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Disparity during the resolution of inflammation is closely related with the initiation and

progression of the tumorigenesis. The transformed cells, through continuously evolving

interactions, participate in various exchanges with the surrounding microenvironment

consisting of extracellular matrix (ECM) components, cytokines embedded in the ECM,

as well as the stromal cells. Proteoglycans (PGs), complex molecules consisting of a

protein core into which one or more glycosaminoglycan (GAG) chains are covalently

tethered, are important regulators of the cell/matrix interface and, consecutively,

biological functions. The discrete expression of PGs and their interacting partners has

been distinguished as specific for disease development in diverse cancer types. In this

mini-review, we will critically discuss the roles of PGs in the complex processes of cancer-

associated modulation of the immune response and analyze their mechanisms of action.

A deeper understanding of mechanisms which are capable of regulating the immune

response could be harnessed to treat malignant disease.
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INTRODUCTION

Cancer initiation is a multi-faceted process with a contribution of genetic, metabolic and
environmental factors. Tumorigenesis is closely associated with chronic inflammation, with
approximately 20% of cancer incidences being directly correlated to chronic infections (1). Indeed,
all tumors independently of etiology are distinguished by an early inflammatory milieu and
characterized by discrete interactions with the immune system at all stages of disease progression
(2, 3). During malignant transformation, cells obtain complex biological characteristics correlated
with more efficient survival, invasion, metastasis and the ability to evade the immune response. The
transformed cells, through continuously evolving interactions, communicate with and alter the
surrounding microenvironment consisting of extracellular matrix (ECM) components, cytokines
embedded in the ECM, and the stromal cells (e.g., fibroblasts, endothelial cells, adipocytes, and
immune cells) (4, 5). The resulting ECM remodeling crucially contributes to the abnormal tumor
inflammatory pattern (5, 6).

Proteoglycans (PGs) are complex molecules consisting of a protein core into which one or more
glycosaminoglycan (GAG) chains are covalently tethered. The bound GAGs can be the heparan
sulfate (HS), the chondroitin sulfate/dermatan sulfate (CS/DS), or the keratan sulfate (KS) type.
In mammalian cells PGs are associated to the plasma membranes, released into the ECM or
intracellularly localized. Presently, 45 PGs have been identified with each member characterized
by immense alterability attributed to the modifications of the protein core and by the type and
different stoichiometry of the GAG chain substitutions (7, 8). Thus, PGs have highly specific
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and multifaceted biological roles, including: (i) contributing to
ECM superstructure (9); (ii) defining ECM biochemical and
physicochemical properties (9); (iii) acting as receptors of diverse
responsiveness as well as a pool of various biologic effectors such
as growth factors (10–12).

It is well-established that malignant tumors have discrete
PG expression profiles, which are immediately correlated
with their behavior and differentiation status. Thus, epithelial
tumors exhibit a different PG characterization as compared to
mesenchymal tumors (13, 14). Proteolytic cleavage of PGs, due to
the action of matrix metalloproteinases (MMPs), cathepsins, and
bone-morphogenetic protein-1, can release bioactive fragments
or matrikines with roles in the propagation of tumorigenesis
separate from that of parent molecules (15). Importantly, PGs
are highly implicated in the processes of cancer-associated
inflammation (16, 17). Indeed, PGs are suggested tomodulate key
events respective to both innate and adaptive immunity (18, 19).

In this review, we provide a critical overview of PGs’
roles in the inflammatory cancer milieu and consecutively
extrapolate to potential options for the development of targeted
cancer therapies.

IMMUNOBIOLOGY OF CANCER

The input of the immune system, introduced as cancer
immunoediting, consists of three phases: elimination (i.e.,
cancer immunosurveillance), equilibrium, and escape (20).
Importantly, the tumor ECM contributes to the development of
an immunosuppressive network where stromal cells intertwine
with inflammatory immune cells and with cells appending
to the vascular system. Within this complex, a newly formed
network, secreted cytokines and chemokines can sustain the
tumor immune escape (21, 22). The chain of tumorigeneis
can be initiated by injury of normal tissue, independently
of the causative agent, and concomitant triggering of acute
inflammation (23, 24). The maintenance of inflammatory
conditions due to various effectors leads to chronic inflammation
which may evolve to precancerous lesion (25–29). The
evolvement of the pre-cancerous lesion can be attenuated
by an active immune defense or driven to primary tumor
development (30), as schematically presented in Figure 1. Thus,
the immune system has the ability to perceive and destroy many
tumors early on in their development, whereas during the stage
of equilibrium, a restraint of the tumor is attained. Some tumors
will succeed in escaping from the growth restriction maintained
by the immune system, and become clinically apparent (20, 31).

The resolution of disease and response to therapy is likewise
affected by the tumor microenvironment as two major subsets
of tumors with distinct mechanisms of resistance to immune-
mediated destruction have been recognized. Tumors exhibiting
the inflamed immunophenotype present with the recruitment
of CD8+ cytotoxic T cells, B cells and macrophages. Immune
resistance in this case is due to the action of microenvironment-
originating negative immune regulators. In non-inflamed tumors
an absence of T-cells and innate immunity regulators is evident
and leads to immediate immune failure (32, 33). Indeed, the

ability of the tumor cells to escape impairment by the immune
system has been suggested as a novel “hallmark of cancer” (6).

REMODELING OF THE CANCER
ENVIRONMENT

During tumor progression, an extensive remodeling of the
ECM with correlated release of pro-tumorigenic factors and
orchestration of surrounding “stroma” cells is initiated. This
remodeling of the tumor microenvironment is closely associated
to the modulation of the immune response (34, 35). Thus, in
cancer pathogenesis the resulting “desmoplastic reaction” among
resident fibroblasts, endothelial cells, pericytes, leukocytes and
surrounding ECM is directly correlated with invasion and poor
patient prognosis (36, 37). The restructuring of the ECM is
due to: (i) modulation in the synthesis and release of ECM
components; (ii) degradation of the ECMowing to enzyme action
or chemical degradation due to radical oxygen species (ROS)
(4, 38). Specific ECM remodeling will ultimately result in: (i)
the detachment of tumor cells from each other, from adjacent
stromal cells or from matrix; (ii) enhanced growth and mobility
of tumor cells; (iii) modulation of the immune system and finally
in sustaining of the tumorigenic microenvironment (39, 40).

PGs ARE ACTIVE MEDIATORS OF
CANCER-ASSOCIATED INFLAMMATORY
MILIEU

Small Leucine Rich Proteoglycans Have a
Dual Role in the Regulation of Cancer
Inflammatory Setting
The family of small leucine rich PGs (SLRPGs) was initially
correlated with the regulation of innate immunological
responses, noteworthy due to the fact that the triggering of
these very responses can lead to the initiation of tumorigenesis
(41). The role of a pro-inflammatory molecule has been
designated to a class I SLRP member, biglycan (17). Importantly,
this SLRP is overexpressed and secreted by various cancers
including gastric (42), pancreatic (43), ovarian (44), and
colon cancer (45). This SLRP can be either freed from the
ECM through proteolytic degradation initiated upon tissue
injury or de novo produced by activated macrophages and
resident cells with various immunological roles (Figure 2)
(46). Soluble biglycan can undertake the role of signaling
mediator by binding to the Toll-like receptors (TLR)-2 and -4
on the surface of macrophages. The formation of the ligand-
receptor complex initiates sterile inflammation and can facilitate
pathogen-mediated inflammation through the production
of pro-inflammatory cytokines and chemokines, including the
tumor necrosis factor (TNF)-α, interleukin (IL)-1β or chemokine
(C–C motif) ligand (CCL)2 (46, 47). It was shown that soluble
biglycan utilizes TLR2/4 signaling pathways to activate adaptor
molecule myeloid differentiation primary response 88 (MyD88),
for the recruitment of neutrophils and macrophages or to
initiate Toll/interleukin (IL)-1R domain-containing adaptor
inducing interferon (IFN)-β (TRIF) activities for T-lymphocyte
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FIGURE 1 | Immunobiology of cancer cycle. When un-damaged tissue (A) is subjected to injury, innate immunity cells (neutrophils and macrophages type M1)

infiltrate the tissue and generate an acute inflammation (B) that triggers the repair cascade guiding the tissue to its un-damaged status. ECM is altered and

contributes to inflammatory processes. If the inflammation is sustained and has chronic characteristics (C), in addition to M1 macrophages the tissue is infiltrated with

adaptive immunity cells (Th1, Tc, Th17); the pre-cancerous lesion (D) can return to its normal un-damaged status. At these stages the elimination of tumor

development is possible. If the chronic inflammation persists (E) then the pre-cancerous lesion evolves into a primary tumor. The primary tumor can be infiltrated by

M1, Th1, Tc, Th17 cells (F) with intense anti-tumoral activity which can restrain the tumorigenesis process and establish the immune equilibrium stage. In contrast,

when the infiltrating cells are M2 type macrophages Th2, Treg lymphocytes (G) a pro-tumorigenesis milieu is enhanced and the primary tumor evolves into an

aggressive/metastatic tumor. The ECM is modulated by tumor/stromal -cells and gains new immunosuppressive characteristics that favor metastasis (H). This last

stage of the tumor-immune cycle is characterized by the escape of tumor cells from the immune control.

recruitment (48). Moreover, the role of a danger signal (DAMP)
that triggers the NLRP3 inflammasome through upstream
TLR2/4 and P2X receptors signaling has been attributed to
biglycan (49), by specifically regulating the crosstalk between
TLR2/4- and P2X7-NLRP3-caspase-1 (50, 51). Increasing data
proposes that the initiation of TLR2/TLR4 signaling enhances
tumor cell growth, downregulates apoptosis, and upregulates
the synthesis of growth factors and inflammation-associated
cytokines by tumor and stromal cells (50, 52, 53). Recently,
biglycan was shown to bind with high affinity to macrophage
CD14, an established GPI-anchored TLRs co-receptor. CD14
is mandatory for biglycan-dependent TLRs activation, where
biglycan seems to have the role of a re-router as complexing
with specific TLR members induces a discrete response. Thus,
in macrophages, the biglycan/CD14/TLR2,4 complex induces
the TNF-α expression, thebiglycan/CD14/TLR2 co-localization
results in HSP70 release, whereas the biglycan/CD14/TLR4
complex initiates CCL5 secretion (54). Moreover, in a mouse
model of renal injury, a deficiency of CD14 prevented
biglycan-mediated cytokine expression, recruitment of
macrophages, and M1 macrophage polarization (54).

Moreover, biglycan has been implicated in the regulation
of important to tumorigenesis (4), ROS generation (55).
Indeed, biglycan through activating discrete TLR receptors
discriminately stabilizes NADPH oxidase (NOX) 1, 2, and
4 enzymes and regulates their downstream ROS production,
resulting in either a positive or negative modulation of IL-1β
synthesis (18). Furthermore, TLR2/4 induced ROS generation
by biglycan (56) stimulates macrophages and dendritic cells
to express chemokine (C-X-C) ligand 13 (CXCL13), the
major chemoattractant for B and B1 lymphocytes (56). In
addition to chemoattracting B cells, biglycan through TLR2/4
stimulates RANTES, MCP-1, and MIP-1α secretion, inducing
macrophages and T cells recruitment into the kidney. Thus, these
developments indicate that biglycan signaling can bridge innate
and adaptive immunity (56), with the ability to act at different
check points of the tumor immune cycle.

On the other hand, by enhancing NOX-generated ROS,
biglycan induces genomic volatility coupled with chromosomal
DNA modifications, which results in increased tumor cell
growth, viability, and a metastatic ability of inflammation-
associated tumors (57). Even though the majority of reports
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FIGURE 2 | Immunomodulatory roles of biglycan. (A) By binding to TLR2 or 4 on macrophages’ biglycan induces cytokine (TNF-α, CCL2 or IL-1β) release;

(B) Crosstalk between TLR2/4- and P2X induces NLRP3 inflamozone and IL-1β activation and consequent neutrophil recruitment; (C) Soluble biglycan initiates

Toll/interleukin (IL)-1R domain-containing adaptor activation inducing interferon (IFN)-β (TRIF) activities for T-lymphocyte recruitment; (D) Biglycans’ binding determines

CD14/TLR2/TLR4 complex formation and discrete downstream signaling; (E) Biglycan binding to specific TLR receptors discriminately activates NADPH oxidase

(NOX) 1, 2, and 4 enzymes and regulates their downstream ROS production resulting in both positive or negative modulation of IL-1β synthesis; or in the stimulation of

macrophages and dendritic cells to express chemokine (C-X-C) ligand 13 (CXCL13), the major chemoattractant for B and B1 lymphocytes.

suggest that the activities of biglycan are pro-oncogenic, recent
studies provide evidence that biglycan can promote an anti-
inflammatory response that is key for the resolution of acute
inflammation and hence the switch to acquired immunity
response (18). Indeed, it is now proposed that biglycan, even
though exhibiting affinity to both TLR2 and 4, will discriminately
bind to only one TLR, which will, in combination with specific
TLR adaptor molecules, lead to a discrete biological response
(17, 18). The summarized regulation of immunity responses by
biglycan can conceivably affect the development and resolution
of early pre-cancerous lesions as well as the progression of
inflamed tumor subtypes. Decorin, likewise an SLRP class I
member, has established anti-tumorigenic properties (58). This

SLRP member has the ability to initiate the TLR2/4 downstream
signaling and cytokine release with an outcome different to that
of biglycan. Specifically, utilizing a transforming growth factor

–β (TGF-β)/oncogenic microRNA (miR)-21/tumor suppressor

programmed cell death protein 4 (PDCD4) axis decorin
downregulates the release of IL-10, which is an anti-inflammatory

mediator and thus inhibits tumor growth (59).Moreover, decorin
mobilizes mononuclear cells to the region of damaged tissue
by enhancing CCL2 release and thereby, effectively upholding
the inflammatory state (60). In a breast cancer xenographic
model it was demonstrated that the decorin protein core
inhibits genes obligatory for the regulation of the immunological
response. Therefore, Buraschi et al. conclude that the “systemic
administration of decorin protein core reveals a fundamental
basis of action for decorin to modulate the tumor stroma
as a biological mechanism for the ascribed anti-tumorigenic

properties.” Indeed, the authors’ gene ontology data indicated
an inhibitory role in the regulation of proteins implicated in
immunomodulatory responses when assigned to decorin protein
core (61). The SLRP lumican has been postulated to modulate
tumor-associated inflammation by affecting peripheral monocyte
extravasation, and Fas–FasL signaling (14). Interestingly, lumican
enhances LPS-dependent activation of TLR4 (62).

The Hyalectan Versican Is Crucial to Both
Innate and Adaptive Immunity
Versican, a member of the hyalectan family of large chondroitin
sulfate PGs (CSPGs) has also been implicated in inflammatory
processes (19, 63). These pericellular PGs are localized, among
other, to the sub-endothelial compartment where they encounter
the infiltrating leukocytes and modulate their biological activities
by binding to specific receptors including TLR2, and P- or L-
selectins (19). Once bound to the versican-containing ECM,
leukocytes degrade the ECM to generate pro-inflammatory
fragments that further drive the inflammatory response (64).
Versican has been established to be overexpressed in a number
of cancers, including prostate, breast, malignant myeloma,
glioblastoma, laryngeal, pancreatic ovarian, gastric, testicular
germ-cell, and cervical cancer, as recently discussed (65).

Importantly, in cancer-associated inflammation, versican can
affect the production of cytokines by both lymphoid and myeloid
cells. Thus, Lewis lung carcinoma (LLC) cells overexpress
versican in that, by binding to TLR2 and its co-receptors on
macrophage cell membranes, it activates the latter and facilitates
their TNF-α secretion (66). The initiation of this cascade by
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versican and the induction of TNF-α by myeloid cells enhances
LLC cell metastatic growth (66). Furthermore, an increased
expression of versican V1 and V3 isoforms was positively
correlated to lung metastasis in a bladder cancer murine model
due to the increased release of CCL chemokine by macrophages
(67). Specifically, versican was shown to facilitate bladder tumor
cell migration, resulting in lung metastasis due to a mechanism
involving CCL2/CCR2 secretion by macrophages. Said &
Theodorescu propose that the aforementioned cytokine release
generates a permissive lung inflammatory environment (68).
Likewise, in mesotheliomas, versican downregulates macrophage
M1 phenotype and decreases their ability to phagocytose tumor
cells (69) contributing to the process of immune “escape.”

Interestingly, monocytes cultured in versican-containing
supernatants of colon cancer cells secrete pro-inflammatory
cytokines, including IL-12, TNFα and ROS, whereas monocytes
cultured in versican-free supernatants gathered from breast
cancer tumors’ culture exhibited a different profile of secreted
cytokines. Thus, versican seems to have the ability to specifically
direct the inflammatory monocyte response (19), conceivably
correlated to the differential recruitment of lymphocytes, and
differentiation into tumor-associated macrophages and dendritic
cells (DC) (70).

DCs are proposed to engage tumor antigens and relocate to
draining lymph nodes, where they trigger tumor-specific T cells
(71). Importantly, versican derived from tumor ECM activates
DCs’ TLR2, resulting in the production of immunosuppressive
IL-10 and DC dysfunction. This was associated with a TLR2-
induced increase of IL-6 and IL-10 cell-surface receptors and a
strongly decreased cytokine concentration threshold is needed
to trigger STAT3 (72, 73). Intact versican, thus, dampens
DC activation (72, 73) and conceivably downstream Th and
cytotoxic lymphocyte (CTL) differentiation. Likewise, intact
versican secreted by macrophages was shown to have anti-
inflammatory properties in a mouse model of acute pulmonary
inflammation (74). On the other hand, in myelomas, versican is
proteolyticaly processed to the DAMP versikine, which induces
the secretion of IL-1β and IL-6 by human myeloma marrow-
derived macrophages (MAMs). Importantly, MAMs chiefly
synthesized V1, the precursor to versikine, whereas stromal
cells secreted the versican-degrading protease. This interplay is
suggested to enhance the “T-cell inflammation,” response and
downregulate the “tolerogenic consequences of intact versican
accumulation” contributing to tumor restraint (75).

Syndecans, Modulators of the
Inflammatory IL-6/STAT3 Pathway
Syndecans (SDCs), cell membrane HS containing PGs (76),
have also been implicated in tumor immunomodulation. SDC1-
defficient mouse model of colitis-related colon carcinoma
exhibited higher susceptibleness to malignant transformation
due to the enhanced topical release of IL-6, downstream
activation of STAT3 and target genes with important roles in
colonic tumorigenesis (77). Likewise, in inflammatory breast
cancer, SDC1 was shown to upregulate the inflammatory IL-
6/STAT3 pathway (78), a crucial part of tumor-stimulating

signaling in epithelial-origin tumors (79). The well-described
role of the enzyme heparanase, responsible for the cleavage of
the HS chains may partly elucidate the role of the HS-bearing
SDCs (80). Thus, due to the fact that HS regulates inflammatory
processes at various checkpoints, e.g., including the segregation
of inflammatory cytokines to the ECM, the configuration of
leukocyte binding to the endothelial cells and ECM components,
as well as the generation of responses respective to innate
immunity by interacting with the TLRs, the reconfiguration
of HS due to enzymatic heparanase affects the propagation of
inflammatory events (80, 81).

Endocan, A Unique Plasma PG Blocks
Leukocyte Trafficking
Endocan is an endothelial-derived soluble PG, initially identified
in human umbilical vein endothelial cells (82). Interestingly,
endothelium activated by inflammatory processes and/or tumor
pathogenesis exhibits a strong augmentation in endocan
expression correlated to poor patient prognosis (81, 83–85).
Glycanated human endocan has been shown to strongly promote
tumor growth (86) through its ability to bind to the integrin
CD11a/CD18 (LFA-1) and thus to block leukocyte binding
to endothelium and subsequent infiltration to tumor tissues
(87); or through its promotion of growth factor actions (83,
88). On the other hand, the non-glycanated mouse or human
endocan polypeptide was shown, in a murine model, to delay
tumor expansion through the induction of pan-leukocytic
infiltration of CD122+ expressing cells within tumor and stroma
tissues (89).

The Intracellular PG, Serglycin, Is
Implicated in Heamotological Malignancies
Serglycin, the only known intracellular PG is shown to be
overexpressed in various tumor tissues and cell lines (90, 91).
Importantly, serglycin is a key compound of secretory particles

produced by CTL/NK cells, suggested to facilitate the safe storage
of particle toxins, granzymes and perforin and affect CTL/NK

cells’ cytotoxic ability (92). Even though no evidence is available
as such, these data implicate a plausible contribution of serglycin
to processes of cancer-associated inflammation.

THERAPEUTIC IMPLICATIONS

The modulation of PGs’ activities, as endogenous mediators
of cancer-associated inflammation, is a novel approach in the
field of cancer immunotherapy. Research efforts up to date have
demonstrated the plausibility of this strategy as discussed below.
Thus, the administration of the versican fragment characterized
as DAMP, versikine, is suggested to “facilitate immune sensing
of myeloma tumors and modulate the tolerogenic consequences
of intact versican accumulation” which may facilitate tumor
restraint and enhance T-cell-activating immunotherapies
(75). Blocking the versican/CCL2/CCR2 signaling axis is
indicated to purvey novel adjuvant strategies for detaining the
emergence of clinical metastasis in bladder cancer patients (68).
The non-glycanated mouse or human endocan polypeptide
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restrains tumor growth by increasing leukocyte infiltration
in vivo, enhancing de facto innate immunity response (89).
Suppressing the shedding of SDC1 from intestinal epithelial
cells decreases intestinal inflammation and putative malignant
transformation by augmenting NF-κB, respective downstream
signaling, and neutrophil transmigration in ulcerative colitis
(93). Indeed, the modulation of SDC1 expression could
facilitate immunesurveillance and the positive resolution of
precancerous lesions. Biglycan is suggested to bridge innate
and adaptive immunity through TLR2/4 downstream signaling
due to its’ ability to regulate neutrophil, macrophage, T and
B lymphocyte, and dendritic cells activities (17, 18, 46–56).
Thus, selective inhibition of biglycan-TLR2/TLR4 axis could be
a novel therapeutic approach targeting at various checkpoints
of the cancer immunobiology cycle. Modulations of PGs post-
transcriptional modifications, including their respective sulfation
pattern, seems to be a therapy option as inhibition of sulfatase-2
activity had cytotoxic and partial hepatoprotective activity in
both in vivo and in vitro hepatocellular carcinoma models
(94, 95). Indeed, a clinically relevant pattern of PG and GAG
expression and structural modifications was recently determined

for PGs and GAG synthesizing enzymes in glioma and breast
cancer, which might help in the development of personalized
therapy (96).

Despite these advances, however, many issues need
yet to be addressed for implementation to clinical
practice (97). Furthermore, an understanding of tumor
microenvironment biology and its PG component is necessary
for therapy development.
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