that EMT may require cross-talk among various signaling

pathways in a temporal manner, likely driven by interactions
between cells and their microenvironment.

Pseudotime Reconstruction of EMT Reveals Key Regulators. Global
analysis of various time points indicates an overall progression of
EMT in response to TGF-β1 stimulation (Fig. 1F). To better
understand population heterogeneity and EMT activation at the
single-cell level, we performed scRNA-seq analysis. We applied
k-nearest neighbor and modularity optimization techniques to
cluster the transcriptome data and to characterize the subpopu-
lations of cells that acquire mesenchymal features at various time
points during EMT (Fig. 2A). The cluster analysis revealed pro-
gression in pseudotime starting from an epithelial to a mesen-
chymal RNA expression status. When the pseudoprogression was
correlated with the time of TGF-β1 treatment, we discovered that
the vast majority of the untreated cells (green) start at the epi-
thelial extreme before EMT induction, with only a small fraction
of cells falling in clusters that show partial or complete EMT
progression (Fig. 2B). An interesting observation was that not all
cells progress at the same rate through EMT (Fig. 2B, SI Ap-
pendix, Fig. S3A, and Dataset S2). Interestingly, at intermediate
time points, single cells with phenotypes across the EMT spectrum
were observed. Even after 8 d, about half of the cells analyzed
exhibited both epithelial and mesenchymal properties, called hy-
brid or E/M cells. Most importantly, this analysis revealed 20
pseudotime clusters (Fig. 2B).
Next, we performed hierarchical clustering based on the 20

identified pseudotime clusters and observed that mRNAs asso-
ciated with the TGF-β, WNT/β-catenin, NOTCH, Shh, and
PI3K/AKT/mTOR pathways were up-regulated after TGF-β1
treatment. (Fig. 2C). We also identified 644 significantly up-
regulated mRNAs with TGF-β1 stimulation (SI Appendix, Fig.
S3 and Dataset S3), including mRNAs encoding transcription
factors with established roles in the regulation of stemness
(Fig. 2D). Several stemness factors that we identified, such as
myc (29), dnmt1 (30), fos (31), irf6 (32), egr1 (33), and sox4 (34),
are known to mediate cancer stem cells and EMT changes in
breast cancer cells. We also identified stemness factors, such as
hes4 and mxd4, with less clearly defined roles in the EMT pro-
cess. To get a better understanding of the regulatory pathways
involved, particularly to understand the role of microRNA
(miRNAs) in regulating differentially expressed transcription
factors, we analyzed the miRNA levels in each cluster based on
miRNA target gene expression using the mirWalk2.0 database
(35) (Fig. 2E). A striking drop of miRNA expression was observed
from cluster 8 to cluster 6 in the pseudotime progression. There
were large inverse correlations between inferred miRNA enrich-
ment scores and the relative fractions of target genes in each
cluster (Fig. 2F). Interestingly, by this analysis we identified several
miRNAs previously implicated in EMT regulatory checkpoints
(miR217, miR205, and miR200a/200b/200c-3p) (Fig. 2G), as well
as novel miRNAs not previously associated with EMT, (miR-30b,
miR203A, miR21, miR148-3p and miR192), being suppressed
during TGF-β1–induced EMT (Fig. 2F). In addition, several
miRNAs were up-regulated in clusters C6 through C17
(miR1268a, miR3140-3p, miR486-5p, miR224, and miR369-5p)
with known important roles in regulating EMT. We also identified
two miRNAs (miR374-3p and miR613) that had not been previ-
ously associated with EMT (Fig. 2F).
To better understand the parallel and sequential activation of

signaling pathways during TGF-β1–induced EMT, we performed
gene set enrichment analyses (https://reactome.org/). During
early time points of EMT progression, cell–cell communication
and cell-junction organization pathways were enriched, suggesting
an early role for the contribution of the microenvironment in
driving EMT (Fig. 3 A and B). Among known EMT-regulatory
genes, CDH1, EPCAM, and several keratins were down-regulated,
and CDH2, FN1, VIM, integrin β1, and integrin β5 were up-regulated
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along with the pseudotime transition (SI Appendix, Fig. S3C and E).
It has been previously reported that during EMT cells switch their
metabolism from mitochondrial oxidative phosphorylation to gly-
colysis (36). In line with this finding, mRNAs encoding proteins
involved in mitochondrial oxidative phosphorylation were down-
regulated (SI Appendix, Fig. S3 B and G). EMT-associated

pathways related to stem cell properties were activated later
during EMT, indicated by up-regulation of mRNAs encoding
factors involved in BMP, YAP/TAZ, HIPPO, NOTCH, and Wnt
pathways (Fig. 3A and SI Appendix, Fig. S3I). Multiple reactome
pathways were significantly changed during the pseudotime EMT
progression (SI Appendix, Fig. S3D and Dataset S4).
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Fig. 1. During TGF-β1–induced EMT multiple signaling pathways are activated simultaneously. (A) Schematic representation of model used to EMT in
MCF10A cells. (B) Flow cytometry analyses of MCF10A cells treated over 8 d with TGF-β. (C) scRNA-seq schematic. (D) Force-directed layout embedding (FLE) of
the trajectory of TGF-β1–induced EMT in MCF10A. (E) FLE trajectories of epithelial markers (CDH1, EpCAM, and S100A9), mesenchymal markers (CDH2, FN1,
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MCF10A cells. ANOVA (***P < 0.001).
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Fig. 2. Reconstruction of EMT using pseudotime clustering reveals key regulators of epithelial-mesenchymal states. (A) t-SNE of cells treated with TGF-β1
(Left) and pseudotime (Right) clusters in principal component analysis space grouped using modularity optimization technique. (B) The fraction of cells in each
cluster and time point of origin shown using a Sankey network. The red dots indicate that at least 10% of cells in a cluster mapped to the corresponding time
point. (C) Hierarchical network of cells in each cluster with different TGF-β1 treatment time points and ranked in pseudotime. (D) Cluster-specific markers
identified using Wilcoxon test (>1.4-fold change, adjusted P < 0.05). Among identified significantly up-regulated genes in each cluster the transcription
factors critical for stemness are highlighted. (E) The inferred enrichment for miRNAs based on the miRNA target expression. Before enrichment the average
gene expression for each gene in a cluster was calculated. The average expression was scaled across the clusters and used for enrichment analysis. (F) Inferred
miRNA enrichment score and relative fraction of target in each cluster. (G) Inferred EMT regulatory miRNA network and putative regulators and model
depicting miR217- and miR200a/200b/200c-3p-dependent EMT regulatory checkpoint.
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Fig. 3. scRNA-seq analysis identifies parallel and sequential signaling pathways involved in TGF-β1–driven EMT. (A) Heatmap of enrichment for indicated
EMT-associated pathways in each cluster. (B) NES of significantly altered signaling pathways across pseudotime clusters. The red lines are a fit determined by
LOESS. (C) Heatmap showing the distributions of mRNA expression of genes that were induced during TGF-β1–induced EMT and maintained increased ex-
pression during EMT progression. Genes associated with each EMT-associated pathway and their fraction in each cluster compared to maximum average
expression is shown in alignment with EMT-associated pathway activation.
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The most striking observation is the binary activation of the
EMT-associated pathways (SI Appendix, Fig. S3J). For example,
genes implicated in stem cell-related pathways, TGF-β, ERK,
PI3K/AKT, and glucose transport pathways, show the most
striking binary activation during the transition, which occurs
from clusters 8 to 6 (Fig. 3 A and B and SI Appendix, Fig. S3 H
and I). Next, we looked at key regulatory genes within the binary
EMT-induced pathways that were up-regulated during TGF-β1
induction and stayed up-regulated for the remainder of EMT
progression. Many genes within the EMT-associated pathways
show a binary increase of expression, and the majority is ob-
served between clusters 8 and 6 (Fig. 3C). Interestingly, binary
regulation of mRNAs encoding certain enzymes and transcrip-
tion factors was also observed (SI Appendix, Fig. S5). This binary
activation of EMT-associated pathways during EMT suggests an
existence of a checkpoint-like state.
To determine causal relationships between the key EMT-

associated pathways (Wnt, Notch, YAP/TAZ, Hippo, and so
forth) shown in Fig. 3A, we used a multiple lasso regression-based
approach followed by dynamical systems modeling. We used a
15-dimensional vector to represent the state of the population of
cells at each pseudotime point. Here, each vector element corre-
sponds to the enrichment score of one of the 15 EMT-associated

pathways shown in Fig. 3A. Next, we used multiple regression with
lasso regularization to generate a transition matrix that maps the
population state at pseudotime point t to the next pseudotime
point, t + 1 (37), and created a network representation of the
resultant transition matrix (Fig. 4A). To explore the range of dy-
namic behaviors the inferred network can exhibit, we used the
recently proposed random circuit perturbation approach (38).
This approach identifies the steady-state behaviors of a network by
simulating the network dynamics for an ensemble of parameters
(39, 40), and was initially developed to analyze the dynamical
behavior of gene regulatory networks with transcription factors as
nodes. Here, we directly apply this method to analyze the behavior
of a network with different cellular pathways as nodes. In doing so,
we assume that the activities of the different genes constituting a
“pathway” can be coarse-grained, defining a macroscopic variable
which quantifies the overall pathway activity. The assumption is
based upon the idea of network coarse-graining as, for example,
has previously been described by Drier et al. (41). Similarly, the
interactions between the genes in different pathways are func-
tionally represented by a single edge from one pathway node to
another, the nature (whether activating or inhibitory) of which is
determined in a data-driven manner from the sign of the corre-
sponding entry in the transition matrix (SI Appendix, Methods).
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state behaviors a network can exhibit by simulating network behavior for an ensemble of parameters. For the constructed network, but not for a set of
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The inferred network has steady states, which mostly vary
along with the first principal component (Fig. 4 B, Left, and SI
Appendix, Fig. S4A), and exhibits multistability (i.e., two or more
steady states for a given parameter set) (Fig. 4 B, Right). Such
behavior was not observed in the case of control networks
inferred via the same approach but by using randomized data as
input instead of the scRNA-seq data. To determine which of the
pathway nodes in the network are dominant in driving network
behavior, we suppressed each node’s activity individually and
determined changes in the distribution of the first principal
component of the network steady states (Fig. 4C). The distri-
bution of the first principal component exhibited large deviations
from the control case (where the activity of none of the network
nodes is suppressed) upon suppression of the TGF-β, NOTCH,
and YAP/TAZ signaling pathways, revealing these pathways as
the key drivers of EMT in this system (Fig. 4C). This was

confirmed by calculating the Kullback–Leibler divergence (42)
between the distribution obtained after pathway suppression and
that in the control case (SI Appendix, Fig. S4B). The identical
three pathways were identified as the key EMT drivers in an
alternate approach using a Boolean modeling framework to
model the network behavior. This result indicates that our
findings are robust and, in particular, not dependent on the
choice of the random circuit perturbation approach for network
analysis (SI Appendix, Fig. S4 C and D). That the TGF-β sig-
naling pathway is among the identified key pathways serves as a
helpful consistency check. Finally, we noted that while sup-
pressing the YAP/TAZ signaling pathway activity did not sub-
stantially affect the activity of the NOTCH signaling pathway
(Fig. 4 D, Top row), suppression of NOTCH pathway activity
suppressed YAP/TAZ signaling activity, including changing the
distribution of YAP/TAZ activity from bimodal to unimodal
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Fig. 5. Gene signatures of pseudotime clusters closer to the mesenchymal state are associated with worse survival. (A) Schematic of identification of dif-
ferentially expressed (DE) genes from each cluster and signature enrichment in cancer types based on normalized RNA expression data from TCGA. Cancer
cohorts (∼11,000 patients) analyzed were adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), breast invasive carcinoma (BRCA), cervical and
endocervical cancers (CESC), cholangiocarcinoma (CHOL), colon cancer (COAD), lymphoid neoplasm diffuse large B cell lymphoma (DLBC), esophageal car-
cinoma (ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell car-
cinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), acute myeloid leukemia (LAML), brain lower grade glioma (LGG), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), ovarian serous cystadenocarcinoma (OV), pancreatic
adenocarcinoma (PAAD), pheochromocytoma and paraganglioma (PCPG), prostate adenocarcinoma (PRAD), rectal adenocarcinoma (READ), sarcoma (SARC),
skin cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM), uterine
corpus endometrial carcinoma (UCEC), uterine carcinosarcoma (UCS), and uveal melanoma (UVM). (B) Hazard ratios for PFI for TCGA breast cancer cohort (n =
1,092) for patients with each cluster-specific signature. The dashed line indicates hazard ratio 1. (C) Hazard ratios for patients with indicated cancers for each
cluster-specific signature. (D) Univariate cox analysis-based hazard ratio observed using PFI data for each cluster in each cancer cohort. (E) Log fold-changes
for the cluster C0, C10, and C13 signature genes.
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(Fig. 4 D, Middle row). From these analyses, NOTCH signaling
appears to be the crucial regulator of TGF-β–driven EMT in the
present context.

Gene Signatures of Pseudotime Clusters Correlate with Patient Outcome.
Differentially expressed genes from each cluster were identified
using Wilcoxon test (adjusted P < 0.05). We then analyzed whether
these pseudotime cluster trajectory-based signatures were corre-
lated with progression-free interval (PFI), disease-free interval
(DFI), and overall survival (OS) in the Cancer Genome Atlas
(TCGA) breast cancer and pan-cancer cohort, including 32 cancer
types (Fig. 5A). We observed increased hazard ratios for PFI, DFI,
and OS for patients with C16, C0, C3, C10, and C13 cluster-specific
signatures, which lie toward the mid and mesenchymal state of
EMT in pseudotime for breast cancer (Fig. 5B and SI Appendix, Fig.
S6 A and C) and other cancer types (Fig. 5 C and D, SI Appendix,
Figs. S6 and S7, and Dataset S5). Of great interest was that breast
cancer and pan-cancer PFI-based survival analysis showed a higher
hazard ratio in C16, C0, C10, and C13 clusters, displaying both
epithelial and mesenchymal properties, suggesting transient states
between epithelial and mesenchymal phenotype on the EMT tra-
jectory, reminiscent of recent in vivo reports (43, 44). Genes within
these clusters showed more of an increased hazard ratio than genes
in other clusters (Fig. 5E). Together, these data suggest that partial
EMT properties identified at the single-cell level are associated with
poor prognosis.

Discussion
A complex network of interconnected pathways mediated by
TGF-β, EGF, IGF, Wnt, Shh, and NOTCH regulates EMT (45).
Here, we focus on activating EMT via TGF-β, one of the key
drivers of EMT in many cancer types (26). TGF-β acts as a tumor
suppressor at early stages of tumor development by inhibiting
proliferation and inducing apoptosis. Still, at later stages of tu-
mor development, TGF-β acts as a tumor promoter by inducing
EMT and suppressing antitumor immune responses (46). Acti-
vation of this node leads to an overall activation of additional
pathways. These converge on a network of transcription factors
and miRNAs that repress epithelial characteristics (47) and in-
duce mesenchymal characteristics (48). Using scRNA-seq, we
identified “core” signaling cascades and the critical regulatory
network underlying EMT.
The use of single-cell analysis over a time course of TGF-β1

treatment enabled mapping of the signaling cascades that control
EMT progression in this context. Our data indicate that EMT-
associated signaling pathways are activated sequentially and that
stem cell-related pathways are activated relatively quickly, then
deactivated, and again, reactivated as a function of pseudotime
corresponding to the position along an EMT trajectory. Our single-
cell analysis also reconciles conflicting views of activation of sig-
naling pathways in EMT. We show that TGF-β1–induced EMT
causes mRNAs encoding certain transcription factors and signaling
receptors to accumulate at defined points along the pseudotime
trajectory, and that cells fall along a transcriptional continuum
during EMT (49). This implies the existence of a cascade of events.
Gene variation that activates key signaling pathways could enrich a
particular gene-expression profile indicative of a specific EMT
intermediate state. Consistent with our findings, cross-talk during
EMT has been characterized between TGF-β– and NOTCH-
mediated signaling (50), between Wnt and FGF signaling (51,
52), between ERK and TGF-β signaling (53), between PI3K and
TGF-β signaling (54), and between hypoxia and NOTCH
signaling (55).
Our single-cell analyses also support previous findings that

small noncoding RNAs regulate EMT. Expression of the
miR200 family is strongly associated with epithelial differentia-
tion, and a reciprocal feedback loop between the miR200 family

miRNAs and the ZEB family of transcription factors tightly
controls EMT (16). Moreover, additional miRNAs might main-
tain the epithelial phenotype; an example is miR101, which
maintains E-cadherin expression by repressing EZH2 (56)
With our predictive modeling approach, we were able to

determine the drivers of EMT network through systematic
testing of inhibitory effects of individual signaling pathways on
other signaling pathways. Although TGF-β, NOTCH, and YAP/
TAZ pathways all regulate EMT, our data indicate that
NOTCH signaling is a key driver of EMT, consistent with our
previous observations of Notch-Jagged signaling in stabilizing
EMT states (57). Activation of EMT is critical for cancer
progression and metastasis (58, 59), and there is clinical evi-
dence that cancer cells can disseminate and metastasize early
during cancer development (60). Our analysis of gene expres-
sion during EMT induced by TGF-β1 demonstrated that al-
though the vast majority of cells during the early induction
period have barely entered EMT, rare cells do indeed progress
rapidly. These cells may be capable of metastasizing. In support
of this, the pseudotime clusters enriched for mesenchymal ex-
pression profiles are associated with poor DFI, PFI, and OS of
patients with many cancer types. The same clusters have in-
creased hazard ratios among many different cancer types, in-
dicating that the same genes are involved in EMT and cancer
progression. Although limitations exist as the signatures were
derived from cell-line samples, their overall expression in pa-
tients with poor survival helps us nominate important clusters/
genes, which can serve as potential targets for the treatment of
advanced and metastatic cancers.

Methods
Cell Culture. MCF10A breast epithelial cells were purchased from ATCC (CRL-
10317) and used within 10 passages. Cells were cultured at 37 °C and 5% CO2

in MCF10A complete media (DMEM/F12 [Gibco] supplemented with 5%
horse serum, 20 ng/mL EGF, 0.5 μg/mL hydrocortisone, 5 μg/mL insulin,
100 ng/mL cholera toxin, and antibiotic). The cells were treated with 5 ng/mL
TGF-β1 to induce EMT. The media was replenished every 2 d.

Flow Cytometry. MCF10A cells with day 0 and treated with TGF-β1 for 1, 2, 3,
4, and 8 d were harvested using TryplE. Cells were incubated with anti-
human CD324 (E-cadherin) Clone 67A4 (BD Biosciences, #562870) conju-
gated with PE and anti-human CD325 (N-cadherin) Clone 8C11 (Novus,
#NBP2-54523APC) conjugated with APC. Antibody incubations were per-
formed in MCF10A complete media. Samples were washed three times with
FACS Media (PBS + 10% FBS), resuspended in FACS Media, and analyzed
using a BD Accuri C6 Plus. Analysis was performed on FlowJo.

Single-Cell Library Preparation and Sequencing. The single-cell suspensions of
MCF10A cells were prepared as recommended by the 10x Genomics single-
cell preparation guide (CG000053 Rev C) and 3′ scRNA-seq libraries were
generated according to the instructions for the Chromium Single Cell 3′
Reagent Kits v2 chemistry (CG00052 Rev E, for days 0, 4, and 8 samples, batch
1: marked as MCF10A_0Bd, MCF10A_4d, MCF10A_8d) and v3 chemistry
(CG000183 Rev A, for days 0, 1, 2, and 3 samples, batch 2: marked as
MCF10A_0d, MCF10A_1d, MCF10A_2d, MCF10A_3d) protocols of the 10x
Chromium Single Cell Gene Expression solution (https://www.10xgenomics.
com/products/single-cell-gene-expression). Briefly, cells were collected at
the day of library preparation, washed twice in 0.04% BSA in PBS, passed
through the 40-μm strainer, stained with 0.4% Trypan blue, and quantified
and assessed for viability using the cell automated counting machine Cell-
ometer Mini (Nexcelom). Next, the single-cell suspensions with a targeted
cell recovery of 3,000 cells per sample were mixed with Master Mix and
loaded into the Chromium Chip (A for v2 or B for v3) along with the bar-
coded single-cell 3′ Gel Beads (v2 or v3) and Partitioning Oil to generate the
nanoliter-scale gel beads-in-emulsion (GEMs), in 10x Chromium Controller
(10x Genomics). Next, the captured GEMs were incubated to generate cDNA
tagged with a cell barcode and unique molecular index (UMI). Then, after
breaking the GEMs, the full-length, barcoded cDNA was amplified by PCR to
generate sufficient mass for library construction. The quality and quantity of
cDNA was assessed using 4200 TapeStation High Sensitivity D5000 reagents
(Agilent Technologies). In order to prepare 3ʹ gene-expression libraries,
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amplified cDNA was first enzymatically fragmented, end-repaired, and
A-tailed, followed by fragment-size selection using SPRIselect magnetic
beads (Beckman Coulter). Illumina sequencing adapters were subsequently
added to the fragments during the ligation step followed up by postligation
clean-up (SPRIselect, Beckman Coulter). Finally, the unique 10x sample in-
dices (PN-220103 Chromium i7 Sample Index Plate well ID) were added
during PCR amplification to each sample, followed by size selection (SPRI-
select, Beckman Coulter). The final libraries were quality control (QC)-
checked using 4200 TapeStation High Sensitivity D1000 reagents (Agilent
Technologies). All libraries were quantified using Qubit 1X dsDNA HS Assay
Kit (Invitrogen), normalized, and pooled based on the chemistry version (v2,
v3). The pool of v2 chemistry was sequenced using Illumina NextSeq500 at
the MDACC ncRNA core, and a pool of v3 was sequenced on Illumina
NovaSeq6000 using S1-100 flow cell type at the MDACC ATGC core, all with
10x Genomics recommended sequencing parameters and targeting 50,000
reads per cell.

scRNA-Seq Data Analysis. Cell Ranger pipeline (10x Genomics, default settings,
v3.1.0) was used to process the raw Illumina sequencing files to generate fastq
files and align the sequencing reads to human reference genome (hg19) to
generate counts. The downstream analysis, including the quality control
steps, normalization, batch correction, and downstream analysis and visu-
alization, were performed in R using Seurat v3.1.0 R package (57).

The aligned sequences resulted in the mapping of 32,738 genes. Between
18,423 and 19,264 genes were expressed at each time point. A UMI count
matrix of the number of genes (rows) and unique cells (column) was con-
structed. The cells with low reads were filtered for greater than 500 features
and 0.2 mitochondrial fraction. We obtained data from two batches and
combined using the merge function in the Seurat package implemented in R
(v3.1.0) (56). The data were normalized and corrected for batch effect using
data integration method implemented in Seurat (57). Top variable 15,000
features were selected to identify integrating features and to maximize the
number of features in the dataset. Principal component analysis was per-
formed on scaled, log-transformed, library-size-normalized UMI matrices
using variable gene sets. Dimensionality reduction and visualization were
also performed with the UMAP and t-distributed stochastic neighbor em-
bedding (t-SNE) algorithms. The projections were generated with a per-
plexity of 30. Graph-based clustering was performed to identify clusters
using the first 15 principal components. The redundant day 0 data were
removed after batch correction. In total, we used 12,588 of 13,941 cells
(>500 features and 20% mitochondrial fraction) for downstream analysis.
Transcripts per cluster were identified using a Wilcoxon rank sum test. Sig-
nificantly differentially expressed transcripts were selected using adjusted
P < 0.05 (Benjamini–Hochberg method).

Rank order statistics were calculated using Jonckheere–Terpstra trend test
implemented in SAGx (v1.46.0). Before rank order correlation the single-cell
normalized count data were averaged over each time point. Using known
order of time points (0 to 8 d of TGF-β1 treatment) the rank order
correlation was calculated.

The fraction of cells in each cluster attributed to each TGF-β1 time point
was calculated using the following equation:

fraction  of   Clusteri=0−19   at   Timepointj=0−8  

= #  Cells  in  Clusteri∩  Cells  in  Timepointj
#  Cells  in  Clusteri

The cells that originated from each time point were visualized using a Sankey
network (networkD3, v0.4) with a threshold of 10%.

Rank Correlation. The rank order statistics was calculated using Jonckheere–
Terpstra trend test implemented in SAGx (v1.46.0). Before rank order corre-
lation the single cell-normalized count data were averaged over each time
point. Using known order of time point (0 to 8 d) the rank order correlation
was calculated.

RNA-Seq to Microarray Conversion. All previous EMT metrics were identified
based on gene expression evaluated using a microarray platform. Therefore,
scRNA-seq data were converted to microarray data. The regression param-
eters used to transform the scRNA-seq data were estimated as described
previously (61).

EMT Scoring. As previously reported by Tan et al. (27), the Kolmogorov–
Smirnov EMT scores were calculated. For a given sample, this method com-
pares cumulative distribution functions (CDFs) of epithelial and mesenchy-
mal gene signatures. First, the distance between epithelial and mesenchymal

signatures was calculated via the maximum distance between their CDFs.
This quantity represents the test statistics used to calculate the EMT score in
the subsequent two-sample test. Using hypothesis testing of two alternative
hypotheses, the score is determined as follows (with the null hypothesis
being that there is no difference in CDF of epithelial and mesenchymal
signatures): 1) the CDF of the mesenchymal signature is greater than the CDF
of the epithelial signature, and 2) the CDF of epithelial signature is greater
than the CDF of the mesenchymal signature. The score range is −1 to +1,
where a sample with a positive EMT score has a mesenchymal phenotype
and a sample with a negative EMT score has an epithelial phenotype.

Enrichment Analysis. Single-sample gene-set enrichment analysis was per-
formed using the GSVA package (v1.28.0) using hallmarks from MSigDB
(v6.2). The average normalized enrichment score (NES) was calculated for
each time point. The NES was compared between samples and scaled values
are shown. For miRNA enrichment analysis, miRNAs and their target genes
were obtained from the miR database mirWalk2.0 (34). miRNA enrichment
was inferred based on the miRNA target expression in scRNA-seq data using
the fgsea package (v1.16.0). Before enrichment, the average gene expres-
sion for each gene in a cluster was calculated. The average expression was
scaled across the clusters and used for enrichment analysis. The NES and P
value significance were obtained. For signaling pathway enrichment, the
Reactome was downloaded from MSigDB (c2.reactome.v6.2.symbols.gmt,
https://reactome.org/).

Inferring the Interplay between the Key Pathways Driving EMT. The ordering of
the different t-SNE clusters was interpreted as a pseudotime trajectory, with
each cluster corresponding to one pseudotime point. We represented the
population of cells at each such pseudotime point using a 15-dimensional
vector where each vector element corresponds to the enrichment score for
one of the 15 key pathways. We assumed that the state of the population at a
given pseudotime point t depends only on the population state at the previ-
ous pseudotime point t − 1. With this set-up, we used multiple linear regres-
sion with lasso regularization (1) to obtain a sparse 15 × 15matrixM that maps
the population state from one pseudotime point to the next. The matrix
represents a network of regulatory relationships between the different
pathways. The range of dynamic behaviors exhibited by this regulatory net-
work was analyzed using Random Circuit Perturbation (RACIPE) (2). Boolean
modeling of the regulatory network was carried out using the framework
described previously (62). See SI Appendix, Methods for a detailed
mathematical description.

Pan-Cancer Survival Analysis. We downloaded RNA-seq data and clinical
characteristics for a cohort of patients with 32 cancer types from the Fire-
hose of the Broad Institute (http://gdac.broadinstitute.org/, January 2016
version). PFI, DFI, and OS were used to perform survival analysis (63). The
Kaplan–Meier method was used to determine survival probability. The P
values were determined by a log-rank test. The signatures for each cluster
were used to retrieve signature enrichment scores. The NES then categorized
as high or low based on mean. Univariate Cox proportional hazards models
were fitted to calculate the hazard ratios using the coxph function in Sur-
vival (v 2.44). P values less than 0.05 were considered to be statistically
significant.

Statistical Analysis. The statistical analyses used are specified in the
figure legends.

Data Availability. All the raw sequencing data have been deposited at Na-
tional Center for Biotechnology Information Sequence Read Archive (Bio-
Project ID: PRJNA698642). All other study data are included in the article and
supporting information.
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