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ABSTRACT
Model-based analyses of continuous trait evolution enable rich evolutionary insight.
These analyses require a phylogenetic tree and a vector of trait values for the tree’s
terminal taxa, but rarely do a tree and dataset include all taxa within a clade. Because
the probability that a taxon is included in a dataset depends on ecological traits
that have phylogenetic signal, missing taxa in real datasets should be expected to be
phylogenetically clumped or correlated to the modelled trait. I examined whether those
types ofmissing taxa represent a problem formodel selection and parameter estimation.
I simulated univariate traits under a suite of BrownianMotion andOrnstein-Uhlenbeck
models, and assessed the performance of model selection and parameter estimation
under absent, random, clumped or correlated missing taxa. I found that those analyses
performwell under almost all scenarios, including situations with very sparsely sampled
phylogenies. The only notable biases I detected were in parameter estimation under
a very high percentage (90%) of correlated missing taxa. My results offer a degree
of reassurance for studies of continuous trait evolution with missing taxa, but the
problem of missing taxa in phylogenetic comparative methods still demands much
further investigation. The framework I have described here might provide a starting
point for future work.

Subjects Biodiversity, Evolutionary Studies
Keywords Phylogenetic signal, Missing data, Ornstein-Uhlenbeck models, Brownian motion,
Simulation

INTRODUCTION
Phylogenetic comparative biology is a thriving field that uses phylogenies towards the goal
of elucidating the historical mechanisms that have given rise to species and their traits. At
the core of phylogenetic comparative methods are statistical models that translate ideas
about evolutionary processes into the language of mathematics, thus allowing biological
explanations to be quantitatively weighed against one another, and their implications to be
explored in detail (Butler & King, 2004; Cressler, Butler & King, 2015; Brown & Thomson,
2018; Zuk & Travisano, 2018). Model-based phylogenetic studies of univariate continuous
trait evolution require at least two inputs: a phylogenetic tree of the species under study, and
a vector of trait values for those species. One or more models are then typically fitted to the
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trait vector, conditioned on the phylogeny. The fits of these models can then be compared
(often using Akaike information criteria) to assess which one offers the best explanation
of the data. In addition, parameter estimates from fitted models can give insights into
features of the evolutionary process that generated the data, such as adaptive peaks, rates
of evolution and strength of selection (Beaulieu et al., 2012; O’Meara & Beaulieu, 2014).

Phylogenies used in comparative studies are typically estimated from molecular
sequences and trait data are typically generated from specimens deposited in natural history
collections or, less often, from observations of live organisms. Because of differences in
ecological characters such as range size, habitat preference, life history and behavior, not
all taxa are equally likely to be available for inclusion in a molecular tree or trait dataset
(Garamszegi & Møller, 2011). Therefore, comparative studies often have missing taxa, that
is, taxa that are members of the clade under study, but which researchers have been unable
to include in their analyses because they were either not included in the phylogeny or not
accessible for measurement of traits (Thomson & Shaffer, 2010; Slater et al., 2012; Slater,
Harmon & Alfaro, 2012; Reddy, 2014; Rabosky, 2015). This usually results in the missing
taxa being excluded from the analyses, which has the potential to introduce biases in
model selection and parameter estimation (Garamszegi & Møller, 2011; Pennell, FitzJohn &
Cornwell, 2016).

Missing data have received significant attention in the context of nucleotide sequences
used in phylogeny estimation (e.g., Wiens & Morrill, 2011; Jiang et al., 2014; Eaton et
al., 2017). In stark contrast, missing data have received little attention in phylogenetic
comparative biology (but see Garamszegi & Møller, 2011), and, in the rare occasions when
researchers assessed impacts of missing taxa in comparative models, they were simulated
in a random fashion with respect both to trait values and to phylogeny (e.g., Ingram &
Mahler, 2013). In the next few paragraphs, I argue that missing taxa are unlikely to occur
randomly and describe more realistic scenarios where missing taxa are phylogenetically
clumped and/or correlated to the trait of interest. Next, I describe a set of simulations
where my aims were two-fold: first, to conduct an initial, exploratory investigation of the
impacts of realistic missing taxa on a limited set of models of univariate continuous trait
evolution; and, second, by presenting a basic framework that can be taken up by other
investigators, to instigate more attention and future research on this neglected issue in
phylogenetic comparative biology.

Realistic scenarios of missing taxa in comparative datasets
Themultifarious ecological traits that influence the probability that a taxon is sampled have
phylogenetic signal. Consequently, missing taxa should be expected to be phylogenetically
clumped. The most important ecological trait influencing sampling probability is rarity,
broadly understood as the character of a taxon that has a low abundance and/or a small
geographical distribution (Gaston, 1994). It is intuitive that rarer taxa are more difficult to
detect, observe, capture and collect, and thus more likely to be missing from datasets than
common taxa. Both components of rarity, abundance and range size, have been shown to
have phylogenetic signal, i.e., they are heritable at a macroevolutionary level. For example,
41% of the variation in population density of North American birds can be attributed to
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their taxonomic family (Maurer, 1991), and taxonomic affiliation also explains variation
in abundance among Neotropical rainforest mammals (Arita et al., 1990). As for range
size, it has been shown to be heritable in studies of mammals (DeSantis et al., 2012), birds
(Waldron, 2007; Herrera-Alsina & Villegas-Patraca, 2014), mollusks (Jablonski, 1987) and
herbaceous plants (Qian & Ricklefs, 2004). That rarity has phylogenetic signal was also
indicated by Fritz & Purvis (2010) finding that threatened species of British birds and of
the world’s mammals tended to be phylogenetically clumped.

Beyond rarity, various other axes of an organism’s ecological niche can affect its
probability of being sampled in comparative studies, and the pervasiveness of phylogenetic
niche conservatism (Losos, 2008; Wiens et al., 2010; Crisp & Cook, 2012) is evidence of the
high phylogenetic signal of ecological niches. Because taxa inhabiting climates that are
hostile to humans (for example, boreal organisms;Malaney & Cook, 2018) are less likely to
be sampled, climate is a particularly important niche axis in this context, and it has been
repeatedly shown to display phylogenetic signal (reviewed by Wiens & Graham, 2005).
Another important niche axis, habitat preference, also has phylogenetic signal (Barr &
Scott, 2014) and is likely to affect sampling probability, because forest-based organisms are
more difficult to detect and collect than nonforest organisms.

These taxonomic biases in rarity presumably translate into taxonomic biases in
availability of specimens and genetic samples. For example, Malaney & Cook (2018)
reported strong taxonomic imbalance in collections of North American mammals, with
Rodentia being comparatively overrepresented in relation to all other mammal orders,
and Reddy (2014) described similar imbalances for the availability of genetic data for the
world’s birds.

In addition to being phylogenetically clumped, missing taxa might sometimes be directly
correlated to the trait under study, when taxa with a higher (or lower) trait value have a
lower probability of being sampled. For example, because taxa with small range sizes are
more difficult to sample, they will be missing from molecular datasets more often than
taxa with large ranges (Reddy, 2014). This means that unsampled taxa will have a smaller
average range size than sampled taxa. Therefore, if we were undertaking a comparative
study of range size with incomplete taxon sampling, the distribution of trait values in our
sample will differ from the real distribution, potentially biasing model-based analyses.
This should also be the case for other ecological traits tightly linked to rarity and sampling
probabilities, such as abundance and some niche axes.

In sum, there is ample evidence of phylogenetic signal in ecological traits likely to
influence sampling probability for comparative studies. Consequently, sampling probability
itself should display phylogenetic signal, and missing taxa are likely to be phylogenetically
clumped. There is also reason to expect some types of traits to be directly correlated to
sampling probabilities. Here, I present simulation-based analyses examining how those
realistic scenarios of missing taxa might affect the performance of models of continuous
trait evolution.

Marcondes (2019), PeerJ, DOI 10.7717/peerj.7917 3/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.7917


Table 1 Summary of simulated traits and their generating models.

Abbreviation
of trait

Description Model

R Binary trait representing regimes required for BMS and
OUMmodels for T

Equal-rates MK model

T Continuous trait about whose evolution we are interested in
making inferences

BM, BMS, OU or OUM

S Binary trait determining the sampling status of each tip (0
=missing, 1= sampled)

Threshold model for cluMT; non-phylogenetic for corMT

L Continuous trait representing the liability underlying S in
the threshold model in the cluMT scenario

BM

METHODS
Overview
My simulations were designed to examine how realistic scenarios of missing taxa affect
model selection and parameter estimates for a single continuous trait in whose evolution
we are interested, hereafter referred to as T (Table 1). I simulated T under a number of
different models and then pruned 10%, 50% or 90% of terminal taxa from the tree under
three different schemes (Fig. 1): (1) randomly (rMT); (2) phylogenetically clumpedmissing
taxa (cluMT); and (3) correlated to T (corMT). For comparison, I also ran simulations
with no missing taxa (nMT). The sampling status of a taxon can be thought of as a binary
character, hereafter referred to as S (Table 1), with states 0 (missing) and 1 (sampled). Once
T and S were simulated, I pruned tips from the tree and dataset based on S and, finally, I
fitted all models to T and assessed support for the generating model, as well as precision
and bias of parameter estimates. I repeated the simulation 1000 times for each combination
of type of missing taxa, percentage of missing taxa, and model of T trait evolution.

Before presenting the details of my simulations, I reiterate that I did not seek to exhaust
every possible scenario of missing taxa in phylogenetic comparative biology. Rather, I
sought to explore the implications of two very specific scenarios that I argue are likely in
real datasets. There undoubtedly exist other possible, if less probable, configurations of
missing taxa, and they may have different impacts on model performance, but addressing
those was beyond the scope of my study. I also acknowledge that, even within the scenarios
I studied, some of my simulation settings necessarily entailed some degree of arbitrariness,
for example in the size of the trees or in the parameter values I used to simulate various
traits. Different choicesmight have led to different results, but while exploring those choices
would certainly be productive, it was not my present objective in this initial, exploratory
study.

Details
I started each simulation by generating a random phylogenetic tree under a pure-birth
model using the function rphylo in the R package ape (Paradis & Schliep, 2019) and
rescaling the tree to unit height using the function rescale in the R package geiger (Pennell
et al., 2014). The size of each initial tree was set so that the number of tips after dropping
missing taxa was always equal to 300. For example, when simulating 10% missing taxa,
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Figure 1 Illustration of the various simulated configurations of missing taxa. (A–C) Trees depicting
a trait T simulated under an OUMmodel, and random (A), phylogenetically clumped (B), or correlated
(C) missing taxa. (D) Selective regimes, simulated under an MK model, underlying variation in the theta
parameter in the OUMmodel used to simulate T in A–C. The tree in this figure contains 333 tips, 33 of
which were simulated to be missing in each panel, thus corresponding to a 10% missing taxa scenario.

Full-size DOI: 10.7717/peerj.7917/fig-1

the initial number of tips was 333, and when simulating 50% missing taxa it was 600.
This ensured that my results were affected only by missing taxa per se, and not by tree size,
which is known to affect the performance of models of trait evolution (Beaulieu et al., 2012;
Boettiger, Coop & Ralph, 2012).

To represent regimes underlying variation in BMS and OUM parameters (see below),
I simulated the evolution of a binary trait R under an equal rates MK model with a
transition rate q= 0.5 (Table 1, Fig. 1D), and I ensured that the smallest of the two regimes
always included no fewer than 25% and no more than 45% of tips after dropping the tips
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representing missing taxa. To simulate this trait, I used the function simulate_mk_model
in the R package castor (Louca & Doebeli, 2017).

After simulating the tree and R, I simulated T (Table 1), the continuous trait of interest,
under one of fourmodels using the functionOUwie.sim in theRpackageOUwie (Beaulieu et
al., 2012): single-rate BrownianMotion (BM), single-optimumOrnstein–Uhlenbeck (OU),
multiple-rate Brownian Motion (BMS), and multiple-optimum Ornstein–Uhlenbeck
(OUM). Under BM, changes in trait value are purely nondirectional and governed by a
single parameter, σ 2 (sigma-square), that determines the rate of evolution (Felsenstein,
1985). Under OU, trait evolution is controlled by a nondirectional component represented
by σ 2 as well as by a directional component under which trait values change preferentially
towards an optimum (θ , theta) with strength of attraction α (alpha) (Hansen, 1997). BMS
and OUM represent variations of BM and OU in which σ 2 and θ , respectively, are allowed
to assume different values depending on regimes (trait R in my simulations) reconstructed
a priori on the phylogeny (Butler & King, 2004; O’Meara et al., 2006; Beaulieu et al., 2012).

For each model, I set the rate parameter σ 2 at the root (σ 2
0 ) to a value of 0.5, and only for

the BMS model it shifted to σ 2
1 = 1 in the derived regime. For the OU and OUM models,

I set the optimum parameter θ to 10 at the root (θ0), with a shift to θ1= 11 in the derived
regime under OUM. The α parameter of OU and OUM models, representing the strength
of attraction to the optimum, was always constant at 1.5. This α value corresponds to a
phylogenetic half-life (the time, as a proportion of the tree height, that a trait takes to
evolve halfway towards the adaptive peak θ) of 0.46, thus representing an OU process of
moderate strength.

For the cluMT scenario (Fig. 1B), I simulated S, the trait determining the sampling
status of each tip (Table 1), under a threshold model (Felsenstein, 2005; Fritz & Purvis,
2010), where S is underlain by a continuous liability trait L (Table 1). The state of S for each
tip depends exclusively on whether L is above or below a certain threshold value. Because
sampling status is likely to be a highly complex trait determined by innumerable neutral
and adaptive evolutionary forces, its evolution should resemble a purely nondirectional
process over macroevolutionary time and be best described by a simple Brownian Motion
model (O’Meara et al., 2006), which I thus chose to simulate L. I used a σ 2 value of 1 in
the function OUwie.sim. The threshold for S was set based on the desired percentage of
missing taxa, so that, for instance, when simulating 10% missing taxa, the tips with the
10% lowest values of L were assigned state 0 and the tips with the 90% highest values were
assigned state 1.

For corMT (Fig. 1C), I simulated S non-phylogenetically, using the R native function
sample.int to sample tips to be dropped. I provided that function with an integer
corresponding to the total number of tree tips (argument n), the desired number of
tips to be dropped (size), and a vector of weights for obtaining the elements of the vector
being sampled (prob). Those weights were calculated, for each tip, as:

w =
t

sum(T)
−

min(T)
sum(T)

,
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where t is the value of the trait of interest for that tip, and T is the vector of t values
for all tips. Sample.int then used those weights to sample size integers from the interval
1:n. The sampled integers correspond to tips to drop. This procedure results in the
sampling probability of each tip being linearly proportional to its T value. The tip with the
lowest T value had a 100% chance of being sampled, and tips with a higher T value were
probabilistically more likely, but not certain, to be missing (Fig. 1C).

Due to the different ways in which missing tips were sampled, in the cluMT and corMT
scenarios the number ofmissing tips always corresponded exactly to the desired proportion,
but in the rMT case, that number varied slightly due to the probabilistic sampling. For
example, under 50% rMT the actual proportion of missing tips varied from 0.43 to 0.57.
However, this does not bias my inferences because over 1,000 simulations the number of
missing tips will average to the desired proportion, and the results will reflect that.

For each simulation in each scenario of missing taxa, I quantified the phylogenetic signal
in S using Fritz & Purvis (2010) D statistic, calculated with the function phylo.d in caper
(Orme et al., 2017). D equals 0 when a binary trait has evolved under a threshold model
with a Brownian liability as described above, and 1 when it has a phylogenetically random
distribution at the tips of the tree.

Once T had been simulated and tips had been pruned based on S, I used OUwie to fit
each of the four models to T and assess their support using sample size-corrected Akaike
information criteria (AICc; Burham & Anderson, 1998), under the expectation that the
generating model should have the lowest AICc score. For each combination of generating
model, scenario of missing taxa, and percentage of missing taxa, I also calculated the
median delta AICc of the generating model in the set of simulations in which it was not the
top model. Delta AICc equals the AICc score of the focus model minus the AICc score of
the model with the most support (lowest AICc), and is thus a measure of relative support
of a model compared to the top model.

Finally, I computed the bias and precision of parameter estimates under each scenario
to assess how they were affected by missing taxa. I calculated bias as the mean parameter
estimate minus the generating parameter value. I calculated precision as the median
absolute deviation (median deviation from the median) of parameter estimates among
simulations. I used this statistic in lieu of the simple variance because it is more robust to
outliers. I normalized both bias and precision by dividing them by the generating parameter
values.

RESULTS
The mean value of Fritz and Purvis’ D statistic for S, the trait determining the sampling
status of each tip, was 1.004 and −0.019 across all simulations in the rMT and cluMT
scenarios respectively, indicating, as intended, low phylogenetic signal of missing taxa in
the former, and high phylogenetic signal of missing taxa in the latter. For corMT, because
S was correlated to T, its phylogenetic signal was computed separately depending on T’s
model of evolution. The mean value of Fritz and Purvis’ D statistic in that scenario was
0.921, 0.931, 0.944, and 0.932 for T simulated under BM, BMS, OU andOUM, respectively.
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Table 2 Model selection error rates.Number of simulations, for each combination of type of missing
taxa, percentage of missing taxa, and generating model for the trait of interest T, in which the model with
the greatest support (lowest AICc) was not the generating model. The numbers are always out of 1,000
replicated simulations.

BM BMS OU OUM

No missing taxa 306 61 181 22
10% 296 53 176 13
50% 298 70 161 11Random missing taxa

90% 266 83 196 4
10% 279 63 167 18
50% 291 63 195 22Clumped missing taxa

90% 318 60 194 24
10% 300 47 178 25
50% 305 73 177 16Correlated missing taxa

90% 381 99 169 11

Clumped and correlated missing taxa resulted at most in a slight increase in the model
selection error rate compared to no missing taxa or to random missing taxa, as indicated
by the number of simulations in which the generating model did not have the lowest AICc
among the four models (Table 2, Fig. 2). For example, when the generating model was
OUM, it failed to receive the most support in 22 out of 1,000 simulations under a no
missing taxa scenario, 4 out of 1,000 under 90% rMT, 24 out of 1,000 under 90% cluMT,
and 11 out of 1,000 under 90% corMT. The model selection error rate did not consistently
increase with the percentage of missing taxa under any scenario, but under all scenarios the
error rate was higher (always∼30%) when BM was the generating model, usually followed
by OU, then by BMS and OUM (Table 2, Fig. 2). BM was most often confused for BMS
and OU, and more rarely confused for OUM (Fig. 2). Likewise, BMS was confused more
often for BM and OU than for OUM (Fig. 2). In contrast, OU was often confused for
OUM. Finally, OUM was only very rarely not selected as the top model when it was the
generating model (Table 2, Fig. 2), indicating that it leaves the strongest signature on the
data among all models examined here.

Further revealing that missing taxa have little impact on model selection, the median
delta AICc of the generating model in the set of simulations where it was not the top model
was almost always ≤2 (Table 3). This means, following Burham and Anderson’s (1998)
rule of thumb that ‘‘models having delta AICc ≤ 2 have substantial support’’, that the
generating model still had relatively high support even in the cases where it was not the top
model.

I also examined the bias (Table 4) and precision (Table 5) of parameter estimates
across simulations in each scenario. Because I normalized these metrics, they are directly
comparable across parameters. The absolute bias (Table 4) of σ 2

0 was always low (<0.0374)
for all models and almost always remained so for σ 2

1 in BMS, even though σ 2
1 coveredmuch

smaller proportions of my simulated trees. The absolute bias of θ0 also remained fairly low
(< 0.01), but the absolute bias of θ1 was noticeably higher across most situations (often
> 0.2). Finally, α had by far the greatest bias of all parameters (almost always > 0.1).
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Figure 2 Best-fitting models selected in each set of simulations. Bar plots depicting the number of sim-
ulations in which each model was selected by AICc as the best fitting model, under each combination of
type of missing taxa, percentage of missing taxa, and trait of interest generating model. Types of missing
taxa: nMT, no missing taxa; rMT, random missing taxa; cluMT, phylogenetically clumped missing taxa;
corrMT missing taxa correlated to the trait of interest.

Full-size DOI: 10.7717/peerj.7917/fig-2
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Table 3 Delta AICc of the generating model when it was not selected as the topmodel.Median delta
AICc of the generating model for the trait of interest T in the set of simulations, under each combination
of type of missing taxa, percentage of missing taxa and generating model, in which the trait of interest was
not the model with the greatest support (lowest AICc).

BM BMS OU OUM

No missing taxa 1.592 2.127 1.422 1.791
10% 1.676 1.471 1.215 1.826
50% 1.759 1.927 1.459 25.669Random missing taxa

90% 1.577 1.508 1.391 4.261
10% 1.966 1.784 1.047 1.370
50% 1.866 2.174 1.196 2.325Clumped missing taxa

90% 1.811 2.079 1.210 1.515
10% 1.865 2.364 1.414 1.364
50% 1.621 1.442 1.243 3.016Correlated missing taxa

90% 2.252 2.353 1.441 3.875

Table 4 Bias of parameter estimates frommodels fitted to data simulated under various scenarios and proportions of missing taxa. Bias was
calculated as the generating parameter value, minus the mean estimated parameter across 1,000 simulations, divided by the generating parameter
value.

Parameter Model Normalized bias per scenario

nMT 10%
rMT

50%
rMT

90%
rMT

10%
cluMT

50%
cluMT

90%
cluMT

10%
corMT

50%
corMT

90%
corMT

σ 2
0 BM −0.0084 −0.0060 −0.0006 −0.0062 −0.0002 −0.0014 −0.0012 −0.0032 −0.0090 −0.0374
σ 2
0 BMS −0.0100 −0.0040 −0.0080 −0.0060 −0.0060 −0.0120 −0.0080 −0.0080 −0.0120 −0.0300
σ 2
1 BMS −0.0090 −0.0180 −0.0080 −0.0150 −0.0090 −0.0080 0.0000 −0.0070 −0.0240 −0.0550
σ 2
0 OU 0.0280 0.0280 0.0240 0.0400 0.0120 0.0240 0.0240 0.0240 0.0220 0.0280
θ0 OU 0.0002 −0.0004 0.0001 0.0002 −0.0003 0.0001 0.0004 0.0000 −0.0056 −0.0217
α OU 0.1073 0.0907 0.0807 0.0853 0.0680 0.0873 0.0887 0.1107 0.0887 0.1460
σ 2
0 OUM 0.0460 0.0440 0.0560 0.1040 0.0520 0.0420 0.0340 0.0500 0.0560 0.0720
θ0 OUM 0.0033 0.0034 0.0029 0.0032 0.0034 0.0036 0.0036 0.0025 −0.0011 −0.0142
θ1 OUM −0.0220 −0.0215 −0.0183 −0.0132 −0.0215 −0.0222 −0.0200 −0.0231 −0.0261 −0.0413
α OUM 0.1347 0.1207 0.1207 0.1347 0.1400 0.1280 0.1040 0.1473 0.1280 0.1600

Notes.
Types of missing taxa: nMT, no missing taxa; rMT, random missing taxa; cluMT, phylogenetically clumped missing taxa; corrMT missing taxa correlated to the trait of interest.

Notably, although biases were generally low, they often tended to be systematic, meaning
they were always in the same direction. σ 2 was consistently underestimated in BM and
BMS models and overestimated in OU and OUM. α was always overestimated, and θ1
always underestimated. Only for θ0 was bias not systematic, as it was sometimes positive
and sometimes negative. Regarding precision of parameter estimates, across all scenarios
it tended to be to be better (meaning parameter estimates were more concentrated around
the generating parameter value) for θ , followed by σ 2, and worst for α (Table 5).

Interestingly, looking at each parameter individually, both bias and precision were
largely similar across almost all scenarios, revealing that missing taxa had little effect on
parameter estimation. Only at 90% corMT did the bias of most parameters worsen relative
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Table 5 Precision of parameter estimates frommodels fitted to data simulated under various scenarios and proportions of missing taxa. Pre-
cision was calculated as the median deviation from the median estimated parameter across 1,000 simulations, divided by the generating parameter
value.

Parameter Model Normalized precision per scenario

nMT 10%
rMT

50%
rMT

90%
rMT

10%
cluMT

50%
cluMT

90%
cluMT

10%
corMT

50%
corMT

90%
corMT

σ 2
0 BM 0.0800 0.0768 0.0838 0.0782 0.0792 0.0816 0.0810 0.0862 0.0756 0.0834
σ 2
0 BMS 0.1080 0.1000 0.1040 0.1040 0.1080 0.1000 0.1120 0.1020 0.1020 0.1020
σ 2
1 BMS 0.1340 0.1380 0.1420 0.1440 0.1430 0.1420 0.1400 0.1350 0.1460 0.1460
σ 2
0 OU 0.1180 0.1180 0.1160 0.1500 0.1240 0.1140 0.1140 0.1220 0.1220 0.1460
θ0 OU 0.0090 0.0084 0.0079 0.0068 0.0085 0.0090 0.0088 0.0082 0.0082 0.0071
α OU 0.2893 0.2587 0.2727 0.2520 0.2840 0.2673 0.2580 0.2673 0.2567 0.2547
σ 2
0 OUM 0.1260 0.1220 0.1360 0.1660 0.1160 0.1200 0.1180 0.1300 0.1260 0.1580
θ0 OUM 0.0106 0.0090 0.0089 0.0077 0.0102 0.0098 0.0094 0.0090 0.0089 0.0078
θ1 OUM 0.0141 0.0145 0.0147 0.0144 0.0141 0.0149 0.0160 0.0135 0.0134 0.0108
α OUM 0.2893 0.2760 0.2727 0.2847 0.2813 0.2787 0.3027 0.3147 0.2953 0.2873

Notes.
Types of missing taxa: nMT, no missing taxa; rMT, random missing taxa; cluMT, phylogenetically clumped missing taxa; corrMT missing taxa correlated to the trait of interest.

to other scenarios and percentages (Table 4, Fig. 3). For example, the bias of σ 2
0 in the

BM model was −0.0084 under nMT, −0.0067 under 90% rMT, −0.0012 under 90%
cluMT, and jumped to −0.0374 under 90% corMT. Similarly, the bias of θ0 in the OUM
model was −0.0033 at nMT, −0.0032 at 90% rMT, −0.0036 at 90% cluMT, and much
greater at −0.0142 at 90% corMT. In contrast, the precision of parameter estimates did
not deteriorate consistently even under 90% corMT (Table 5). For example, for σ 2

0 in the
BM model, the precision was 0.0834 under 90% corMT compared to 0.0800 under nMT
and 0.0862 under 10% corMT.

DISCUSSION
Model performance in the presence of missing taxa
Random and phylogenetically clumpedmissing taxa had little effect onmodel selection and
parameter estimation for univariate continuous traits evolving along phylogenetic trees,
even when 90% of taxa in a tree were missing. This result can be intuitively understood by
appreciating that neither of these two scenarios change the distribution of trait values at
the tips of the tree. Under random missing taxa, each tree tip has the same chance of being
missing, independent of its trait value or phylogenetic position. Under phylogenetically
clumped missing taxa, the chances of a tip being missing are independent of trait values,
meaning that if a taxon is missing, it is likely that its close relatives will also be missing.
These close relatives probably have similar trait values, but the distribution of trait values at
the tips will not change because clumps of missing taxa will be evenly distributed across the
tree, and trait values are not correlated across these clumps (Fig. 1). The only notable effect
of missing taxa was when 90% of taxa were missing under a scenario in which sampling
probability was correlated to the trait of interest (corMT). In that situation, there was a
noticeable deterioration in the bias, but not the precision, of all parameters. This result
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Figure 3 Distribution of estimated parameter values for each parameter in each combination of type
of missing taxa, percentage of missing taxa and trait of interest generating model. The dotted lines
represent the real, generating parameter values. The type and percentage of missing taxa are indicated
at the bottom of the figure, whereas the model and parameters are shown at the right-hand edge of the
figure.Types of missing taxa: nMT, no missing taxa; rMT, random missing taxa; cluMT, phylogenetically
clumped missing taxa; corrMT missing taxa correlated to the trait of interest.
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can be understood by realizing that this is the only type of missing taxa that alters the
distribution of trait values at the tips, thus misleading estimates.

Model performance without missing taxa
Even though my main interest was exploring the implications of missing taxa, and those
proved to be minor, it is also valuable to discuss performance in a scenario without missing
taxa, seeing as model performance, in particular of OU models, has received significant
recent attention in the form of simulation studies (Beaulieu et al., 2012; Ho & Ané, 2014;
Cooper et al., 2016; Cressler, Butler & King, 2015).

BM was by far the model that most often failed to be selected by AICc when it was in
fact the generating model, with an error rate of∼30% across all scenarios (Table 2, Fig. 2).
This suggests that BM is quite prone to mimicking patterns expected under other models,
echoing Slater, Harmon & Alfaro’s (2012) finding, in a simulated birth-death phylogeny
with 100 extant tips, that statistical power is low to favor BM over other candidate models
even when it is the generating model. In particular, in my simulations with no missing
taxa, a single-peak OUmodel was mistakenly selected over BM in 12.2% of the simulations
(Fig. 2) when BM was the generating model. This result can be compared to Cooper et al.’s
(2016), who similarly simulated BM datasets and computed how often an OU model was
mistakenly selected as the best-fittingmodel. However, instead of using Akaike information
criteria for model selection, they used likelihood-ratio tests and Bayes factors. The error
rate they found was considerably lower than what I found using AICc, for example 5.5%
and 0.2% in pure-birth trees with 200 tips using likelihood-ratio tests and Bayes factors
respectively.

To explore the discrepancy betweenmy andCooper et al.’s (2016) results, I ran likelihood
ratio tests (LRTs) on the results of my nMT simulations under BM (details presented as
Supplemental Information). I found that LRTs incorrectly preferred OU over the true
BM model in 6.7% of the simulations, a number much lower than the AICc error rate of
12.2% and more in line with Cooper et al.’s (2016) 5.5%. This result suggests that LRTs
may perform better than AICc as a tool to discriminate between BM and OU models in
comparative datasets, an issue that, while beyond the purview of the present paper, deserves
further investigation.

Regarding parameter estimates, α was the hardest parameter to estimate in every
scenario, seeing as it had the largest biases and poorest precisions, sometimes by orders of
magnitude, compared to all other parameters (Tables 4 and 5). This result is consistent with
Cressler, Butler & King’s (2015), who found the related parameter η (selection opportunity,
equaling the product of α and the height of the phylogeny) the hardest parameter to
estimate, and θ the easiest in OUM models. In my results α and σ 2 estimates tended to
have a consistent upward bias in OUM models, whereas θ1 was biased downwards and θ0
did not have a consistent upwards or downwards bias (Fig. 3). These results are similar to
Beaulieu et al.’s (2012), except, interestingly, for θ0, which Beaulieu et al. (2012) found to
be underestimated as well, although in that case simulations were based on more complex
models.
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Broader implications for models of trait evolution in the presence of
missing taxa
My results bear on the issue of birth-death polytomy resolver (BDPR) algorithms, such
as those of Kuhn, Mooers & Thomas (2011) and Thomas et al. (2013), that impute the
position of missing taxa onto a phylogeny based solely on taxonomic information and a
diversification model. Jetz et al. (2012) used a BDPR to add unsampled taxa to a species-
level phylogeny of the world’s birds, amounting to 33% of all species in the final tree. This
approach was shown by Rabosky (2015) to systematically and severely bias downstream
analyses of trait macroevolution. For example, when using a BDPR algorithm, Rabosky
(2015) found the Brownian rate parameter σ 2 to be overestimated by an average factor of
3.51 times, compared to a bias of no more than 0.02 in any of my scenarios with missing
taxa (Table 4). Therefore, my results suggest that the reliability of BDPR algorithms may be
a moot point for studies concerned mainly with continuous traits, because model selection
and parameter estimationmight perform better on phylogenies with a very high proportion
of realistic missing taxa than on BDPR-imputed phylogenies. This is in accordance with
Rabosky’s (2015) ‘‘genes only’’ scenario, where he ran trait evolution analyses with minimal
bias after pruning BDPR-imputed species from the Jetz et al. (2012) tree. However, this is
not to say that BDPR algorithms are never useful. We need to remember that BDPRs do
demonstrably improve the performance of comparative studies that do not include traits,
such as speciation-extinction analyses (Rabosky, 2015).

Even though my and Rabosky’s (2015) findings offer some reassurance for the use of
incompletely sampled phylogenies for studies of continuous trait evolution, caution must
be taken with ecological traits that are correlated to sampling probabilities, a scenario that
caused biased estimates in my simulation. This includes traits tightly linked to rarity, such
as abundance and range size (Gaston, 1994), as well as niche axes such as habitat type.
Rarity is an emergent property of species and not a property of individuals. Traits with
potential to bias model-based analyses will likely also be similarly emergent species-level
traits. However, it is difficult to generalize about the types of traits that will negatively
affect parameter estimates, because they will vary depending on the ecology and life-history
of the clade under study. Because ecology and life-history are most well-known by the
researchers investigating specific clades, it is advisable that these researchers use their
biological intuition to stay mindful of traits that they believe may be linked to rarity and
sampling probabilities in their study organisms, especially in situations with extremely
high proportions of missing taxa.

The statistical power of a tree and comparative dataset to correctly identify the model
that generated the data and to estimate model parameters scales with tree size (Beaulieu et
al., 2012; Boettiger, Coop & Ralph, 2012). For example, trees with up to 128 tips sometimes
do not allow the correct selection of an OUM model over OU (Beaulieu et al., 2012). The
problem of low statistical power in small trees is related to, but distinct from, the problem of
missing taxa. Phylogenetic trees may have small sizes and consequent low statistical power
for three reasons: (1) because taxon sampling is complete but the clade under study is in
fact a small clade; (2) because the clade under study is known to be larger but researchers
were unable to sample many known taxa, or (3) because the clade is larger but contains
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many undiscovered, undescribed or recently extinct species, so that researchers may not
even be aware that their study contains missing taxa. In my simulations, I isolated the
missing taxa problem from the tree size problem by keeping the number of tips constant
after pruning missing taxa, but this is not realistic. In practice the two problems cannot
be addressed separately, as under reason 2 above, and may not even be distinguishable, as
under reason 3 above. Assessment of statistical power should be standard in comparative
analyses. A simulation-based method to accomplish this was described by Boettiger, Coop
& Ralph (2012), but it implicitly assumes complete taxon sampling (reason 1 above) and
it is unclear if it is adequate in situations with missing taxa. Slater et al. (2012) described
a method to account for missing taxa in comparative studies, but it assumes that missing
taxa are phylogenetically random, a scenario that I argue is unlikely. As far as I am aware,
there are no available methods to account for clumped, correlated or unknown (reason 3
above) missing or recently extinct taxa.

In fact, the scenarios produced by my simulations, where I pruned terminal branches
from a tree to represent missing taxa, are indistinguishable from scenarios that would be
produced by recent extinctions (i.e., extinction at the tips of the phylogeny only). Therefore,
my findings might also be interpreted in that context as meaning that random, clumped
or correlated recent extinction appear to have little effect on model performance. My
results should not, however, be extended to scenarios with extinction in internal branches,
which are likely to be prevalent in real datasets (Stadler, 2010; Slater, Harmon & Alfaro,
2012; Stadler et al., 2018). As a case in point, Slater, Harmon & Alfaro (2012) found the
performance of model selection to significantly deteriorate when randomly-simulated
fossil (extinct) taxa were pruned from trees. This deterioration is likely to be even greater
if extinction is clumped (Vamosi & Wilson, 2008; Rabosky, 2009) or correlated (FitzJohn,
2010; Harvey & Rabosky, 2018) to trait values.

The roster of phylogenetic models of trait evolution is large and ever-growing, and here
I examined the effects of missing taxa on only a very small part of that universe. Rabosky
(2015) found that results for discrete traits were generally similar to those for continuous
traits, but before further analyses it is difficult to speculate on howmy findings might apply
to other models. Furthermore, the scenarios I used to simulate missing taxa were quite
limited. Whereas it is clear that missing taxa will often be phylogenetically clumped and/or
correlated to the investigated traits, I cannot be sure that the ways in which I simulated
those scenarios are optimal. In particular, my non-phylogenetic simulation of corMT is
perhaps less than ideal. A more realistic way to simulate that scenario would be under
a multivariate phylogenetic model where the value of a liability L is governed both by a
Brownian Motion process and by a correlation with a trait of interest T, which may be
evolving the same or a different model than L. However, to the best of my knowledge, that
type of multivariate model is not currently available.

Another caveat is that, my simulations notwithstanding, scenarios of missing taxa
indisputably exist that do severelymislead phylogenetic comparativemethods. For example,
without delving into details, a situation in which all taxa at one extreme of the trait value
distribution are deterministically missing from a dataset (i.e., all tips with the X% greatest
values ofT are always unsampled) would truncate the distribution of trait values, altering its
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mean and variance and likely leading to selection of incorrectmodels and poor performance
of parameter estimates. However, that scenario is unrealistic, because even the rarest taxa
will always have a non-zero chance of being discovered, collected and sampled.

As a final cautionary note, my study, as all simulation studies, is only valuable to the
extent that our models are accurate. In reality, evolution is likely to proceed in a much
more heterogenous manner than reflected in any of our current, simplistic models of
trait evolution. We do not know, and might never know, the real generating ‘‘models’’
of empirical datasets. Moreover, actual data, unlike the data I simulated here, are not
ideal (e.g., they have measurement error). Therefore, I recommend that my results be not
uncritically taken to be applicable whenever any of the models I tested here is fit to real
data. The processes that generated a given real dataset may or may not be as robust to
missing taxa as are our simple models. Rather, I expect my results to prompt empirical
phylogenetic comparative biologists to think critically about missing taxa in their datasets
and how they might be distributed. The better the fit of a dataset to a model is, the more
likely it is that my findings on the effects of missing taxa will be applicable.

CONCLUSION
My results demonstrate that realistic scenarios of missing taxa do not affect the
performance of selected simple models of univariate continuous trait evolution, except
for parameter estimates in situations with a very high proportion of correlated missing
taxa. Understanding the impact of missing taxa in comparative methods is a multifaceted
problem that still demands much additional work. Topics that are ripe for further study,
considering my results, include the effect of missing taxa on models of discrete trait
evolution, exploration of better ways to simulate correlated missing taxa, examinations
of the level of phylogenetic signal in missing taxa in real datasets, and disentangling the
problem of small tree size from the problem of missing taxa. The framework I have
provided here will be a starting point for such studies. To facilitate that, R scripts to
replicate my simulations are available on GitHub. Proponents of existing and novel models
of trait evolution will benefit by using this framework to more explicitly and thoroughly
investigate model performance under realistic scenarios of missing taxa.
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