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Abstract
Premise: The prompt categorization of Phytophthora infestans isolates into described
clonal lineages is a key tool for the management of its associated disease, potato late
blight. New isolates of this pathogen are currently classified by comparing their
microsatellite genotypes with characterized clonal lineages, but an automated
classification tool would greatly improve this process. Here, we developed a flexible
machine learning–based classifier for P. infestans genotypes.
Methods: The performance of different machine learning algorithms in classifying P.
infestans genotypes into its clonal lineages was preliminarily evaluated with decreasing
amounts of training data. The four best algorithms were then evaluated using all
collected genotypes.
Results: mlpML, cforest, nnet, and AdaBag performed best in the preliminary test,
correctly classifying almost 100% of the genotypes. AdaBag performed significantly
better than the others when tested using the complete data set (Tukey HSD P < 0.001).
This algorithm was then implemented in a web application for the automated
classification of P. infestans genotypes, which is freely available at https://github.com/
cpatarroyo/genotypeclas.
Discussion: We developed a gradient boosting–based tool to automatically classify P.
infestans genotypes into its clonal lineages. This could become a valuable resource for
the prompt identification of clonal lineages spreading into new regions.
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Phytophthora infestans ranks among the world's most
economically impactful plant pathogens, causing global
losses valued at an estimated annual cost of approximately
5 billion EUR (5.4 billion USD) (EuroBlight; https://agro.au.
dk/forskning/internationale-platforme/euroblight/). This
oomycete is the causal agent of potato late blight, which is
one of the biggest threats to global food security (Fry, 2008)
and has been found in almost all potato (Solanum
tuberosum L.)‐producing countries (Goodwin et al., 1994;
Martin et al., 2019). These globally distributed populations
are in constant flux, and changes in their composition have
important implications for disease management.

Epidemics caused by P. infestans are mainly attributed to its
rapid asexual reproduction cycles. Once in the host, this

pathogen causes lesions on the leaves, producing hundreds of
thousands of sporangia (Nowicki et al., 2012; Fry et al., 2015).
These sporangia are aerially dispersed and can germinate
directly on the host tissue or indirectly in water, producing
motile infective zoospores (Judelson and Blanco, 2005; Nowicki
et al., 2012; Fry et al., 2015; Whisson et al., 2016). The rapid
proliferation through asexual reproduction gives rise to clonal
lineages, descendants of a single recombination event, that vary
only through mutation (Fry et al., 2015; Fry, 2020). Individuals
that belong to a clonal lineage therefore share many phenotypic
traits, including some determinants of disease management,
such as fungicide resistance (Kato et al., 1997; Danies et al.,
2013; Saville et al., 2015; Puidet et al., 2023), response
to environmental variables (Mizubuti and Fry, 1998;
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Maziero et al., 2009), aggressiveness (Njoroge et al., 2019; Puidet
et al., 2022), or host range (Danies et al., 2013; Njoroge
et al., 2016), to name a few. It is also important to note that
some of these traits are also modulated by interactions with
additional plant stressors, such as heavy metals (Arasimowicz‐
Jelonek et al., 2014) or coinfection with other pathogens (Kalra
et al., 1989), and these environmental cofactors should be
considered when phenotyping plants infected with P. infestans.
Data sets such as the Stress Combinations and their Interactions
in Plants Database (SCIPdb; Priya et al., 2023) are a valuable
resource for predicting the responses of plants to specific clonal
lineages of P. infestans, particularly when used in combination
with the physiological data mentioned above.

The classification of P. infestans isolates into the clonal
lineages is the main strategy to monitor this pathogen on a large
scale (Pule et al., 2013; Njoroge et al., 2016, 2019; Nnadi
et al., 2019; Guha Roy et al., 2021; Mihretu et al., 2021; Saville
et al., 2021; Puidet et al., 2022, 2023). The global standard for
characterizing P. infestans isolates involves genotyping the
pathogen by amplifying 12 microsatellite loci and analyzing the
sizes of the amplicons. Subsequently, each newly determined
genotype is categorized by determining its closest lineage based
on genetic distance (Bruvo et al., 2004; Li et al., 2013). This is
still the standard method used to classify P. infestans
populations worldwide, despite the development of new
molecular markers for population genetics (Danies et al., 2013;
Pule et al., 2013; Njoroge et al., 2016, 2019; Chaves et al., 2018;
Dey et al., 2018; Alor et al., 2019; Martin et al., 2019; Nnadi
et al., 2019; Dangi et al., 2021; Guha Roy et al., 2021; Mihretu
et al., 2021; Saville et al., 2021; Puidet et al., 2022, 2023). The
standardized nature of the markers used to classify these isolates
into clonal lineages has allowed the monitoring of the dynamics
of this pathogen on a global scale, which is performed by four
international organizations: EuroBlight (https://agro.au.dk/
forskning/internationale-platforme/euroblight/) in Europe,
AsiaBlight (https://www.asiablight.org/) in Asia, USABlight
(https://usablight.org/) in North America, and Tizón Latino
(https://tizonlatino.github.io/) in Central and South America.

There are two ways to classify a multilocus genotype into a
lineage. One approach is to build a dendrogram or a minimal
spanning network using the unknown samples and genotypes
previously classified into known clonal lineages, after which
the unclassified samples can be assigned to the closest known
clonal lineage (Li et al., 2013; Guha Roy et al., 2021).
Alternatively, this approach can be automated (Tabima
et al., 2016), as implemented in SSR Matcher (https://strain-
classifier.plant-aid.org/). This second method builds a minimal
spanning network with classified genotypes and new genotypes
using the Bruvo genetic distance (Bruvo et al., 2004), then
classifies the new genotypes into their closest clonal lineage
(Tabima et al., 2016). These approaches have two important
limitations: (1) they use microsatellite genotypes as their only
source of information, and (2) they cannot provide detailed
probabilistic information about the chance of a genotype
belonging to a specific lineage. This probabilistic information
would be of particular importance when specific genotypes
cannot be placed into a lineage with complete certainty. Other

methods, such as Bayesian phylogenetic trees (PhyML), can
provide information about the probability of an unknown
genotype belonging to a clonal lineage (Guindon et al., 2010);
however, these require sequence information from both the
unclassified and previously classified isolates, which is not
typically available.

The current automatic classification algorithm proposed
by Tabima et al. (2016) functionally corresponds to a
k‐nearest neighbors algorithm, where k = 1 (Kramer, 2013).
Its information source is limited only to microsatellite data.
The logical next step would be to develop a more general
classification algorithm to expand on this idea. Although the
use of machine learning (ML) algorithms has been proposed
for genotypic classification in agricultural applications, these
have focused mostly on the classification of plant cultivars/
genotypes (Bishnoi et al., 2022), the prediction of plant
phenotypes based on their genotypes (Danilevicz et al., 2022),
or the prediction of pathogen phenotypes based on genomic
information (te Molder et al., 2021). Most ML applications
regarding P. infestans have been devoted to the automation
of the early detection of late blight (Duarte‐Carvajalino
et al., 2018; Gao et al., 2021; Kool and Evenhuis, 2023;
Kumar et al., 2023), not the genotypic classification of the
pathogen.

In this study, we propose a ML classifier that could
overcome both limitations of the current P. infestans
classification approaches: the exclusive use of microsatellite
data and the inability to report the probability of belonging to
the predicted clonal lineage. The algorithm presented in this
work was implemented using microsatellite information but
can be easily expanded to use other genotype data, such as
single‐nucleotide polymorphisms (SNPs) (Schiavo et al., 2020),
mitochondrial haplotypes, or even longer sequences. This is
possible because these types of sequence would be encoded as
categorical variables, as is the case for microsatellite data
(Alkharusi, 2012; Hancock and Khoshgoftaar, 2020; Valdez‐
Valenzuela et al., 2021). Seven ML classification algorithms
were tested for their ability to calculate the probability of each
unknown element belonging to each lineage. The perform-
ance of ML algorithms is rather robust to certain data
variability (Jordan and Mitchell, 2015; Sharma et al., 2021),
such as that observed among genotypes of clonal lineages of
P. infestans (Wang et al., 2017; Chaves et al., 2018; Dey
et al., 2018; Fry, 2020; Lindqvist‐Kreuze et al., 2020; Guha
Roy et al., 2021). The best‐performing algorithm was
implemented in an automated genotype classifier.

METHODS

Genotype data

A data set of 1392 genotypes with 566 unique multilocus
genotypes characterized by the 12 standard microsatellite
loci used to describe P. infestans isolates (Li et al., 2013) was
analyzed in this study. As all previously published genotypes
were characterized using the same standard microsatellite
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set, they are all comparable. The genotypes composing this
data set were previously classified into 23 clonal lineages.
These were isolated and characterized in Colombia (Chaves
et al., 2018, 2020), Peru (Lindqvist‐Kreuze et al., 2020), the
United States (Wang et al., 2017), and India and Europe
(Dey et al., 2018).

Machine learning algorithms

As there is no consensus regarding the most effective
algorithm for genotype classification (Zhao et al., 2016; Amaral
et al., 2022; Bishnoi et al., 2022), seven ML classification
algorithms encompassing various approaches were tested: two
gradient boosting (AdaBag version 5.0 and bsttree version
0.3‐24) (Hastie et al., 2009; Alfaro et al., 2013); two random
forests (cforest version 1.3‐14 and ORFpls version 0.3)
(Breiman, 2001; Menze et al., 2011); a Bayes generalized linear
model (bayesglm version 1.13‐1) (Gelman et al., 2008); and
two neural networks, a single hidden layer perceptron (nnet
version 7.3‐19) (Venables and Ripley, 2002) and a multi‐layer
perceptron (mlpML version 0.4‐17) (Zell et al., 2011). This
approach has previously been used to identify the best‐suited
ML algorithm for a task when there is no clear consensus
(Bishnoi et al., 2022).

The general pipeline for testing all the ML models began
with a data split. In this step, the genotype data set is divided
into two subsets: one used to train the ML models and
another used to test the performance of the trained models
(as described below). The accuracy of the predicted
classification is evaluated by comparing the known lineage
of each genotype with the ML model's prediction, which is
scored as described below (Figure 1). This general pipeline
has previously been used to test the performance of ML
algorithms for genotype classification (Bishnoi et al., 2022).
The training of the different algorithms and the calculation of
their performance metrics were performed using the caret
(version 6.0‐94) R package (R version 4.3.1) (Kuhn, 2008; R
Core Team, 2023).

Data preparation

To prepare the data for training the models, genotype data
were reorganized into a sparse matrix where each
combination of locus and alleles present becomes a
variable, and the value for each variable is either present
(1) or absent (0) (Alkharusi, 2012; Hancock and
Khoshgoftaar, 2020). This transformation was performed
for three reasons: (1) it is required for including categorical
values in ML models (Alkharusi, 2012; Hancock and
Khoshgoftaar, 2020); (2) it is a more memory‐efficient way
of storing data (Cerda et al., 2018); and (3) it does not
imply an order relation between the variables, as is the
case for other categorical encoding procedures such
as ordinal methods (Potdar et al., 2017). This sparse
training data matrix was the input for training all

ML models tested. The sparse matrix was the Tab slot of
the Genind object imported using the read.genalex
function of the poppr R package (version 2.9.4) (Kamvar
et al., 2014).

Model training and testing

Because model training and testing are computationally
intensive processes, the algorithm testing was divided into
two steps. A preliminary evaluation was performed using a
data set of 76 genotypes from the most represented clonal
lineages (EC‐1, PE‐3, and EU_13), with all lineages
represented in similar proportions. Both the classification
accuracy and the robustness of the method with decreasing
amounts of training data were assessed. The four best‐
performing algorithms were selected and evaluated for their
classification accuracy on the complete genotype data set.

In the preliminary and final evaluations of the ML
algorithms, the genotype data set was split into two parts,
one used to train the algorithm (training set) and the other
to test its performance (testing set), as is commonly done
for this type of analysis (Bishnoi et al., 2022). Five different
data splits were tested (training/test): 80%/20%, 50%/50%,
20%/80%, 10%/90% and 5%/95%. Cohen's kappa of the
genotype classification in the testing set was estimated to
correct for the probability of correctly classifying a genotype
into a clonal lineage by chance (Warrens, 2011; Grandini
et al., 2020). Cohen's kappa value oscillates between 0 and 1,
where 1 indicates perfect agreement and 0 indicates a
complete lack of agreement (Kuhn, 2008; Warrens, 2011;
Grandini et al., 2020). This metric's correction is important
in this case because different numbers of genotypes belong
to each clonal lineage. For each test, 20 repetitions were run,
and Cohen's kappa was calculated for each.

Testing different data splits for training and testing
the models was done to determine the robustness of the
classification made by each of the ML algorithms. For the
preliminary evaluation, the five data splits resulted in 182 (80%),
114 (50%), 46 (20%), 23 (10%), or 11 (5%) of the 228 genotypes
used for training and the remainder used for testing.

The ML algorithms that performed best along the
different proportions of training data were selected for
testing using the complete data set. For this final evaluation,
the models were trained with 80% (1114) of the 1392
genotypes and tested with the remaining 278 (20%). For
both the preliminary and complete data set tests, the
classification process was repeated 20 times with randomly
selected genotypes for each run, and Cohen's kappa was
calculated for each run.

Performance comparison

An ANOVA test was used to compare the mean Cohen's
kappa performance for the different ML algorithms
when using the whole genotype data set. Tukey's honest
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significant difference test was used to identify which of the
paired differences between methods were significant. Both
tests used the statistical software R version 4.2.3 (R Core
Team, 2023).

RESULTS

Algorithm performance

The ML algorithms could be divided into two groups based
on their performance. The first group, consisting of the
bayesglm, bsttree, and ORFpls algorithms, had an average
kappa value of around 0.5 for most training data
proportions (Figure 2, Table 1). The only exception was
the bsttree algorithm, which had a Cohen's kappa value of 0

when the proportion of data used for training dropped
to 5%.

The second group, comprising AdaBag, cforest, nnet,
and mlpML, had kappa values of around 1 for the 80%
training data proportion and lower values for smaller
training data percentages, depending on the algorithm
(Figure 2, Table 1). When 5% of the genotypes were used for
training, the kappa value remained above 0.99 for mlpML
but decreased to around 0.86 and 0.89 for nnet and AdaBag,
respectively, and dropped to 0 for cforest.

The algorithms in the second group were evaluated with
the complete genotype data set (Table 2). Both nnet and
cforest performed similarly (P = 0.9996; Table 3) in
classifying the complete genotype data set, with Cohen's
kappa values of around 0.61 (Figure 3, Table 2). AdaBag and
mlpML performed significantly better than nnet and cforest

F IGURE 1 Pipeline used to test the classification models. A GenAlEx file containing both the microsatellite genotype information and the clonal
lineages to which each isolate belongs is used as the input. This set was then split into a training and a testing set. The genotype data for both the training and
testing sets were coded as sparse matrices. The sparse matrix and real lineages from the training set were then used to train the corresponding classification
model. This training was performed in each run using one of the algorithms shown. Once the model was trained, the sparse matrix produced with the
genotypes in the testing set was used to predict the lineages for the isolates in this set. These predicted lineages were compared with the real lineages to which
these isolates belong, and Cohen's kappa was calculated as the output. Dotted lines represent information obtained from the genotype sets without any
modification. The algorithms highlighted in green were the best performing in the preliminary test, which were subsequently tested with the complete data
set. The testing process was done 20 times for each algorithm for each data split for the preliminary data set test and 20 times for the complete data set tests.
ML, machine learning.
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(P < 1e−10; Tables 2 and 3, Figure 3). AdaBag scored
considerably better than mlpML (P = 0.0004; Tables 2
and 3), with Cohen's kappa values around 0.89 and 0.84,
respectively.

Automatic classification tool

After studying the performance of the ML algorithms in
classifying the P. infestansmicrosatellite genotypes into clonal
lineages, both the AdaBag and the mlpML methods were
implemented in a web app using the shiny R package (Chang
et al., 2022). This web app takes as input a GenAlEx file
(Peakall and Smouse, 2012) containing the genotypes of the
samples to be classified and outputs a table with the clonal
lineage predicted for each one (Figure 4). In addition, the
built web app allows users to download a second table with
the calculated probability of each genotype belonging to each
one of the clonal lineages. All the scripts corresponding to
this web app are available at https://github.com/cpatarroyo/
genotypeclas (see Data Availability Statement).

The proposed workflow uses the AdaBag algorithm
(Alfaro et al., 2013) to train the model using previously
classified P. infestans genotypes. The trained model can then
be used to classify all newly genotyped isolates into their

corresponding clonal lineages through a user interface built
using the shiny R package (version 1.7.5) (Chang et al., 2022)
(Figure 4). An additional advantage of the proposed
workflow (shown in Figure 5) is that the most computa-
tionally intensive part, model training, would only need to
be done when new expert‐vetted classified microsatellite
genotypes are added to the training data set. The
classification of newly genotyped samples, which would be
used more often, is far less computationally intensive.

DISCUSSION

Recently, diverse ML methods have been applied to the
problem of genotype classification for organisms such as
plants (Sant'Anna et al., 2015; Torkzaban et al., 2015;
Remita et al., 2017; Amaral et al., 2022; Nicora et al., 2022)
and viruses (Remita et al., 2017). Moreover, these same
methods have been used to automate specific analyses in
phytopathology, such as identifying the physiological
responses of potato cultivars to late blight (Gold et al., 2020).
These examples illustrate a growing interest in developing
ML‐based tools in phytopathology, which is part of
the larger trend of implementing new analytic tools in
precision agriculture to more efficiently manage agricultural

F IGURE 2 Cohen's kappa of the machine learning algorithms in classifying the genotypes in the balanced preliminary testing set. Tr80‐20, 80% of the
genotypes were used for training and 20% for testing; Tr50‐50, 50% of the genotypes were used for training and 50% for testing; Tr20‐80, 20%
of the genotypes were used for training and 80% for testing; Tr10‐90, 10% of the genotypes were used for training and 90% for testing; Tr05‐95, 5%
of the genotypes were used for training and 95% for testing. Error bars indicate the mean Cohen's kappa ± the standard error for the 20 replicates.
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TABLE 1 Summary of the performance metrics for each of the machine learning algorithms for the 20 runs of each of the different data splits
performed in the preliminary test. Values of 0.0000 are below 1e−4.

Method Split Accuracya Kappab SD kappac TestAccd NoInfAce AccPvalf TestKappag SD test kappah

AdaBag Tr80‐20 0.9997 0.9995 0.0022 1.0000 0.3707 0.0000 1.0000 0.0000

bsttree Tr80‐20 0.6015 0.4144 0.0169 0.5957 0.4141 0.0123 0.4409 0.0369

bayesglm Tr80‐20 0.5521 0.3756 0.0007 0.7071 0.4407 0.0003 0.5177 0.0139

cforest Tr80‐20 0.9976 1.0000 0.0000 1.0000 0.3960 0.0000 1.0000 0.0000

mlpML Tr80‐20 0.9986 0.9979 0.0036 1.0000 0.4109 0.0000 1.0000 0.0000

ORFpls Tr80‐20 0.6937 0.5357 0.0131 0.6783 0.3967 0.0006 0.5100 0.0428

nnet Tr80‐20 0.9930 0.9890 0.0027 1.0000 0.4109 0.0000 1.0000 0.0000

AdaBag Tr50‐50 0.9958 0.9936 0.0142 0.9719 0.3702 0.0000 0.9578 0.0211

bsttree Tr50‐50 0.6428 0.4574 0.0249 0.6439 0.3596 0.0000 0.4817 0.0161

bayesglm Tr50‐50 0.6152 0.4403 0.0090 0.6555 0.3454 0.0000 0.4828 0.0048

cforest Tr50‐50 0.9985 0.9977 0.0054 0.9996 0.3667 0.0000 0.9993 0.0029

mlpML Tr50‐50 0.9998 0.9998 0.0006 0.9996 0.3690 0.0000 0.9993 0.0029

ORFpls Tr50‐50 0.6892 0.5312 0.0117 0.6973 0.3559 0.0000 0.5345 0.0159

nnet Tr50‐50 0.9965 0.9945 0.0055 1.0000 0.3588 0.0000 1.0000 0.0000

AdaBag Tr20‐80 0.9570 0.9346 0.0311 0.9723 0.3451 0.0000 0.9583 0.0543

bsttree Tr20‐80 0.6321 0.4581 0.0326 0.6654 0.3360 0.0000 0.4992 0.0027

bayesglm Tr20‐80 0.6759 0.4847 0.0017 0.6573 0.3424 0.0000 0.4899 0.0021

cforest Tr20‐80 0.9735 0.9611 0.0255 0.9970 0.3492 0.0000 0.9955 0.0144

mlpML Tr20‐80 1.0000 1.0000 0.0000 0.9997 0.3486 0.0000 0.9996 0.0018

ORFpls Tr20‐80 0.6754 0.5082 0.0916 0.6647 0.3528 0.0000 0.4988 0.0225

nnet Tr20‐80 0.9963 0.9945 0.0086 0.9984 0.3527 0.0000 0.9975 0.0038

AdaBag Tr10‐90 0.8869 0.8232 0.0661 0.9727 0.3401 0.0000 0.9590 0.0443

bsttree Tr10‐90 0.5631 0.3151 0.0208 0.6698 0.3414 0.0000 0.5034 0.0222

bayesglm Tr10‐90 0.7841 0.6542 0.0611 0.6579 0.3433 0.0000 0.4889 0.0051

cforest Tr10‐90 0.7635 0.6497 0.0210 0.9398 0.3420 0.0000 0.9101 0.1018

mlpML Tr10‐90 0.9811 0.9705 0.0213 0.9954 0.3459 0.0000 0.9930 0.0016

ORFpls Tr10‐90 0.5571 0.3692 0.1261 0.6732 0.3437 0.0000 0.5070 0.0145

nnet Tr10‐90 0.9826 NA NA 0.9973 0.3493 0.0000 0.9960 0.0036

AdaBag Tr05‐95 0.8032 0.6403 0.0344 0.9065 0.3421 0.0000 0.8598 0.0132

bsttree Tr05‐95 0.5132 NA NA 0.3276 0.3364 0.6321 0.0000 0.0000

bayesglm Tr05‐95 0.6257 0.3222 0.0195 0.6665 0.3379 0.0000 0.4986 0.0007

cforest Tr05‐95 0.1831 NA NA 0.3333 0.3377 0.5796 0.0000 0.0000

mlpML Tr05‐95 0.9195 0.8771 0.0234 0.9995 0.3366 0.0000 0.9993 0.0030
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activities, focused in this case on the protection against
pathogens (Sharma et al., 2021). It is therefore beneficial to
develop a ML‐based algorithm for classifying P. infestans
genotypes into clonal lineages.

The only other automatic approach to classifying P.
infestans genotypes, SSR Matcher (Tabima et al., 2016),
works as a specific type of k‐nearest neighbors, a type of ML
algorithm, for which k = 1 (Kramer, 2013). This algorithm
reduces the differences in the variables between objects into
a distance and classifies the new object in the same class as
the k neighbors closest to it (with the least distance). In the
case of SSR Matcher, the differences between the micro-
satellite markers are reduced to the Bruvo distance (Bruvo
et al., 2004), and the unknown genotype is classified into the
closest clonal lineage neighbor (Tabima et al., 2016). This
approach is limited to genetic distances between micro-
satellite markers calculated by the Bruvo metric; however,
this can be overcome by using other ML approaches that are
not restricted to these types of markers and metrics.

Any categorical variable (such as mating type or
mitochondrial haplotype) can be converted into a sparse
matrix (also known as one‐hot encoding) (Alkharusi, 2012;
Hancock and Khoshgoftaar, 2020) and added to these ML
methods without any changes. Numerical variables (such as

TABLE 1 (Continued)

Method Split Accuracya Kappab SD kappac TestAccd NoInfAce AccPvalf TestKappag SD test kappah

ORFpls Tr05‐95 0.5864 0.4083 0.1849 0.6680 0.3408 0.0000 0.5021 0.0102

nnet Tr05‐95 0.8692 NA NA 0.9293 0.3417 0.0000 0.8950 0.1803

Note: NA = not available (i.e., the metrics could not be calculated); Tr80‐20 = 80% of the genotypes were used for training and 20% for testing; Tr50‐50 = 50% of the genotypes
were used for training and 50% for testing; Tr20‐80 = 20% of the genotypes were used for training and 80% for testing; Tr10‐90 = 10% of the genotypes were used for training and
90% for testing; Tr05‐95 = 5% of the genotypes were used for training and 95% for testing.
aAverage classification accuracy for the cross‐validation test of the training data.
bAverage Cohen's kappa value for the classification cross‐validation test of the training data.
cStandard deviation of the Cohen's kappa value for the cross‐validation test of the training data.
dAverage classification accuracy of the training data set.
eAverage classification accuracy when the genotypes were classified at random in the clonal lineages (no‐information accuracy).
fAverage P value of the difference between the test accuracy and the no‐information accuracy.
gAverage Cohen's kappa value for the classification of the testing data.
hStandard deviation of the Cohen's kappa value for the classification of the testing data.

TABLE 2 Summary of performance metrics for each of the machine learning algorithms in the complete data set test using 80% of the genotypes for
training and 20% for testing. Values of 0.0000 are below 1e−4.

Method Accuracya Kappab SD kappac TestAccd NoInfAce AccPvalf TestKappag SD test kappah

AdaBag 0.9043 0.8512 0.0126 0.9579 0.7790 0.0000 0.8879 0.0210

bsttree 0.6403 0.4340 0.0065 0.8316 0.7643 0.0059 0.5760 0.0184

bayesglm 0.6529 0.4582 0.0030 0.8281 0.7810 0.0322 0.5495 0.0048

cforest 0.8217 0.6558 0.0093 0.8837 0.7739 0.0001 0.6100 0.0460

mlpML 0.9031 0.8426 0.0131 0.9414 0.7691 0.0000 0.8393 0.0484

nnet 0.7082 0.5587 0.0168 0.8411 0.7643 0.0017 0.6088 0.0115

aAverage classification accuracy for the cross‐validation test of the training data.
bAverage Cohen's kappa value for the classification cross‐validation test of the training data.
cStandard deviation of the Cohen's kappa value for the cross‐validation test of the training data.
dAverage classification accuracy of the training data set.
eAverage classification accuracy when the genotypes were classified at random in the clonal lineages (no‐information accuracy).
fAverage P value of the difference between the test accuracy and the no‐information accuracy.
gAverage Cohen's kappa value for the classification of the testing data.
hStandard deviation of the Cohen's kappa value for the classification of the testing data.

TABLE 3 Differences in the mean Cohen's kappa values among pairs
of machine learning methods calculated using Tukey's honest significant
difference method. The difference between means, the lower and upper
values of the 95% confidence interval for the difference, and the P value
after correcting for multiple comparisons are presented.

Method comparison Difference Lower Upper P adjusted

cforest–AdaBag −0.2779 −0.3081 −0.2477 0.0000

mlpML–AdaBag −0.0486 −0.0788 −0.0184 0.0004

nnet–AdaBag −0.2791 −0.3093 −0.2489 0.0000

mlpML–cforest 0.2293 0.1991 0.2595 0.0000

nnet–cforest −0.0012 −0.0314 0.0290 0.9996

nnet–mlpML −0.2305 −0.2607 −0.2003 0.0000
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phenotypic characteristics) could also be included without
modifying these ML classification algorithms. For these
reasons, the ML‐based classification approach presented
here is significantly more flexible than SSR Matcher
(Tabima et al., 2016), requiring no significant changes if
the references used to genotype the P. infestans isolates are
changed altogether from microsatellites to other molecular
markers. This is particularly important in the context of the
increasing numbers of molecular markers available due to
the use of new sequencing technologies. Another advantage
of the present approach is that the probability of each of the
unknown genotypes belonging to each clonal lineage can be
calculated (Kuhn, 2008). This is of particular interest to
closely examine classifications that might seem incorrect or
for the detection of newly formed clonal lineages.

Interestingly, the bayesglm, bsttree, and ORFpls algo-
rithms performed consistently poorly when classifying the
P. infestans genotypes into their corresponding clonal
lineages. The classifications predicted by bsttree were no
better than a random allocation when using the smallest
training set. AdaBag, cforest, mlpML, and nnet performed
much better in the preliminary test with a balanced training
set (composed of roughly the same number of representa-
tives from each clonal lineage); however, the progressive
reduction of training information had a larger effect on
AdaBag, cforest, and nnet, whereas mlpML was only slightly
affected by it. This suggests that the mlpML algorithm is

very robust even when training data are reduced, as long as
its categories are equilibrated.

When tested on the entire data set, the performance of all
four algorithms decreased, with cforest and nnet having
significantly lower Cohen's kappa scores than AdaBag and
mlpML. It is important to note that this data set had an
additional complication: some clonal lineages were over-
represented (e.g., EC‐1), while others were represented by one
or two genotypes (e.g., EU‐8). This imbalance could be one of
the main reasons for the decrease in accuracy across all
methods. Despite this challenge, both AdaBag and mlpML
maintained high classification accuracy. The fact that AdaBag
was significantly more accurate than mlpML could indicate
that this algorithm is more resilient to unbalanced training
information in this case. On the other hand, mlpML is more
resilient to reduced information if it is less unbalanced. These
results highlight the importance of having a balanced training
set for accurate classification, even if this means removing
some genotypes. For automated classification, it is recom-
mended to prioritize a balanced training set over a larger one.

Although there is no clear consensus on the best
algorithm for classifying genotypes, our results are consistent
with those obtained for a cotton (Gossypium hirsutum L.)
genotype classifier (Bishnoi et al., 2022), where an algorithm
based on the same principle of AdaBag (AdaBoost) showed
the best performance. These findings differ from other
biological classification studies that found either random

F IGURE 3 Cohen's kappa for the classification of the genotypes using AdaBag, cforest, mlpML, and nnet on the complete data set. The training set
comprised 80% of the genotypes, while 20% were used for testing. The mean Cohen's kappa value and standard error for the 20 replicates for each method
are represented by the dot and whiskers, respectively.
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F IGURE 4 User interface and output of the genotype classification tool developed using the AdaBag algorithm. Inside the box at the top left is the
“Upload” button for uploading a GenAlEx file with the microsatellite information of the genotyped isolates. Below this button is a “Training accuracy”
letterbox showing the cross‐validation training accuracy for the training data. There are two additional buttons, “Download results” for downloading the
results table displayed and “Download full table” for downloading a table with the probability of each genotype belonging to each one of the clonal lineages
present in the training data set.
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forests (Schiavo et al., 2020; Borkenhagen et al., 2021),
support vector machines (Athamanolap et al., 2014;
Borkenhagen et al., 2021), or artificial neural networks to
have the best performance (Sant'Anna et al., 2015;
Borkenhagen et al., 2021; Amaral et al., 2022). This highlights
the need to continue exploring different ML algorithms for
addressing these biological classification problems.

The automated classification of newly genotyped P. infestans
isolates using ML approaches is faster and more computation-
ally efficient than the current method using SRR Matcher. Our
work also highlighted potential ways to further improve the
functioning of this classifier; however, some would not be
practical to enact. For example, the inclusion of phenotypic
characteristics as an additional source of information could
improve the classification accuracy, but the determination of
these physiological traits requires additional time‐consuming
experiments (Kato et al., 1997; Mizubuti and Fry, 1998; Maziero
et al., 2009; Danies et al., 2013; Saville et al., 2015; Njoroge
et al., 2016, 2019; Puidet et al., 2022, 2023), which would defeat
the purpose of being a quick and efficient monitoring tool.

Other recommendations could maintain the efficiency
and practicality of this tool while potentially improving its
accuracy. For example, instead of one‐hot encoding, different
ways of encoding the categorical variables could be tested for
their potential to increase the predictive performance of the
models (Potdar et al., 2017; Hancock and Khoshgoftaar,

2020; Dahouda and Joe, 2021; Valdez‐Valenzuela et al., 2021;
Cerda and Varoquaux, 2022). Furthermore, as the results
suggest, it is important to use a training data set that captures
the variability of the genotypes included while maintaining a
balanced representation of the lineages when considering
deploying this web app for general use. This work used
publicly available P. infestans genotype data for the model
training and testing, but these data do not capture the full
variability of this pathogen's genotypes. This classifier could
greatly benefit from access to expertly curated classified
genotype data sets, such as the ones maintained by Euro-
Blight (https://agro.au.dk/forskning/internationale-platforme/
euroblight/), AsiaBlight (https://www.asiablight.org/), USA-
Blight (https://usablight.org/), and the Tizón Latino (https://
tizonlatino.github.io/) consortia. With access to these large
training data sets, two of the biggest advantages of ML models
become evident. First, larger and more diverse training data
sets tend to result in more accurate predictions by ML models
(Shalev‐Shwartz et al., 2012; Cho et al., 2015; Johnson
et al., 2018; Punia et al., 2021), and second, the automation of
the classification of newly genotyped isolates is faster and
more computationally efficient than the current approach
(Tabima et al., 2016).

As discussed above, the automatic genotype classification
tool presented in this work could be refined and expanded in
many ways to improve its functionality. It could also

F IGURE 5 Proposed workflow for the developed classification tool. The properly classified genotypes serve as the training data for the model, which
uses the AdaBag algorithm. The trained model can then be used to classify the newly genotyped isolates. The green square contains the processes that are
automated/performed by the developed web application.
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complement or be complemented by other tools in this field;
for example, it can complement tools such as SSR Matcher to
effectively monitor the dynamics of P. infestans. It could also
be paired with tools such as SCIPdb (Priya et al., 2023) to
improve the recommendations for growers and researchers
considering the predicted clonal lineages and the interactions
with other stressors in each case. This approach could be
taken even further by including some of the underlying
phenotypes or biological mechanisms responsible for the
genesis of these lineages. Overall, the approach presented in
this work represents a novel, flexible, efficient, and accurate
way to automate the classification of P. infestans genotypes
into its clonal lineages, which could prove valuable in the
monitoring of this pathogen.
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