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Abstract: Insulin-like growth factor 1 (IGF-1) deficiency is an ultrarare syndromic human sensorineu-
ral deafness. Accordingly, IGF-1 is essential for the postnatal maturation of the cochlea and the
correct wiring of hearing in mice. Less severe decreases in human IGF-1 levels have been associated
with other hearing loss rare genetic syndromes, as well as with age-related hearing loss (ARHL).
However, the underlying mechanisms linking IGF-1 haploinsufficiency with auditory pathology
and ARHL have not been studied. Igf1-heterozygous mice express less Igf1 transcription and have
40% lower IGF-1 serum levels than wild-type mice. Along with ageing, IGF-1 levels decreased
concomitantly with the increased expression of inflammatory cytokines, Tgfb1 and Il1b, but there
was no associated hearing loss. However, noise exposure of these mice caused increased injury to
sensory hair cells and irreversible hearing loss. Concomitantly, there was a significant alteration in the
expression ratio of pro- and anti-inflammatory cytokines in Igf1+/− mice. Unbalanced inflammation
led to the activation of the stress kinase JNK and the failure to activate AKT. Our data show that
IGF-1 haploinsufficiency causes a chronic subclinical proinflammatory age-associated state and,
consequently, greater susceptibility to stressors. This work provides the molecular bases to further
understand hearing disorders linked to IGF-1 deficiency.

Keywords: AKT; apoptosis; ARHL; IL1β; JNK; NIHL; TGFβ1

1. Introduction

Age-related hearing loss (ARHL) is a disabling pathology that affects one third of
the population over 65 years. ARHL is influenced by multiple factors including infec-
tious diseases, ototoxic drugs, and exposure to excessive noise [1].There is also a genetic
predisposition to suffer ARHL, although the genes involved are not yet fully identified [2,3].

Human insulin-like growth factor 1 (IGF-1) homozygous deficiency is an ultrarare
disease associated with dwarfism, mental retardation, and syndromic sensorineural hear-
ing loss (SNHL) [4]. However, IGF-1 heterozygous mutations have not been associated
with congenital SNHL yet [5–7]. Interestingly, rare human illnesses such as Laron and
Turner syndromes show a close association between low IGF-1 serum levels and pro-
gressive SNHL [8–11]. Circulating IGF-1 levels in mammals undergo a physiological
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age-related decrease [12,13] that has been associated with cognitive decline and neurode-
generation [14,15], as well as with SNHL [11].

Noise plays a central role among environmental factors contributing to the progression
of ARHL [16,17]. Oxidative stress and inflammation are early molecular mechanisms of re-
sponse shared by noise injury and ARHL progression [18]. Local cytokine secretion attracts
inflammatory cells to clear cell debris, but these cells may eventually spread cell injury
and ultimately lead to cell death and SNHL [19,20]. In this context, IGF-1 is otoprotective
in models of noise-induced hearing loss (NIHL) [21–23] and has been shown to maintain
the cochlear ribbon synapse ex vivo [24]. IGF-1 modulates neuroinflammation [25] and
regulates immune cells functions; in turn, its expression and signaling are regulated by the
products of the inflammatory milieu [26,27]. Interestingly, IGF-1 has been shown to be oto-
protective in human sudden HL, another otic inflammatory imbalance and oxidative stress
condition [28–30]. Though, the molecular mechanisms linking IGF-1 haploinsufficiency
with increased susceptibility to SNHL of multiple aetiologies have not yet been studied.

Here, we showed that IGF-1 levels are downregulated with ageing and that IGF-1
haploinsufficiency induces an age-related subclinical chronic inflammatory state in the
mouse cochlea. Igf1+/− mice did not show premature or accelerated ARHL, but, when
exposed to noise, showed a more severe NIHL than wild-type mice. Cochleae of Igf1+/−

mice showed an exacerbated extent of noise-induced injury that included increased inflam-
mation, oxidative stress, and apoptosis. Interestingly, the impact of IGF-1 deficiency on
cochlear noise susceptibility was age-dependent.

Taken together, our data strongly indicate that IGF-1 age-related downregulation is
a pro-inflammatory condition that contributes to the pathogenesis of ARHL. We propose
here that IGF-1 circulating levels have a threshold under which there is a less effective
cochlear control of the inflammatory response and survival signaling.

2. Materials and Methods

Mouse handling and genotyping. MF1/129SvEvTac Igf1+/− mice [31] were geno-
typed [32] and bred to obtain Igf1+/− and Igf1+/+ mice (WT). No differences among male
and female mice were observed.

Hearing evaluation and noise exposure. Auditory brainstem responses (ABRs) and
distortion product otoacoustic emissions (DPOAEs) were recorded with a Tucker Davis
Technologies workstation (TDT) [33]. Briefly, for the ABR test, click and tone burst stimuli
(8, 16, 20, and 40 kHz) were presented with an MF1 magnetic speaker (TDT) from 90 to
20 dB SPL in 5–10 dB SPL steps. Click stimuli were 0.1 ms and tone burst stimuli were
5 ms in duration (2.5 ms each for rise and decay, without plateau). The threshold of click-
evoked and tone-evoked ABRs, peak latencies, and amplitudes were determined. For
DPOAE, an ER10B+ probe (Etymotic Research Inc., IL, USA) was inserted into the external
auditory canal, and mice were stimulated with two synchronic tones, whose frequencies
(f1, f2; relation f1/f2 = 1.2) were calculated from a central frequency (F = 8 and 10 kHz;
f1 = F × 0.909, f2 = F × 1.09), and presented with decreasing intensity from 80 to 30 dB
SPL (f1 level = f2 level).The distortion product 2f1–f2 was determined for each sound level
from the FFT waveforms. DPOAE thresholds were defined as the minimum level of the
primary tones that elicit a 2f1–f2 response higher than background noise [34]. Four Igf1+/−

and 3 WT 1-month-old (young) mice and 13 Igf1+/− and 11 WT 6-month-old (adult) mice
were tested. Data analysis was performed with BioSigRP TM software (TDT). Mice were
exposed to a violet swept sine noise (VSSN, frequency range 2–20 kHz) at 110 dB SPL for
30 min, and hearing was evaluated by ABR before and 1 h and 3, 14, and 28 days after
noise exposure [34,35]. Briefly, conscious mice were confined in a wire mesh cage in the
center of a reverberant chamber acoustically designed to reach the maximum sound level
with minimum deviation in the central exposure area and exposed to violet swept sine
(VS) noise, at 100–120 dB SPL for 30 min as reported [35]. VS noise was repeated during
the 30 min of exposure. VS noise was designed with Wavelab Lite software (Steinberg
Media Technologies GmbH, Hamburg, Germany). It consists in a 10 s linear sweep in
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frequency, with a spectrum biased towards high frequencies (frequency range 2–20 kHz)
and presented with a linear-with-frequency gain [19,35–37].

Cochlear morphology and immunohistochemistry. For cochlear histological eval-
uation, paraffin sections (5 µm) or cryosections (10 µm) were processed for Nissl or
hematoxylin-eosin staining [32,38]. Mice were anesthetized with pentobarbital (Dolethal,
Bayer, 150 mg/kg) and perfused transcardially with 4% paraformaldehyde in 0.1 M
phosphate-buffered saline (PBS) (pH 7.4). Cochleae were dissected, fixed overnight in 4%
paraformaldehyde in PBS (4 ◦C), decalcified in 0.3 M EDTA (pH 6.5) for 8 days, and embed-
ded in paraffin or gelatine. Paraffin sections (10 µm) or cryosections (20 µm) of cochleae
from WT and Igf1+/− mice were stained with haematoxylin-eosin to study cochlear cytoar-
chitecture [34,39]. For immunofluorescence assays, serial cryostat sections were incubated
overnight with primary antibodies (Supplementary Table S1) and then with Alexa-Fluor-
conjugated secondary antibodies for 2 h (RT). Sections were mounted in Prolong Gold
containing DAPI (Invitrogen) and visualized using a fluorescence microscope (Nikon 90i,
Tokyo, Japan) [37]. Digital images were obtained by epifluorescence microscopy (Nikon 90i)
using a DS-Qi1Mc camera and NisElements 3.01 software. Synaptophysin, neurofilament,
and IBA1 intensities were determined in the middle turn of 4 equivalent sections prepared
from at least 3 mice per condition. Quantification was performed using ImageJ software
(National Institutes of Health) [40].

Organ of Corti dissection and hair cell quantification. Cochleae were post-fixed and
decalcified in 0.3 M EDTA and then dissected under a stereomicroscope (Nikon C-DSD230).
Osseous and membranous labyrinths were removed, and cochleae were sectioned to
separate the apex and middle turns from the basal turn. Samples were treated with PBS
with 0.5% Triton X-100, incubated for 1 h at RT with Alexa Fluor 488 phalloidin (Molecular
Probes, Eugene, OR, USA) at 1:100 in PBS with 0.5% Triton X-100, and placed in 8-well
microscope slides (Menzel-Gläser) with Vectashield/DAPI mounting medium. Hair cell
(HC) density was estimated using a stereological approach. The area of interest containing
the rows of HC was divided into equidistant 5% sectors using CAST® stereological software
(v.2.3.2.0, Visiopharm; Hoersholm, Denmark) in an Olympus BX51 microscope connected
to an Olympus DP70 video camera with a source of ultraviolet light (Olympus U-RFL-T;
Olympus, Tokyo, Japan). HC numbers were determined on systematic randomly sampled
areas from each sector using unbiased counting frames. Sets of 12 closely spaced frames
were superimposed on every sampled area and phalloidin stained inner (IHC) and outer
(OHC) hair cells with intact hair-bundles were counted as previously reported [34]. Briefly,
each HC is unequivocally represented by its hair bundle, phalloidin-stained stereocilia
that were used as counting units, and HC were counted as present if the hair bundle was
intact. The HC count was carried out by placing unbiased frames in a uniformly random
sampling strategy on the focus planes of the cilia. The reference space was considered the
stereociliary fringe, that is, the convex hull area bounding the region containing the rows
of hair tufts of the HCs. The IHC and OHC cell densities were estimated for each sector as
follows: NA (HC) = ∑Q (HC) ×1000/∑a (SF), where NA is the cell density expressed as the
number of cells/1000 µm2, ∑Q is the sum of HC counted within each sector, and ∑a (SF) is
the area of interest, in µm2, sampled with the unbiased frames within the given sector. The
precision of this method was approximated by computing the coefficient of error (CE) of the
estimates (NA) obtained on each sector, applying Cochran’s equation for ratio estimators
(eq. 10.32 as reported in [41]). Our strategy yielded CE values of ~17% (0.17 ± 0.015) in the
control animals and ~21% (0.21 ± 0.020) in the noise-damaged groups. Cytocochleograms
were constructed by plotting the number of present OHCs or IHCs, or the OHC and IHC
densities, as a function of percent distance from the apex of the cochlea [34].

TUNEL staining. TdT-mediated dUTP nick-end labelling (TUNEL) of fragmented
DNA was visualized using the ApopTag kit (Merck-Millipore, Danvers MA, USA). TUNEL-
positive nuclei were examined in 4–12 sections from 3–5 mice of each condition under an
Axiophot Zeiss microscope equipped with an Olympus DP70 digital camera (Olympus).
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Western blotting. Cochleae were dissected and stored at−80 ◦C until analysis. Cochlear
proteins were extracted, resolved using SDS-PAGE electrophoresis (Mini-PROTEAN®

TGX™, Bio-Rad) and transferred to PVDF membranes (0.2 µm). Membranes were blocked
and incubated overnight at 4 ◦C with primary antibodies (Supplementary Table S1) and
then with peroxidase-conjugated secondary antibodies (Bio-Rad, Hercules, CA, USA) at RT
for 1 h [37]. Immunoreactive bands were visualized using ClarityTM Western ECL Substrate
kit (Bio-Rad) in an ImageQuant LAS 4000 mini apparatus and quantified by densitometry
with ImageQuant™ TL software (GE Healthcare Bio-Sciences, Chicago, IL, USA).

Gene expression. RNA was extracted from frozen cochleae using RNeasy kit (Qiagen)
and analyzed with an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA,
USA). RT-qPCR was carried out with QuantiTect Primer assays (Qiagen) and Power SYBR
Green PCR Master Mix or with TaqMan Gene Expression Assays (Applied Biosystems).
Probes used included: Mat2a (QT00253372, Qiagen), Ahcy (QT00171612), Gclc (QT00130543),
Gclm (QT00174300), Igf1 (Mm00439561_m1, Applied Biosystems), Igf2 (Mm00439564_m1),
Igf1r (Mm00802831_m1), Igbp2 (Mm00492632_m1), Tgfb1 (Mm01178820_m1), Tgfb2
(Mm00436955_m1), Tgfbr1 (Mm00436964_m1), Tgfbr2 (Mm00436977_m1), Il1b
(Mm00434228_m1), Il6 (Mm00446190_m1), Tnfa (Mm99999068_m1), Il10 (Mm00439614_m1),
Dusp1 (Mm00457274_g1), Gap43 (Mm00500404_m1), Ntn1 (Mm00500896_m1), and Foxp3
(Mm00475162_m1). Relative quantification values were calculated as 2−∆∆Ct (RQ) [42]
using Rplp0 and Gapdh as reference genes [35].

Determination of serum IGF-1 concentration. Blood was extracted by cardiac puncture.
Tubes were centrifuged at 2500 rpm for 15 min at 4 ◦C. The serum supernatant was stored
at −80 ◦C until use. The concentration of IGF-1 was determined by ELISA (OCTEIA
Rat/Mouse IGF-1 kit, IDS Ltd., Boldon, UK) according to the manufacturer’s protocol.

Statistical analysis. Statistical analysis was performed using SPSS v21.0 software.
For ABR data, a linear mixed model procedure was performed. Statistical significance
between groups was estimated by Student’s t-test after using Levene’s test to confirm the
homogeneity of variances. RT-qPCR data were evaluated by the non-parametric Mann–
Whitney U test unless otherwise stated. Data are expressed as mean ± SEM. Results were
considered significant at p < 0.05.

3. Results
3.1. Comparative IGF-System and Cytokines Gene Expression Profiling, IGF-1 Serum Levels, and
Hearing Thresholds of Igf1+/− and WT Mice along Age

Temporal cochlear gene expression profiles were studied in WT and Igf1+/− mice. Ex-
pression of all IGF-system genes was high during development and decreased dramatically
by postnatal day (P) 15. Cochlear Igf1 expression was lower in Igf1+/− mice at every age
studied, whereas other IGF system elements showed increased perinatal expression but
similar profiles in both genotypes (Figure 1A). No significant differences were observed
between genotypes in the cochlear expression of Igfbp3, Insr, Irs1, and Irs2. In parallel,
the expression of pro- and anti-inflammatory cytokines involved in cochlear inflamma-
tory responses showed an age-related increase in the cochlea of both genotypes, although
Il1b expression increased in the Igf1+/− mice from E18.5 (Figure 1B). Il10, Il6, and Foxp3
transcription profiles were similar in both genotypes until the age of 12 months, at which
time WT cochlea showed increased expression levels (Figure 1B), suggesting an increased
capacity to buffer inflammation.
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Figure 1. Evolution of cochlear gene expression and IGF-1 plasma levels in Igf1-heterozygous mice 
with age. (A,B) Cochlear gene expression of Igf1, Igf2, Igf1r, and Igfbp2 (A) and of Il1b, Il6, Il10, and 
Figure 1. Evolution of cochlear gene expression and IGF-1 plasma levels in Igf1-heterozygous mice
with age. (A,B) Cochlear gene expression of Igf1, Igf2, Igf1r, and Igfbp2 (A) and of Il1b, Il6, Il10,
and Foxp3 (B) in WT and Igf1+/− mice from embryonic (E) to adult stages. Expression levels were
measured by RT-qPCR and calculated as 2−∆∆Ct (RQ), using Hprt1 as reference gene and normalized
with the 1–2-month-old WT mice group. Values are presented as mean ± SEM of triplicates from
pool samples of 3 mice per condition from two independent experiments. Statistically significant
differences were analyzed by Student’s t-test (* p < 0.05, ** p < 0.01, *** p < 0.001 between genotypes).
(C) IGF-1 serum levels (mean ± SEM of at least 4 mice per condition) were analyzed by ELISA in
WT and Igf1+/− mice in one-, three- and six-month-old mice. ABR thresholds (mean ± SEM) for
three and six-month-old WT and Igf1+/− mice did not vary and are shown for reference. Statistically
significant differences were analyzed by Student’s t-test (* p < 0.05, *** p < 0.001). Days (d) and
months (m).
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Systemic serum IGF-1 levels were measured in parallel and a decrease with age was
observed in both WT and Igf1+/− mice. IGF-1 levels were lower in Igf1+/− than in WT
mice, with significant differences appearing from 3 months of age onwards (Figure 1C, left).
IGF-1 haploinsufficiency had no evident impact on hearing thresholds that were similar for
both genotypes between 3–6 months of age (Figure 1C, right).

3.2. Adult Igf1+/− Mice Show Increased Susceptibility to Noise Injury

Measurement of hearing acuity in both genotypes indicated that, at the ages studied,
mice showed similar hearing thresholds. Similarly, 1 h after the noise challenge, young mice
(Figure 2A, upper panel) of both genotypes presented similar 40 dB threshold shifts and
recovery profiles. In striking contrast, adult Igf1+/− mice were severely damaged 3 days
after noise exposure, especially at frequencies over 8 kHz (Figure 2A, lower panel). WT mice
hearing recovery began by day 14, whereas Igf1+/− mice thresholds worsened, and 28 days
after the noise challenge, differences were maintained. Wave latencies transitorily increased
3 days after noise exposure in Igf1+/− mice (Figure 2B and Supplementary Figure S1A),
and interpeak latencies I-II and II-IV were also transitorily increased (Supplementary
Figure S1B). No noise-related changes were detected in IGF-1 serum levels throughout the
study (data not shown).

Noise caused the loss of OHC (Figure 3) and apical fibrocytes of the spiral limbus
(not shown) in both genotypes, although noise-exposed Igf1+/− mice showed the most
significant OHC loss (Figure 3A(a–f),B). Neurofilaments and synaptophysin were used to
visualize nerve fibers and efferent synaptic terminals at the HC base. Both markers have
been reported to be altered in the Igf1-null mouse [38,43]. Noise-exposed Igf1+/− mice
showed significantly less synaptophysin (Figure 3A(g–h),C). Gap43 showed constitutively
lower levels in Igf1+/− mice and was up-regulated (2.3-fold) after the noise challenge in
these mice (Figure 3D). DPOAE registered 28 days after noise challenge confirmed the
increased injury in the Igf1+/− OHC (Figure 3E).
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Figure 2. Differential response to noise damage in Igf1-heterozygous mice as they age. (A) Evolution
of ABR threshold shifts (mean ± SEM) after noise exposure in young (n = 4 and 3) and adult (n = 9
and 7) Igf1+/− and WT mice, respectively. ABR was evaluated before (baseline) and 1 h and 14 and 28
days post-noise exposure in young mice. In adult mice, ABR was evaluated before (baseline) and 3,
14, and 28 days post-noise exposure. Statistically significant differences were analyzed by Student’s
t-test between genotypes (* p < 0.05, ** p < 0.01, *** p < 0.001). Electrical responses to broadband clicks
and 8, 16, 20, 28, and 40 kHz pure tone stimuli, with an intensity range of 90–20 dB SPL in 5–10 dB
steps, were recorded. (B) Representative ABR recordings in response to the click stimulus of adult
WT and Igf1+/− mice before (baseline) and 3 days after noise exposure; the solid black line marks the
10–20 dB SPL level above the auditory threshold where peak latencies were analyzed.
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Figure 3. Cellular abnormalities and synaptic marker loss in the organ of Corti of Igf1+/− mice after
noise exposure. (A) Hair cell and synaptic marker loss in the organ of Corti 28 days after noise
exposure. (a–d) Representative phalloidin (Pha)-stained samples in non-exposed and noise-exposed
WT and Igf1+/− mice. An unbiased counting frame grid was used for stereological counting that was
photographed and is shown superimposed on each image. (e,f) Representative microphotographs of
haematoxylin-eosin-stained cryosections of noise-exposed WT and Igf1+/− mice. Asterisks indicate
the absence of HC. (g,h) Representative microphotographs of cochlear cryosections showing the
organ of Corti of noise-exposed WT and Igf1+/− mice, 28 days after noise exposure. Sections were
stained for neurofilaments (NF)—in red—and synaptophysi (Syn)—in green—showing at the base of
HC nerve fibers and efferent synaptic terminals, respectively. Cellular nuclei were visualized with
DAPI. The dashed lines show the approximate outline of selected IHC and OHC. White asterisk in h
indicates the absence of synaptophysin. Scale bars: 50 µm. IHC: inner hair cell, OHC: outer hair cell.
(B) Quantification of OHC and IHC in non-exposed and noise-exposed WT and Igf1+/− mice. Values
are presented as mean ± SEM of at least 3 mice per condition. Statistically significant differences
were evaluated by the Mann–Whitney U test. (ˆ p < 0.05 vs. baseline condition.) (C) The intensity
of synaptophysin staining was quantified using ImageJ software. Data were obtained from 11 to
20 sections of at least 3 mice from each condition and are shown relative to those of non-exposed
WT mice as mean ± SEM. Statistically significant differences were evaluated by the Mann–Whitney
U test (* p < 0.05 between genotypes; ˆ p < 0.05 vs. baseline condition). (D) Gap43 cochlear mRNA
expression analyzed by RT-qPCR in WT and Igf1+/− before (B) and 4 h and 3 and 28 days after noise
exposure. Gene expression levels were calculated as 2−∆∆Ct (RQ) normalized with data from baseline
WT mice group. Values are presented as mean ± SEM of at least 3 mice per condition evaluated in
triplicate. Statistically significant differences were evaluated by the Mann–Whitney U test (** p < 0.01
between genotypes; ˆ p < 0.05 vs. baseline group). (E) DPOAE threshold (mean ± SEM of at least
4 mice per condition) in non-exposed and noise-exposed WT and Igf1+/− mice 28 days after noise
exposure. Statistically significant differences were evaluated by the Mann–Whitney U test (ˆ p < 0.05;
ˆˆ p < 0.01 vs. baseline condition). (F) Cochlear protein relative levels were measured by Western
blotting. Representative blots and quantification of levels are shown for p-AKT, p-ERK1/2 cochlear
protein extracts 4 h and 28 days post-noise exposure in noise-exposed and non-exposed WT and
Igf1+/− mice. Expression levels were calculated as a ratio using PI3K or non-phosphorylated forms
of AKT and ERK and normalized to non-exposed WT mice group. Values are presented as mean
± SEM of at least 3 mice per condition. Statistically significant differences were evaluated by the
Mann–Whitney U test (* p < 0.05 between genotypes; ˆ p < 0.05 vs. baseline group).

Next, IGF-1 signaling pathways were studied at different times following the noise
challenge. After 4 h, only Igf1+/− mice showed a two-fold increase in p-ERK, whereas a
1.5-fold increment in p-AKT occurred in both genotypes (Figure 3F). Twenty-eight days
later, AKT showed less activation (0.3-fold) in Igf1+/− compared to WT mice, whereas ERK
phosphorylation was similar to basal levels in both genotypes (Figure 3F).
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3.3. Age-Related and Noise-Induced Cochlear Antioxidant Gene Expression Profiling of Igf1+/−

and WT Mice

Cochlear temporal expression profiles of oxidative stress-related genes implicated
in cochlear homeostasis [36] were studied in WT and Igf1+/− mice (Figure 4A; pathways
represented in Figure 4B). No evident differences were observed between genotypes in
methionine cycle and transsulfuration pathway genes Mat2a, Ahcy, and Gclc that were
expressed during embryonic stages and decreased postnatally. Gclm transcripts increased
with age. In contrast, following the noise challenge, Mat2a and Ahcy showed a peak of
expression 4 h after injury only in WT mice, whereas Gclc and Gclm levels increased 3 days
after noise in both genotypes but only significantly in WT mice (Figure 4C).
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cochlea. (A) Cochlear gene expression of Mat2a, Ahcy, Gclc, and Gclm in WT and Igf1+/− mice from
embryonic (E) to adult stages. Expression levels were measured by RT-qPCR and calculated as
2−∆∆Ct (RQ), using Hprt1 as a reference gene and normalized with data from the 1–2-month-old WT
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mice group. Values are presented as mean ± SEM of triplicates from pool samples of 3 mice per
condition from two independent experiments. Statistically significant differences were analyzed by
Student’s t-test. Days (d) and months (m). (B) Schematic representation of homocysteine metabolism
and its intersection with glutathione (GSH) synthesis and folate cycle including the enzymes analyzed
in this work (marked in bold). Adapted from Partearroyo et al. [44]. (C) Cochlear mRNA expression
levels of Mat2a, Ahcy, Gclc, and Gclm analyzed by RT-qPCR in WT and Igf1+/− mice before (B) and
4 h and 3 and 28 days after noise exposure. Gene expression levels were calculated as 2−∆∆Ct (RQ)
normalized with data from the baseline WT mice group. Values are presented as mean ± SEM of at
least 3 mice per condition evaluated in triplicate. Statistically significant differences were evaluated
by one-way ANOVA and the post-hoc Bonferroni’s multiple comparison test (ˆ p < 0.05; ˆˆˆ p < 0.001
vs. baseline group).

3.4. Cochlear Noise-Induced Inflammatory Response and Cell Death Are Exacerbated in Adult
Igf1+/− Mice

We studied the cochlear expression of factors involved in the inflammatory response
in adult mice. Stimulation of the inflammatory response and macrophage recruitment
following a noise challenge is commonly associated with cochlear injury. Indeed, pro-
inflammatory cytokines Tnfa, Tgfb1, Il1b, or Il6, among others, are able to trigger apoptosis
contributing to irreversible damage. In contrast, cochlear damage is restrained by in-
duction of anti-inflammatory mediators such as FOXP3 or IL-10 that reduce the acute
response [16,19,36,37]. These targets of noise-induced stress are also targeted by IGF-1, al-
though causing the opposite effect [11,16]. Tgfb1 expression was constitutively up-regulated
in Igf1+/− compared to WT mice (Figure 5A). Tgfbr1 and Tgfbr2 transcripts were further reg-
ulated by noise challenge in both genotypes, as reported for WT mice [35], with a distinct
downregulation of Tgfbr2 shortly after noise and sustained Tgfbr1 expression in Igf1+/−

mice 3 days later. These mice also showed constitutive up-regulation of the expression of
inflammatory cytokines and noise-challenge-induced time-dependent genotype-specific
expression profiles of Il1b, Il6, and Tnfa (Figure 5B). Il10 and Foxp3 expression were down-
regulated 4 h after noise in Igf1+/− mice and increased 28 days later in WT mice. In both
genotypes, Dusp1 showed an increased expression 4 h after noise but recovered baseline
levels 28 days later.
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Figure 5. Noise effects on the activation levels of inflammation-related genes and proteins, infiltration of immune cells, and
apoptosis-related genes in the cochlea of Igf1+/− mice. (A,B) Cochlear mRNA expression levels of (A) Tgfβ1, Tgfβ2, Tgfβr1,
and Tgfβr2 and (B) Il1β, Il6, Tnfα, Il10, Foxp3, and Dusp1 were analyzed by RT-qPCR in WT and Igf1+/− mice before (B) and
4 h and 3 and 28 days after noise exposure. Gene expression levels were calculated as 2−∆∆Ct (RQ) normalized with respect
to the baseline WT mice group. Values are presented as mean ± SEM of at least 3 mice per condition evaluated in triplicate.
Statistically significant differences were evaluated by the Mann–Whitney U test (* p < 0.05 between genotypes; ˆ p < 0.05;
ˆˆ p < 0.01 vs. baseline group). (C) Representative microphotographs of cochlear mid-modiolar cryosections immunolabeled
for IBA1 (red) showing (a–g) the spiral ligament of the cochlea in noise-exposed and non-exposed WT and Igf1+/− mice
3 days after noise exposure. Close-ups of the region of type IV fibrocytes in the spiral ligament are shown in (c,g). TUNEL
positive cells were also found in this area (arrowheads in d and h). Scale bars: (a,b,e,f) 100 µm, (c,g) 50 µm, and (d,h) 10 µm.
(D) IBA1 total fluorescence intensity was measured in the spiral ligament using ImageJ software. Data were obtained from
14 to 23 sections of at least 3 mice from each condition and are shown relative to those of non-exposed WT mice as mean
± SEM. Statistically significant differences were evaluated by the Mann–Whitney U test (ˆ p < 0.05 vs. baseline group).
Schematic drawing showing the cross section of the cochlea. SM: scala media, ST, scala timpani, SV scala vestibuli, SG:
spiral ganglion, OC: organ of Corti, LW: lateral wall, SV: stria vascular, SPL: spiral ligament. (E) Cochlear protein relative
levels were measured by Western blotting. Representative blots and quantification of levels are shown for p-p38 and p-JNK
cochlear protein extracts 4 h and 28 days post-noise exposure in noise-exposed and non-exposed WT and Igf1+/− mice.
Expression levels were calculated as a ratio using PI3K or the non-phosphorylated forms of p38 and JNK and normalized to
non-exposed WT mice groups. Values are presented as mean ± SEM of at least 3 mice per condition. Statistically significant
differences were evaluated by the Mann–Whitney U test (* p < 0.05 between genotypes; ˆ p < 0.05 vs. baseline condition).

Three days after the noise challenge, IBA1+ macrophages infiltrated the lateral walls
of the cochlea, confirming the exacerbated inflammatory response elicited in Igf1+/− mice
(Figure 5C; quantification and schematic drawing of the cochlea in Figure 5D).
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TUNEL+ cells were abundant in the cochlear lateral wall (Figure 5C(d,h)). Four h
post-noise challenge, c-Jun N-terminal kinases (JNK), but not p38, showed a two-fold
activation in Igf1+/− cochleae, and 28 days after noise, both increased (Figure 5E).

4. Discussion

As individuals age, there is a gradual decrease in IGF-1 and an increase in the gen-
eration of pro-oxidative and proinflammatory products that have an impact on tissue
homeostasis and longevity [39,45,46]. In the mouse hearing organ, IGF-1 is essential for
the final differentiation of the spiral ganglion and organ of Corti [38,43], and with aging, it
maintains the stria vascularis physiology and auditory neuron survival. The works cited
above also support the idea that IGF-1 is a predictive indicator of ARHL progression [39,47].

In this work, we showed that adult Igf1+/− mice show normal hearing despite their
having lower levels of plasma IGF-1 than WT mice. They showed no evident cellular
alterations, but they did have altered cochlear gene expression. Following the noise
challenge, the hearing of Igf1+/− mice showed a progression worse than that of WT mice,
suggesting a direct association between IGF-1 deficiency and susceptibility to NIHL. In
younger mice, however, there were no differences between Igf1+/− and WT cochleae, which
could be attributed to the fact that IGF-1 levels were not yet under a “critical threshold”.

IGF-1 plays an important role in synaptic plasticity both in protecting sensorial
synapses [24,47] and promoting cochlear synapse regeneration after excitotoxic trauma [48].
Adult Igf1+/− mice showed altered auditory signal transmission. Thus, our data suggest
that haploinsufficient mice may suffer silent synaptopathy that is further developed and
uncovered by noise [49], similar to alterations in the auditory brainstem of the null mice
previously described [50,51]. Furthermore, cochlear afferent innervation is also damaged
by noise challenge and can be protected by efferent innervation [52].

Noise challenges induce several well-characterized morphological and functional
changes in the cochlea, OHC being one of most affected cell types [53]. Increased NIHL
observed in Igf1+/− mice could be explained by the loss of HC found 28 days after the noise
challenge test. IGF-1 has been reported to protect HC from ototoxicity by aminoglycosides
through activation of the PI3K/AKT pathway in IHC and MEK/ERK pathways in the
supporting cells surrounding OHC [54]. It has also been suggested that Gap43 and Ntn1
may be the possible effectors of IGF-1′s protective action [55]. Here, following a noise
insult, we found no clear alterations in Ntnt1 (data not shown), but Gap43 expression was
differently regulated in both genotypes by the noise challenge. These data are in agreement
with the reported increased expression of this synaptic plasticity marker in the presence
of IGF-1 [56] and also with its upregulation in the auditory brainstem following cochlear
damage and HC loss [57].

IGF-1 signaling pathways were also altered in Igf1+/− mice exposed to noise. Both
AKT and ERK, which play protective roles in cochlear cells, were activated after a noise
challenge [58,59]. However, the lack of AKT activation 28 days later could account for
the death of HC caused by IGF-1 haploinsufficiency. JNK was also differently activated
by noise in Igf1+/− mice. JNK inhibition blocks noise-induced cell death pathways and,
subsequently, NIHL [60]. In this work, we showed that adult Igf1+/− mice present a lower
antioxidant and inflammatory profile than WT mice. This might affect their capacity to face
multiple insults, which constitutes one of the hallmarks of aging [61]. Principal pathogenic
mechanisms in NIHL include oxidative stress [62] and the inflammatory response, with an
early local expression of pro-inflammatory cytokines and recruitment of immune cells [63].
Free radical production and subsequent degradation of macromolecules in the cochlea also
occurs in the hours following a noise challenge [64]. Here, we also reported time-dependent
gene expression changes that, taken together, led to a favorable production of reduced
glutathione in WT mice, thus suggesting a detour of intermediate metabolites toward a
reinforcement of the antioxidant response [44]. This detour, however, was not observed in
the adult Igf1+/− mice exposed to the same noise insult.
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The inner ear was considered an immune-privileged organ whose blood–labyrinth
barrier was formed by the tight junctions between cells in the stria vascularis. However,
various studies have identified resident cell types of macrophage lineage both in the stria
and in the spiral ligament [65]. Immune cells increase in the cochlea after damage [66,67],
and along with non-immune cells of the sensory epithelium, they express several immune
and inflammatory genes such as Tnfa, Il1b, and Il6 after acoustic overstimulation [68,69].
Moreover, anti-inflammatory cytokine IL-10 can be upregulated in the cochlea at early
stages of the inflammatory response and its loss exacerbates SNHL [70]. In this study, we
illustrated the differential responses shown by WT and Igf1+/− mice after a noise challenge
in the cytokine-mediated inflammatory response and the infiltration of the cochlea by
immune system cells. In this sense, previous studies have shown that the age-related de-
crease in IGF-1 reduces the mouse lifespan and that it is associated with oxidative damage
and a proinflammatory state [46]. In fact, IGF-1 regulates multiple aspects of immune cell
function, and the factor itself is also regulated by products of the inflammatory “milieu,”
underlying the interaction between the endocrine and immune systems [26,27]. Thus,
proinflammatory cytokines decrease tissue sensitivity to IGF-1 inducing IGF-1 resistance
and, in turn, IGF-1 decreases proinflammatory cytokines signaling, for example, by induc-
ing IL-10 secretion [27,71,72]. IGF-1 is generally considered an anti-inflammatory factor
and is especially involved in controlling the neuroinflammatory response associated with
cerebrovascular pathologies [71,72] by regulating vascular permeability and modulating
astrocyte response and the microglial phenotype, among other actions [25].

In summary, in this study we showed that IGF-1 haploinsufficiency increases suscep-
tibility to noise injury and reduces the repair mechanism functions. This has important
implications for understanding cochlear injury in aging individuals. Our data also support
the notion that IGF-1 plays a central role in the maintenance of cochlear homeostasis and
the regulation of inflammation, both of which are implicated in SNHL.
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