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Exploring Voluntary Vaccinating 
Behaviors using Evolutionary 
N-person Threshold Games
Benyun Shi1, Weihao Wang2, Hongjun Qiu1, Yu-Wang Chen3 & Shaoliang Peng1,4,5

Understanding individuals’ voluntary vaccinating behaviors plays essential roles in making vaccination 
policies for many vaccinepreventable diseases. Usually, individuals decide whether to vaccinate through 
evaluating the relative cost of vaccination and infection according to their own interests. Mounting 
evidence shows that the best vaccine coverage level for the population as a whole can hardly be 
achieved due to the effects of herd immunity. In this paper, taking into consideration the herd immunity 
threshold, we present an evolutionary N-person threshold game, where individuals can dynamically 
adjust their vaccinating strategies and their payoffs depend nonlinearly on whether or not the herd 
immunity threshold is reached. First, in well-mixed populations, we analyze the relationships at 
equilibrium among the fraction of vaccinated individuals, the population size, the basic reproduction 
number and the relative cost of vaccination and infection. Then, we carry out simulations on four 
types of complex networks to explore the evolutionary dynamics of the N-person threshold game 
in structured populations. Specifically, we investigate the effects of disease severity and population 
structure on the vaccine coverage for different relative costs of vaccination and infection. The results 
and findings can offer new insight into designing incentive-based vaccination policies for disease 
intervention and control.

In epidemiology, extensive efforts have been taken to determine what proportion of individuals need to be vac-
cinated to prevent epidemics of vaccine-preventable diseases1–5. To achieve the critical vaccine coverage, various 
vaccination policies have been suggested, ranging from preemptive mass vaccination6, post-outbreak ring vacci-
nation7,8, to mandatory vaccination9, among which voluntary vaccination takes into consideration individual stra-
tegic behaviors in response to disease epidemic10–12. However, due to the effects of herd immunity13–16, voluntary 
vaccination is faced with a long-standing dilemma: the vaccine coverage level achieved through self-interested 
individuals may differ from what is best for the population as a whole17. Therefore, in addition to determine the 
necessary vaccine coverage for disease eradication, it is also essential to explore individuals’ voluntary vaccinating 
behaviors under different circumstances so as to help public health authorities design effective incentive-based 
vaccination polices.

In recent years, the game-theoretic approach has been extensively adopted to study the above-mentioned vac-
cination dilemma in well-mixed populations17–23, where any two individuals meet equally often with each other. 
For example, Bauch et al. have proposed a vaccination game to model the interplay between human vaccinating 
behaviors and the epidemiological characteristics of the disease18. They have revealed that there is a clash between 
individuals’ self-interest and group interest with respect to smallpox vaccination, which makes voluntary vacci-
nation fail to eradicate a vaccine-preventable disease unless a risk-free vaccination is used17. Moreover, they have 
pointed out that the oscillation of vaccine update is more likely in populations where individuals imitate others 
more readily or exhibit a strong response to disease prevalence19,20. Inspired by minority game methodology, 
Vardavas et al. have found that flu-like seasonal epidemic is unlikely to be prevented through voluntary vaccina-
tion even with risk-free vaccine22.
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While in structured populations, the effectiveness of voluntary vaccination is very different. For example, 
Perisic and Bauch have shown that disease eradicability through voluntary vaccination depends partially on 
whether the disease is transmissible only to a few close social contacts of the population24. They have demon-
strated that social contact structure can change individuals’ incentive to vaccinate and enable disease eradica-
tion25. Along this line, many studies have focused on investigating the effects of population structure (i.e., social 
diversity) on human voluntary vaccinating behaviors26–33. A variety of network-based frameworks have been 
proposed to simulate the interplay between disease epidemic and human behavioral responses34–39.

Under voluntary vaccination, individuals are assumed to act according to pure self-interest, where they 
attempt to maximize their own payoffs through weighing the cost of infection40,41, over the cost of vaccination 
(e.g., economic loss42–44, and side effects45–48). Moreover, in a population, the vaccinating decision of an individual 
can dynamically evolve, and depend on the decisions made by the rest of the population. In this case, if we treat 
individuals who take vaccine as cooperators, and those who refuse to vaccinate as defectors, we can then study the 
emergence and evolution of individuals’ cooperative behaviors from the perspective of evolutionary game theory. 
In epidemiology, because whether or not the critical vaccine coverage can be reached is determined through indi-
viduals’ collective behaviors, the framework of evolutionary N-person games becomes a natural choice. Taking 
into consideration of the herd immunity threshold (HIT), in this paper, we present an evolutionary N-person 
threshold game to investigate human voluntary vaccinating behaviors in the face of disease epidemic, where an 
individual’s vaccinating decision depends not only on the relative cost of vaccination and infection, but also the 
reachability of the HIT in the population.

In many real-world situations, it is often the case that no common benefit can be produced unless a minimum 
number of M individuals decides to cooperate. For example, in an N-person snowdrift game49,50, if individuals do 
not have the ability to clear the snow alone, at least M ≥ 2 individuals are required to cooperate with each other to 
shovel the snow. In this case, the more individuals cooperate, the less effort each one needs to contribute. While 
in this paper, the proposed N-person threshold game under voluntary vaccination is totally different: The major 
difference lies in that under the N-person snowdrift games, cooperators will collaboratively share the required 
cost c; in other words, the cost for each cooperator is c/k if there are M ≤ k ≤ N cooperators. While for the thresh-
old game in this paper, the cost of cooperation (i.e., vaccination) for each individual is always c irrespective of the 
number of cooperators. The second difference is the definition of threshold. In previous studies, the threshold 
M can be arbitrarily defined to evaluate the performance of an evolutionary game. While in this paper, the herd 
immunity threshold is closely related to the population size and the basic reproduction number R0 of the disease.

In this paper, we captures the evolution of individuals’ voluntary vaccinating behaviors in the following way. 
First, we conduct equilibrium analysis on the evolutionary N-person threshold game in well-mixed popula-
tions. Theoretically, we reveal the relationships among the fraction of vaccinated individuals at equilibrium, the 
population size, the relative cost of vaccination and infection, and the reproduction number R0 of the disease. 
Then, we carry out simulations on four types of complex networks to investigate the evolutionary dynamics 
of the N-person threshold game in structured populations. Since people are often structured in groups (e.g., 
families and colleagues), we assume that each individual together with his/her neighbors in a network forms a 
locally-mixed group33,34,51. Individuals within a group are homogeneously mixing and adjust their vaccinating 
decisions through imitating one of his/her neighbor’s strategies in an evolutionary process52–54. In doing so, the 
proposed model and method in this paper can not only offer a new perspective for exploring the evolutionary 
dynamics of human voluntary vaccinating behaviors, but also provide a new type of threshold games to investi-
gate the emergence and evolution of cooperative behaviors in human society.

Results
We first demonstrate the analytical results about the fraction of vaccinated individuals at equilibrium under the 
proposed N-person threshold game in well-mixed populations. The effects of the population size and the basic 
reproduction number R0 on the stable equilibrium are analyzed with respect to different the cost of vaccination 
and infection c = cv/ci. Then, we carry out simulations on four types of complex networks, which are regular 
networks, random regular networks, small-world networks, and scale-free networks, to explore the evolutionary 
dynamics of human vaccinating behaviors in structured populations. Specifically, we investigate the effects of 
disease severity (i.e., the basic reproduction number R0) and population structure (i.e., network structure and 
average degree) on the final vaccine coverage level under different settings of the proposed N-person threshold 
game. All simulations results are averaged over 50 independent runs for each type of network.

Analytical results in well-mixed populations.  We obtain the vaccine coverage level (i.e., the fraction of 
vaccinated individuals) at equilibrium with respect to different relative costs c (i.e., c = cv/ci) in well-mixed popu-
lations. Based on the definition of the herd immunity threshold (see the Method section for details), the critical 
threshold M in our proposed game has a strong relationship with the population size N and the basic reproduc-
tion number R0, that is = ⋅ = −⌈ ⌉ ⌈ ⌉M N p N R(1 1/ )c 0 . Given the population size N and the basic reproduction 
number R0, the threshold M can be uniquely determined. Figure 1 shows the effects of HIT and population size 
on the vaccine coverage level at equilibrium, where all the curves are generated based on Equation (9) in Method 
section. It can be observed that as the relative cost c increases, the vaccine coverage at equilibrium decreases non-
linearly for fixed population size N and threshold M. When the relative cost c is large enough, unvaccinated 
individuals will dominate the whole population. This phenomenon is consistent with the real-world situation: 
when the infection risk of a disease is low but the side effect of the vaccine is high, most people will not choose 
vaccination.

Specifically, it can also be observed that for a fixed threshold M, the vaccine coverage level at equilibrium 
decreases as the population size N increases (see the upper two figures in Fig. 1). Moreover, when the threshold M 
gets larger, the critical value of relative cost c increases to maintain certain vaccine coverage level. With respect to 
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the varying threshold M, it can be observed that from the bottom two figures that, the vaccine coverage level at 
equilibrium increases as the threshold M increases given a population size N. Each threshold value corresponds 
to a range of basic reproduction number, which defines the severity of an epidemic. For example, when the pop-
ulation size N = 5, the threshold M = 4 corresponds to the basic reproduction number ∈ . .R (2 5,5 0]). In this case, 
when an epidemic is much more serious, the vaccine coverage level will become larger through voluntary vacci-
nation. However, the larger the population size, the lower the vaccine coverage level at equilibrium. This finding 
is consistent with the observation that when neighborhood size is small, rational vaccinating behavior results in 
rapid containment of the infection through voluntary vaccination24.

Simulation results in structured populations.  The basic reproduction number R0 represents the average 
number of secondary cases caused by one primary infection over the courses of its infectious period, which can 
be used to indicate the severity of an epidemic. Along this line, we aim to evaluate the effects of disease severity 
on the final voluntary vaccine coverage in different types of structured populations. Figure 2 demonstrates the 
simulation results of the proposed evolutionary N-person threshold game on four types of complex networks 
with respect to different disease severity levels, which are measured by R0 = 1.5, R0 = 2.0, R0 = 2.5, and R0 = 3.0. 
The results are averaged over 50 independent network simulations with network size N = 5000 and average degree 
〈k〉 = 4. It can be observed that irrespective of the network structure and the disease severity, the final vaccine 
coverage level gradually decreases as the relative cost c becomes larger. Moreover, similar to the situations in 
well-mixed populations, the vaccine coverage level cannot reach 100% only when the relative cost c is zero (i.e., 
the cost of vaccination is negligible). Another observation is that when the relative cost c is large enough, the vac-
cine coverage level drops to zero. However, when that the basic reproduction number R0 is larger (i.e., the disease 
severity is high), the vaccine coverage decreases more lowly with the increase of relative cost c. It is reasonable that 
the more serious the disease, the greater the infection risk individuals will face. In other words, as R0 increases, 
the expected payoff for unvaccinated individuals decreases, which makes individuals prone to vaccinate. It can 
also be observed that as the network structure becomes more diverse (e.g., from regular to scale-free networks), 
the downward trend of the final vaccine coverage level becomes moderate when the relative cost c increases. The 
major reason is that for diverse networks (e.g., scale-free networks), the group size of each game varies greatly, 
which makes vaccinating decisions with high payoff propagate more easily by means of the birth-death process.
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Figure 1.  The effects of herd immunity threshold and population size on the fraction of vaccinated individuals 
at equilibrium. The upper two figures show the effects of population size under the threshold M = 1 and M = 2, 
respectively. The following two figures show the effects of threshold and basic reproduction number R0 when 
the population size N = 5 and N = 10, respectively. It can be observed that as the relative cost c increases, the 
fraction of vaccinated individuals at equilibrium decreases nonlinearly for fixed population size N and threshold 
M. When the relative cost c is large enough, unvaccinated individuals will dominate the whole population.
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Evidence has shown that structural diversity of complex networks can promote the emergence of cooperative 
behaviors in the face of public dilemma. To identify the effects of population structure (i.e., network structure) 
on the voluntary vaccinating behaviors in the proposed N-person threshold game, we carry out simulations on 
four types of complex networks, they are, regular networks, random regular networks, small-world networks, and 
scale-free networks. Figure 3 shows the effects of population structure on the final vaccine coverage level with 
respect to different values of basic reproduction number R0. As before, the results are averaged over 50 independ-
ent network simulations with size N = 5000 and average degree 〈k〉 = 4. Unsurprisingly, for each kind of networks, 
the final vaccine coverage level will drop to zero when the relative cost c is larger than a critical value cT. For exam-
ple, when R0 = 3.0 (the bottom right subfigure in Fig. 3), the vaccine coverage level will reach zero on small-world 
networks when the relative cost is greater than cT = 0.8. Moreover, as the population structure becomes diverse, 
the value of cT will increases. For example, when R0 = 3.0, cT increases from 0.6, 0.7, 0.8 to 1.0 for regular, random 
regular, small-world, and scale-free networks, respectively. More interestingly, it can also be found that the red 
curves (i.e., results on regular networks) intersects with all other curves before it reaches to zero. In other words, 
when the relative cost is small, networks with low structural diversity (e.g., regular networks) can more easily 
maintain a high level vaccine coverage than networks with high structural diversity (e.g., scale-free networks). 
However, as the relative cost increases, the vaccine coverage level decreases more abruptly for networks with low 
structural diversity. It means that the diversity of group size may slow down the downward trend of vaccine cov-
erage as the relative cost increases.

In a structured population, the more connectivities an individual has, the more groups s/he belongs to. 
According to the simulation procedure in this paper, individuals with higher degree in a network will simulta-
neously participate into more threshold games. To investigate the effects of average degree on the evolution of 
vaccinating behaviors, we conduct simulations on four types of complex networks with average degree 〈k〉 = 4, 
〈k〉 = 6, and 〈k〉 = 8. Figure 4 shows the simulation results of the final vaccine coverage level with respect to 
varying relative cost, which are averaged over 50 independent network simulations with size N = 5000. It can be 
observed that when the relative cost c is small, the final vaccine coverage level is lower for networks with larger 
average degree than those with smaller average degree. While as the relative cost increases, the vaccine coverage 
level deceases more quickly for networks with smaller average degree. Networks with higher average degree can 
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Figure 2.  The final vaccine coverage level with respect to different basic reproduction number R0 for varying 
relative cost c. Simulations are carried out on regular networks (upper left), random regular networks (upper 
right), small-world networks (bottom left), and scale-free networks (bottom right). The results are averaged over 
50 independent network simulations with network size N = 5000 and average degree 〈k〉 = 4. It can be observed 
that given a relative cost c, the larger the basic reproduction number R0 is, the higher the final vaccine coverage 
level can be reached.
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maintain nonzero vaccine coverage for even larger relative cost (i.e., the critical value cT). Moreover, the increas-
ing average degree can also stabilize the downward trend of vaccine coverage level as the relative cost increases. 
The reason may be that in networks with high average degree, each individual may participate in more threshold 
games than those in networks with low average degree. In other words, the networks with higher average degree 
are more diverse in terms of the number of groups an individual may belongs to. Therefore, both the diversity in 
group size and in the number of games in which each individual participates can affect the voluntary vaccinating 
behaviors in structured populations.

In well-mixed populations, analytical results have shown that population size has remarkable impacts on the 
stable equilibrium of vaccine coverage level under different relative cost c (see Fig. 1). Along this line, it would 
be necessary to investigate the evolutionary dynamics of voluntary vaccinating behaviors on various networks 
with different sizes. Figure 5 shows the effects of network size on the final vaccine coverage level on four types of 
complex networks. The network size is set to be N = 1000, N = 5000, and N = 10000, respectively, and the average 
degree of the networks is set to be 〈k〉 = 4. It can be found that the final vaccine coverage levels are consistent for 
all types of networks with different sizes. In conjunction with the observations in Fig. 4, it can be deduced that 
it is the diversity on individual connectivity rather than the size of the overall network that has an effect on the 
final vaccination outcome. Further, simulations are also carried out to evaluate the effects of the initial fraction 
of vaccinated individuals on the final outcomes. Figure 6 demonstrates the simulation results on the four types 
of networks with average degree 〈k〉 = 4, where the percentage of initially vaccinated individuals is set to be 10%, 
30%, 50%, 70%, and 90%, respectively. It can be observed that similar results can be achieved under different set-
tings of initially vaccinated individuals irrespective of the network structure. Such an observation indicates that 
given the severity of an epidemic, the evolutionary dynamics of voluntary vaccinating behaviors at the population 
level is determined mainly by population structure no matter individuals’ initial willingness to vaccinate.

Discussion
In recent years, many studies have focused on investigating whether or not the critical vaccine coverage necessary 
for disease elimination can be reach through individuals’ voluntary vaccination. Accordingly, various approaches 
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Figure 3.  The effects of population structure on the final vaccine coverage level for varying relative cost c. The 
simulations are conducted for R0 = 1.5 (upper left), R0 = 2.0 (upper right), R0 = 2.5 (bottom left), and R0 = 3.0 
(bottom right), respectively. The results are averaged over 50 independent network simulations with network 
size N = 5000 and average degree 〈k〉 = 4. As the relative cost c increases from zero to a critical value, the final 
vaccine coverage drops from 100 percent to 0 for all types of networks. It can be observed that the more diverse 
the network becomes (e.g., scale-free networks), the larger the critical relative cost will be.
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have been proposed to model the interaction between the dynamics of disease epidemic and the behavioral 
responses of human beings, among which the game-theoretic approach is widely adopted to analyze individu-
als’ rational behaviors according to self-interest17–23. In most vaccination games, individuals are assumed to be 
rational and make vaccinating decisions through weighing the cost of vaccination and the risk of infection against 
the disease prevalence. Along this line, in this paper we model individuals’ vaccinating behaviors by integrating 
the calculation of infection risk and the HIT into the payoff matrix of an evolutionary N-person threshold game. 
Specifically, the infection risk of an individual depends on the vaccine coverage level in a well-mixed population, 
or in his/her neighborhood in a structured population. While the HIT is determined by both the population/
neighborhood size and disease severity. In doing so, individuals’ vaccinating behaviors can dynamically evolve to 
respond to the disease epidemic based on their strategic updating rules.

Previous game-theoretic models using voluntary vaccination programs have shown that there is a clash 
between individuals’ self-interest and the group interest in a finite well-mixed populations17,18. Their results indi-
cate that it would not be possible to eradicate a vaccine-preventable disease unless a risk-free vaccine is used. In 
their analysis, individuals adopting the mixed vaccinating strategy, can fully interact with each other without 
limitation in a well-mixed population. While in this paper, individuals adopting the the pure vaccinating strategy 
(i.e., whether or not to vaccinate), are assumed to know the herd immunity threshold. Moreover, a structured 
population is assumed where each time only a small number of individuals can fully interact with each other. 
Such assumptions are more realistic because people often contact with each other in groups, such as families and 
colleagues. In doing so, we have revealed the relationships among the population size, the basic reproduction 
number, and the vaccine coverage level at equilibrium. We have further shown that the full vaccine coverage can 
be achieved in a population when the cost of vaccination is free. However, as the relative cost of vaccination and 
infection increases, the vaccine coverage at equilibrium may decrease rapidly. Moreover, the larger the well-mixed 
interaction group is (i.e., as N increases in Fig. 1), the higher level of vaccine coverage can be reached for the 
population as a whole.
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Figure 4.  The effects of average degree on the final vaccine coverage level for varying relative cost c on regular 
networks, random regular networks, small-world networks, and scale-free networks. The basic reproduction 
number is R0 = 2.0. The results are averaged over 50 independent network simulations with size N = 5000. 
When the relative cost is small, the final vaccine coverage level is lower for networks with larger average degree 
than those with smaller average degree; as the relative cost increases, the vaccine coverage level deceases more 
quickly for networks with smaller average degree.
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In a certain sense, to explore individuals’ vaccinating behaviors under voluntary vaccination is very similar 
to study the emergence and evolution of human cooperative behaviors in the face of a public dilemma. For many 
years, special attentions have been paid to investigate the evolution of cooperation in two-person games, such as 
the prisoner’s dilemma55,56, the stag-hunt game57, and the snowdrift game58,59. Researchers have found that pop-
ulation structure can remarkably influence the evolution of cooperation under standard two-person games60–64. 
However, the solution for many real-world problems depends on collective behaviors of multiple participants. 
In this case, some standard two-person games have been generalized to involve multiple participants65–68. For 
example, Zheng et al. have extended the snowdrift game to be an evolutionary N-person snowdrift game65. Su et 
al. have studied the effects of spatial structure on the evolution of cooperation under N-person snowdrift games68. 
Further, with respect to public goods games (PGGs), many studies have also shown that social diversity (e.g., pop-
ulation structure) can promote the emergence of cooperation51,69,70. Although the game in this paper is different, 
we have similar observations that both diversity in population structure and the average group size of each game 
have remarkable effects on the final vaccine coverage level. Moreover, we have also found that such effects depend 
largely on the relative cost of vaccination and infection.

The framework of N-person threshold games aims to characterize the real-world public dilemma that no com-
mon benefit can be produced unless its cost is shared by a minimum number of cooperating individuals49,50,71–73. 
For example, in the generalized N-person snowdrift game, if individuals do not have the ability to clear the snow 
alone, at least two individuals are required to cooperate with each other to shovel the snow. Accordingly, the cost 
of producing the common benefit is shared by all cooperators. Along this line, the evolution of cooperation under 
N-person snowdrift games with threshold have been studied in both well-mixed populations49 and structured 
populations50. Further, Mikkelsen and Bach have argued that due to the existence of thresholds, the game cannot 
be represented as the sum of pairwise interactions among participants73. Different from existing studies, in this 
paper, each cooperative (i.e., vaccinated) individual must afford a fixed cost (i.e., the cost of vaccination cv) rather 
than sharing the cost with other cooperators. All individuals will benefit from herd immunity only when the 
vaccine coverage level exceeds a threshold value, and their payoffs depend nonlinearly on the number of cooper-
ators in their neighboring environments. In another sense, the proposed N-person threshold game offers a new 
perspective to investigate the evolution of cooperation in the face of social dilemma of voluntary vaccination.
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Figure 5.  The effects of network size on the final vaccine coverage level for varying relative cost c on regular 
networks, random regular networks, small-world networks, and scale-free networks with average degree 
〈k〉 = 4. The basic reproduction number is R0 = 2.0. The network size is set to be N = 1000, N = 5000, and 
N = 10000, respectively. It can be observed that the final vaccine coverage level are consistent for all types of 
networks with different size.
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The main purpose of our analysis and simulations is to explore voluntary vaccinating behaviors from the 
perspective of evolutionary game theory. We have presented results under different parameter settings in both 
well-mixed and structured populations. However, there still have several limitations in this work. First, the risk 
of infection rp of the unvaccinated individuals is deduced based on the simple SIR model. Although the same 
result can also be derived from the SIR model with a constant birth/death rate18 and the SEIR model74, more 
complicated disease transmission models are needed to characterize the complex interplay between diseases 
epidemics and human behavioral response. Second, it is assumed that all individuals are rational to make vac-
cinating decisions. However, in reality, people often tend to exaggerate the negative effects of vaccination failure 
and complications. Therefore, it would be essential to study individuals vaccinating behaviors with bounded 
rationality75, as well as the effects of their memory and adaptability for past vaccinating events22. Third, it is also 
assumed that all individuals know the severity of the disease (i.e., the basic reproduction number R0). However, in 
reality, individuals may not know exactly the disease severity. Usually, they perceive the risk of infection through 
interacting with their social neighbors33, or based on their awareness about the disease prevalence22. Fourth, 
in this paper, individuals adjust their vaccinating by means of imitating one of his/her social neighbors. In the 
future, several evolutionary strategies can be systematically investigated in the proposed framework, such as imi-
tation52–54, pairwise comparison74, birth-death and death-birth strategies76. Last but not least, we do not consider 
any incentive-based vaccination programs in this work. Built upon the proposed game-theoretic framework, 
several types of incentive mechanisms21,22,53, can be involved to investigate how the use of incentives influences 
human vaccinating behaviors, which is worthy of being pursued in the future.

Methods
SIR model and herd immunity threshold.  Epidemiological evidence shows that individuals who are 
immune to a disease can slow or prevent the transmission of the disease to others77. Accordingly, there exists a 
public-goods dilemma: the greater the proportion of vaccinated individuals in a population, the less likely those 
who are not vaccinated are to be infected. In this paper, the classical Susceptible-Infected-Recovered (SIR) model 
is adopted to simulate the transmission dynamics of infectious diseases17–20,78. In the SIR model, the fraction of 
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Figure 6.  The effects of initially vaccinated individuals on the final vaccine coverage level for varying relative 
cost c on regular networks, random regular networks, small-world networks, and scale-free networks with 
average degree 〈k〉 = 4. The percentage of initially vaccinated individuals is set to be 10%, 30%, 50%, 70%, and 
90%, respectively. The basic reproduction number is R0 = 2.0. It can be observed that the results are consistent 
for different percentages of initially vaccinated individuals on the four types of networks.
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susceptible (S), infected (I), and recovered (R) individuals dynamically evolves based on the following determin-
istic ordinary differential equation:

β= −
dS
dt

SI, (1)

β γ= −
dI
dt

SI I, (2)

γ=
dR
dt

I, (3)

where β is the number of effective contacts per susceptible individual per day that are sufficient to spread the 
disease, and γ is the recovery rate. When the proportion of vaccinated individuals reaches a critical value pc, called 
the herd immunity threshold (HIT), the disease may no longer persist in the population13,15. Mathematically, we 
have β γ− =p(1 )/ 1c , that is, = −p R1 1/c 0. Here, the basic reproduction number R0 = β/γ, which represents the 
number of cases one primary infection caused on average over the course of its infectious period in an entirely 
susceptible and well-mixed population15,24.

Voluntary vaccination and N-person threshold games.  With respect to voluntary vaccination, indi-
viduals usually make vaccinating decisions through evaluating the relative cost of vaccination and infection. Due 
to the effects of herd immunity, unvaccinated individuals (i.e., free-riders) will benefit from other individuals’ 
vaccinating behaviors without affording the cost of vaccination. In this case, the value of HIT pc can be treated as 
a threshold under which all unvaccinated individuals have risk of being infected. We use cv and ci to denote the 
cost of vaccination and infection, respectively18. In doing so, given a population of size N, if the number of vacci-
nated individuals k is greater than the critical value N · pc, the payoff of a vaccinated individual is −cv, and that of 
an unvaccinated individual is 0. Otherwise, the payoff of a vaccinated individual is still −cv, but the payoff of an 
unvaccinated individual is −r cp i. Here, rp represents the probability that an unvaccinated individual will eventu-
ally be infected when the proportion of vaccinated individuals in the population is p = nv/N. In Table 1, we sum-
marize the payoffs of vaccinated and unvaccinated individuals in both cases.

In a well-mixed population, given the vaccine coverage level p, the infection risk rp of unvaccinated individuals 
can be calculated based on various epidemic models18,22,52. For the SIR model in this paper, we have previously 
deduced that rp satisfies33:

= −
−

= −
−

.r
R p

N
R N n

1 1
(1 )

1
( ) (4)k

v0 0

Notice that the same result has been derived by Bauch and Earn for the SIR model with constant birth and 
death rate18, and similar results have also been proposed for the SEIR model79. In doing so, an individual’s volun-
tary vaccinating decision depends not only on the relative cost of vaccination and infection c = cv/ci, but also the 
decisions of other individuals in the population (i.e., the vaccination coverage p).

Equilibrium analysis in well-mixed populations.  Suppose a group of N individuals are sampled from 
a very large population (Z → ∞), where a fraction x is composed of vaccinated individuals (V), the remaining 
(1−x) being the fraction of unvaccinated individuals (U). Then, the fitness of vaccinated and unvaccinated indi-
viduals can be determined based on a binomial sampling49,65,80, that is,

∑= − − + = +
=

−
− −( )f x N

n x x P n P n( ) 1 (1 ) ( 1) ( 1),
(5)

V
n

N

v

n N n
V v V v

0

1
1

v

v v

and

∑= − −
=

−
− −( )f x N

n x x P n( ) 1 (1 ) ( ),
(6)

U
n

N

v

n N n
U v

0

1
1

v

v v

where + = −P n c( 1)V v v  is the payoff of vaccinated individuals when their number is +n 1v , =P n( )U v  
δ− ⋅ −r c Np n( ) ( )k i c v is the payoff of unvaccinated individuals when the number of vaccinated individuals is k. 

Here, δ(x) is a Heaviside step function satisfies δ(x > 0) = 1 and δ(x ≤ 0) = 0. Based on the replicator equation49,65, 
previous studies have shown that there exists an interior stable state of x*, satisfying − =⁎ ⁎f x f x( ) ( ) 0V U . 
Combing Equations (5) with (6), we have

Payoff obtained Vaccinated Unvaccinated

0 < nv < Npc −cv −rkci

nv ≥ Npc −cv 0

Table 1.  Payoff values for the N-person threshold game with herd immunity threshold pc.
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∑− = − − − =
=

−
− −( )f x f x N

n x x r c c( ) ( ) 1 (1 ) 0,
(7)

V U
n

M

v

n N n
k i v

0

1
1

v

v v

where M = Npc represents the minimum number of vaccinated individuals required to reach the HIT. Therefore, 
the stable fixed point x* satisfies the following equation

∑ − − − = .
=

−
− −⁎ ⁎( )N

n x x r c c1 (1 ) 0
(8)n

M

v

n N n
k i v

0

1
1

v

v v

That is

∑ − − =
=

−
− −⁎ ⁎( )N

n x x r c1 (1 ) ,
(9)n

M

v

n N n
k

0

1
1

v

v v

where c = cv/ci is the relative cost of vaccination and infection.
Let us start from a sufficiently small value of R0 such that M = N · pc = 1, which means that only one vaccinated 

individual is required to reach the HIT. In this case, Equation (9) becomes − =−⁎x r c(1 )N 1
0 , where r0 = 1−1/R0 

is calculated from Equation (4) when nv = 0. Thus, when M = 1, the stable fixed point x* satisfies the following 
equation






−





− = .−⁎

R
x c1 1 (1 )

(10)
N

0

1

When N = 2, we have − =R N1 1/ 1/0  based on Npc = M. In this case, we find that = −⁎x c1 2  is a stable 
fixed point. Similarly, when M = 2, we have

− + − − =− −⁎ ⁎ ⁎r x r N x x c(1 ) ( 1) (1 ) , (11)N N
0

1
1

2

where r0 and r1 can be calculated from Equation (4), and R0 can be derived from − =N R M(1 1/ )0 . For N > 3 
and M > 2, it is hard to get analytical solutions. However, we can solve Equation (9) numerically.

Evolutionary dynamics in structured populations.  In reality, infectious diseases spread in the crowd 
through individual interactions, where people are often structured in groups, such as families, classmates, and 
colleagues. Many studies have focused on studying evolutionary dynamics of group interactions on top of 
structured populations34,35,50,51. For example, the seminal study by Santos et al.51 has reformulated the public 
goods game to be staged on complex networks. Motivated by this consideration, in this paper we simulate the 
N-person threshold games on four types of complex networks (i.e., regular networks, random regular networks, 
small-world networks, and scale-free networks), by assuming that each individual together with his/her neigh-
bors forms a local well-mixed population group. Specifically, each individual i with degree ki in a given network 
can participate in ki + 1 games in different groups, where one group is centered on himself/herself and the other ki 
games are centered on his/her ki neighbors (see Fig. 1 in reference51). In Table 2, we summarize the payoff values 
of the proposed game within the focal group of individual i.

To explore the evolution of individuals’ vaccinating behaviors, the simulation procedure is conducted as fol-
lows. Initially, a faction of individuals is randomly vaccinated in the population. Each individual i calculates its 
average payoff values over ki + 1 games s/he participates based on the proposed threshold games. Then, individ-
uals’ vaccinating strategies are updated by means of a birth-death process, combined with the pairwise compari-
son rule74,81. At each round of the birth-death process, all individuals will simultaneously update their strategies 
by comparing their fitness at the current round with the fitness of a randomly chosen neighbor at the previous 
round. Specifically, an individual i imitates the strategy of a randomly selected neighbor j with a probability cal-
culated by a Fermi function:

η
=

+ − −→p
f f

1
1 exp[ ( )] (12)

i j
j i

where η represents the strength of selection, and fi (respectively, fj) is the fitness of individual i (respectively, j). 
Throughout the simulations in this paper, η is set to be 10, which indicates a strong selection52. In this paper, we 
will evaluate the effects of basic reproduction number R0, network structure, and average degree on the evolution-
ary dynamics of voluntary vaccination in terms of different relative costs of vaccination and infection c. Moreover, 
we will also exam whether or not the initial settings including network size can affect the final evolutionary stable 
states.

Payoff obtained Vaccinated Unvaccinated

0 < nv < (ki + 1)pc −cv −rkci

nv ≥ (ki + 1)pc −cv 0

Table 2.  Payoff values for the N-person threshold game within the focal group of individual i with degree ki.
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