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a b s t r a c t

Several epidemiological models have been proposed to study the evolution of COVID-19
pandemic. In this paper, we propose an extension of the SUIHTER model, to analyse the
COVID-19 spreading in Italy, which accounts for the vaccination campaign and the pres-
ence of new variants when they become dominant. In particular, the specific features of
the variants (e.g. their increased transmission rate) and vaccines (e.g. their efficacy to
prevent transmission, hospitalization and death) are modeled, based on clinical evidence.
The new model is validated comparing its near-future forecast capabilities with other
epidemiological models and exploring different scenario analyses.

© 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi
Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the beginning of the COVID-19 pandemic in early 2020, themathematical community has devoted an unprecedented
effort in developing novel mathematical, numerical and statistical tools to investigate the evolution of the most challenging
public health threat in decades. For an overview on recent advances inmathematical epidemiology, computationalmodelling,
physics-based simulation, data science, andmachine learning applied to the COVID-19 pandemic, we refer the reader to (Kuhl,
2021). Even limiting the focus to the Italian context, several contributions have been proposed to accurately describe the
spatio-temporal spreading of the epidemic in Italy (Bertuzzo et al., 2020; Della Rossa et al., 2020; Gatto et al., 2020; Giordano
et al., 2020; Loli Piccolomini & Zama, 2020), to forecast its future evolution (Bartolucci et al., 2021; Farcomeni et al., 2021;
Parolini et al., 2021a) and to quantify (and possibly optimize) the effects of containing measures, including both pharma-
ceutical and non-pharmaceutical interventions (NPIs) (Bonifazi et al., 2021; Giordano et al., 2021; Marziano et al., 2021).

As for every other virus, SARS-CoV-2, the virus responsible of COVID-19, changes in time through mutations that generate
variants. Variants may differ from the wild-type virus by transmission rates, capability of leading to severe disease, response
to vaccination. Given the enormous impact that the COVID-19 pandemic had (and is still having) on global health, economy,
environment and society, the appearance and evolution of SARS-CoV-2 have been carefully tracked since the beginning of the
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pandemic by collecting sequences on shared public repositories (PANGO Lineages, 2021; Nextstrain, 2021; GISAID, 2021) and
monitoring, in particular, the so-called variants of interest (VOI) and variants of concern (VOC). In particular, the latter are
defined as those variants which may represent an additional risk due to an increased transmissibility, an increased virulence
or a decrease in the effectiveness of public health and social measures or available diagnostics, vaccines, therapeutics (Abu-
Raddad et al., 2021; Koyama et al., 2020). Since the beginning of the pandemic, four variants have been classified as VOC by
theWorld Health Organization (W. H. Organization, 2021), namely the Alpha variant (lineage B.1.1.7), designated on December
18, 2020, first documented in United Kingdom in September 2020, the Beta variant (lineage B.1.351), designated on December
18, 2020, first documented in South Africa in May 2020, the Gamma variant (lineage P.1), designated on January 11, 2021, first
documented in Brazil in November 2020, and the Delta variant (lineage B.1.617.2), designated on May 11, 2021, first docu-
mented in India in October 2020. Finally, the recent variant Omicron was first documented in November 24, 2021 in South
Africa and designated on November 26, 2021. It is currently subject of an intense effort by the scientific community to
characterize its behaviour in terms of transmissibility, disease severity, immune escape.

When the prevalence of one (or more) of these variants become relevant, the epidemiological models used to track the
pandemic evolution should take them into account. Several modelling contributions to describe the effect of variants have
been proposed in the literature in the past few months (Dizioli & Radzikowski, 2021; Giordano et al., 2021; Krueger et al.,
2021; Ramos et al., 2021).

Another relevant contribution that deserves the attention of the modelling community is the impact of the vaccination
campaign that has now reached, in several countries, a large coverage of the population. Different vaccines for COVID-19 have
been authorized by the public health organizations and introduced in the market since late 2020 (Hodgson et al., 2021;
Jeyanathan et al., 2020). In particular, in the western countries, the most of the vaccination campaign have been carried out
using four products: the Comirnaty vaccine (from Pfizer/BioNTech), the Spikevax vaccine (from Moderna), the Vaxzevria
vaccine (from AstraZeneca) vaccine, and the Janssen vaccine (from Johnson & Johnson). The first two (Comirnaty and Spi-
kevax) are based on the messenger RNA (mRNA) technology and similarly behave in terms of efficacy (Self et al., 2021).
AstraZeneca and Janssen vaccines are based on the more traditional viral vector technology. Among the four vaccines, Janssen
is the only proposed (at least in the first phase of the vaccination campaign) with a single dose administration, while the
others are supplied with two doses separated by a time delay ranging between 3 and 6weeks formNRAvaccines and between
4 and 12 weeks for Vaxzevria.

SUIHTER is an epidemiological model, first introduced in (Parolini et al., 2021a), which is designed to conform to the
epidemiological data that have been made available by the Italian Authorities since the beginning of the epidemics. The
choice of the compartments defining the model has been driven by the assumption that the model should match as close as
possible such available data.

In this paper, we propose an extension of the SUIHTER model. This new model is designed to account for the effect of the
vaccination campaign, fromone side, and the possible coexistence of different virus variants, from the other side. In particular,
we consider the administration of two vaccine doses and the presence of the variants Alpha and Delta that sequentially
became dominant in Italy during 2021. A further improvement of the model is its ability to exploit additional set of data that
were lately made available by the Italian Authorities, specifically some additional fluxes between compartments (such as new
admissions in hospital and ICUs). These information were not available when the original SUIHTER model was introduced.
Our analysis does not consider the Omicron variant because of the scarce knowledge about its prevalence and transmissibility
when this paper was submitted (mid-December 2021).

Several attempts have been made to propose rigorous evaluation strategies to compare the forecast capabilities of
different models; see, e.g., (Bracher et al., 2021a; Cramer et al., 2021). Ensemble approaches combining multiple available
forecasts from different models have proved to outperform single models in forecasting the early phases of COVID-19
pandemic (Bracher et al., 2021b; Funk et al., 2020; Taylor & Taylor, 2021), as well as influenza (Reich et al., 2019a, 2019b),
dengue fever (Johansson et al., 2019), and Ebola (Viboud et al., 2018) outbreaks. The superior performance of ensemble
forecast have been shown in different disciplines and they are typically associated to the ability of integrating the information
coming from different models producing accurate predictions with well-calibrated uncertainty (Bates & Granger, 1969;
Leutbecher& Palmer, 2008), avoiding, at the same time, the risk of delayed (or missing) forecasts or premature interruption of
the forecast supply, which may occur when relying on a single specific model.

To evaluate its performance in terms of forecasting capability, the SUIHTER model has joined the European COVID-19
Forecast Hub (European Covid-19 Forecast Hub, 2021) since April 2021. The aim of this collaborative project is to provide
decisionmakers and the general public with reliable estimates of the near-term future evolution of the COVID-19 pandemic in
European countries by collecting forecasts from different models into an ensemble. A quantitative comparison based on
suitable ranking indicators has been carried out, showing that the SUIHTERmodel can produce reliable short term forecast on
different epidemic quantities of interest.

Moreover, different analyses have been carried out to evaluate at which extent the extended SUIHTER model accounting
for variants and vaccination is able to better identify specific epidemic trends (such as new outbreak associated to the growth
of a more transmissible virus variant) and how it can be used to quantify the effect of the vaccination campaign (including the
effect of the vaccination rate).

The paper is organized as follows: in Section 2 the SUIHTERmodel including the vaccine compartment is introduced, and it
is later extended in Section 2.1 to also account for an emerging variant. The strategy used to model multiple scenarios
characterized by different NPIs is presented in Section 3. The numerical results are presented and discussed in Section 4,
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including a quantitative validation of the forecasting capabilities of the model and different analyses highlighting the role of
the different new features of the model (including new variants and vaccination effects). Finally, in Section 5, we draw our
conclusions and we discuss model's limitations and some possible future developments.
2. Mathematical model

The design of the original SUIHTER model, introduced in (Parolini et al., 2021a), relied on the criterion that the epide-
miological compartments should match as close as possible the data that were daily made available by the Italian authorities.
In the present work, we propose an extended version of the SUIHTER model which is able to exploit a set of additional data
that started to be released at a later stage (including, e.g., the number of new admissions in hospitals and ICUs, as well as data
classified by age and clinical status). Moreover, the new model accounts for the role of the vaccination campaign that is
ongoing in most countries since the end of 2020, by adding three additional compartments collecting vaccinated individuals.

The extended SUIHTER model is defined by the following system of ordinary differential equations:

_SðtÞ ¼ �SðtÞ bU UðtÞ
N

� v1;

_UðtÞ ¼ ðSðtÞ þ s1 V1ðtÞ þ s2 V2ðtÞÞ
bU UðtÞ

N
� ðdþ rUÞUðtÞ;

_IðtÞ ¼ dUðtÞ � ðrI þ uI þ gIÞ IðtÞ;
_HðtÞ ¼ uI IðtÞ � ðrH þ uH þ gHÞHðtÞ þ qT TðtÞ;
_TðtÞ ¼ uH HðtÞ � ðqT þ gT Þ TðtÞ;
_EðtÞ ¼ gI IðtÞ þ gH HðtÞ þ gT TðtÞ;
_RðtÞ ¼ rU UðtÞ þ rI IðtÞ þ rH HðtÞ � vR;

_V1ðtÞ ¼ v1 � v2 � s1 V1ðtÞ
bU UðtÞ

N
;

_V2ðtÞ ¼ v2 � s2 V2ðtÞ
bU UðtÞ

N
;

_VRðtÞ ¼ vR;

(1)

endowed with suitable initial conditions, where the model compartments are defined as follows (see Fig. 1):

C S: number of susceptible (uninfected) individuals;
C U: number of undetected (both asymptomatic and symptomatic) infected individuals;
C I: number of infected individuals isolated at home;
C H: number of infected hospitalized individuals;
C T: number of infected threatened individuals hosted in ICUs;
C E: number of extinct individuals;
Fig. 1. Interactions among compartments in the extended SUIHTER model.

47



N. Parolini, L. Dede', G. Ardenghi et al. Infectious Disease Modelling 7 (2022) 45e63
C R: number of recovered individuals;
C V1: number of individuals partially vaccinated with only one dose;
C V2: number of individuals fully vaccinated with two doses;
C VR: number of recovered individuals who have been vaccinated,

and N ¼ S þ U þ I þ H þ T þ E þ R þ V1 þ V2 þ VR denotes the total population (assumed constant). Here, t measures time in
days, compartments report figures in units. The system is numerically solved with the explicit fourth-order Runge-Kutta
scheme with time step Dt ¼ 1 day.

The quantity v1 denotes the number of susceptible individuals per daywho acquire immunity from the first dose. Similarly,
v2 denotes the number of individuals per day which are already vaccinated with one dose and acquire a stronger immunity by
the second dose. Moreover, vR denotes the number of recovered individuals per day who receive a vaccine dose. The number
of first doses w1(t) and second doses w2(t) administrated in Italy are daily recorded on the Italian Government repository
(Commissario straordinario per l’emergenza Covid-19, 2021). The quantity w1 does not include the number of vaccine doses
wR(t) administrated to (detected) recovered individuals. Unfortunately, these vaccination rates cannot be directly used in
system (1) since during the whole epidemic period a great number of cases were not identified so that many recovered
individuals have been vaccinated as if they were still susceptible. The number of individuals who recovered before (or
without) being detected can be defined as RU(t) ¼ R(t) � RD(t), where

RDðtÞ ¼
Zt

t0

ðrI IðtÞ þ rHHðtÞÞ dt;

is the number of individuals who recovered after having been detected and can be obtained by postprocessing the computed

compartments I and H. The indicator RU can be used to estimate the rate of vaccine doses that have been actually adminis-
trated to susceptible individuals, by assuming that recovered individuals who were not formerly detected have the same
probability of being vaccinated as susceptible individuals. Namely, the rate of first doses administrated to susceptible in-
dividuals are estimated as

v1ðtÞ ¼ w1ðt� timÞ
SðtÞ

SðtÞ þ RUðtÞ
;

where we have assumed that the time required to develop the immunity is tim ¼ 14 days. Similarly, the second doses

administrated to partially vaccinated individuals (V1) are only a fraction of the total number of second doses, therefore we get

v2ðtÞ ¼ w2ðt� timÞ
SðtÞ

SðtÞ þ RUðtÞ
:

Finally, the total number of doses per day that recovered individuals (either detected or undetected) receive is given by:

vRðtÞ ¼ wRðt� timÞ þw1ðt� timÞ
RUðtÞ

SðtÞ þ RUðtÞ
The model can be initialized at any time t0 prior to the start of the vaccination campaign (December 27, 2020 in Italy) by
using the data (for those compartments for which data are available, namely I,H, T, E), null initial values for V1 and V2, while, as
proposed in (Parolini et al., 2021b), the Undetected and Recovered compartments are initialized as

Rðt0Þ ¼
�

1
IFRðt0Þ

� 1
�
Eðt0Þ; Uðt0Þ ¼

�
CFRðt0 þ dÞ

IFRðt0Þ
� 1

�
ðIðt0Þ þ Hðt0Þ þ Tðt0ÞÞ;

where IFR(t) is the Infection Fatality Ratio, CFR(t) is the time-dependent Case Fatality Ratio and d ¼ 13 days denotes the
confirmation-to-death delay. In (Parolini et al., 2021b), we considered a constant IFR computed as theweighted average of the
age-specific IFR estimates weighted by the population age structure, under the assumption of equal attack rates across age-
groups, as proposed in (Brazeau et al., 2020). A better estimate of the reference IFR(t) at a specific time can be computed by
considering the variable percentage of each age-group among the total infected over time (data available on (Dati della
Sorveglianza integrata COVID-19 in Italia, 2021) since December 8, 2020), namely:

IFRðtÞ ¼
Xm

i¼1
qiðtÞ IFRi;

where IFRi denotes the infection fatality ratio for age-group i and qi(t) is the percentage of infected at time t belonging to age-
group i. This correctionmay be particularly relevant when using themodel in a time frame inwhich the vaccination campaign
is not homogeneous across age-groups, so that the percentage of different age-groups among the total infected may vary
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significantly. A further improved estimate for IFR(t) can be obtained considering the vaccine effectiveness in reducing the
mortality for different age-groups, namely:

IFRðtÞ ¼
XM

i¼1
qiðtÞ ½ð1� vi;1ðtÞ� vi;2ðtÞÞþ vi;1ðtÞmi;1 þ vi;2ðtÞmi;2� IFRi; (2)

where vi,1(t) and vi,2(t) denote the fraction of individuals in age-group iwho received one or two doses, respectively, at time t,
while mi,1 and mi,2 denote the reduced probability to die for an isolated infected individual of age-group i who is vaccinated
(with one or two doses, respectively) w.r.t. an unvaccinated isolated infected individual in the same age-group.

The time-history of the CFR(t) since the beginning of the epidemic is shown in Fig. 2 (left) where the high values during the
first epidemic wave clearly indicates the strong underreporting. In Fig. 2 (right), CFR(t) and reference IFR(t) estimatedwith (2)
(which can be computed based on data available from December 8, 2020) are compared. The effect of the vaccination
campaign during year 2021 is clearly visible in the reduction of the reference IFR(t).

Model (1) depends on the following parameters (rates):

C bU denotes the transmission rate due to contacts between susceptible and undetected infected individuals;
C uI denotes the rate at which I-individuals develop clinically relevant symptoms, while uH denotes the rate at which H-

individuals develop life-threatening symptoms;
C qT denotes the rate at which T-individuals improve their health conditions and return to the less critical H

compartment;
C d denotes the rate of detection, relative to undetected infected individuals;
C rU, rI and rH denote the rate of recovery for three classes (U, I and H, respectively) of infected subjects;
C gI, gH and gT denote the mortality rates for the individuals isolated at home, hospitalized and hosted in ICUs,

respectively.

Some of the parameters in system (1) are evaluated starting from the available data. In particular, the worsening rates uI

and uH are obtained directly from the new hospitalization and the new admission data as follows

uIðtÞ ¼
Ĥ
þðtÞ
ÎðtÞ

; uHðtÞ ¼
T̂
þðtÞ
ĤðtÞ

; (3)

where Ĥ are the daily data provided by the Dipartimento della Protezione Civile (DPC) for hospitalized individuals, while Ĥ
þ

and T̂
þ
are the daily data provided by Istituto Superiore di Sanit�a (ISS) (Dati della Sorveglianza integrata COVID-19 in Italia,

2021) and DPC (Presidenza del Consiglio dei Ministri, 2021) respectively for new hospitalizations and admissions in ICUs. To
reduce the effects of the weekly oscillation associated to irregular data reporting, the values of uI and uH used in (1) are the 1-
week moving averages of the time series estimated in (3).

The detection rate d is also estimated by assuming that at each time the probability pD of being detected can be related to
the ratio between the infection fatality rate and the time-dependent case fatality rate, namely

pDðtÞ ¼
IFRðtÞ

CFRðt þ dÞ:
Assuming a mean detection time tD ¼ 8 days, the detection rate is then computed at each time t as
Fig. 2. Time-evolution of the reference CFR(t) since the beginning of the epidemic (left) and a comparison between CFR(t) and IFR(t) accounting for age-
dependent attack rates and vaccine efficacy in preventing death since December 2020 (right).
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dðtÞ ¼ pDðtÞ
tD

:

To avoid spurious oscillations, the time-history of pD(t) is also smoothed taking its weekly moving average. The time-
history of the probability pD of being detected at time t, based on the estimate of IFR(t) given in (2), is displayed in Fig. 3
where we can notice that the at mid July 2021, when the lowest incidence was achieved, the probability of being detected
was almost 100%.

Given an estimate of d, if we assume that all Undetected individuals can leave the compartment only by either being
detected or recovering, we can also estimate the Undetected recovery rate rU as

rUðtÞ ¼
1� tD dðtÞ

tR
;

where tR is the mean recovery time for Undetected, which is estimated through the calibration process.
At this stage, the effect of the vaccine in the model is given by the susceptibility of vaccinated individuals with respect to

non-vaccinated individuals, given by the parameters s1 ¼ 0.287 and s2 ¼ 0.115 for partially and completely vaccinated in-
dividuals, respectively. These values are computed based on the estimates reported in (Istituto Superiore di Sanit�a, 2021a)
about vaccine efficacy against infection.

The remaining parameters of the model need to be calibrated to reproduce the epidemic history. Some parameters can be
considered as constant in time throughout the pandemic, while we prescribe the other ones are piecewise constant over n
time phases [tk, tkþ1], k ¼ 1,…, n of prescribed duration (typically equal to 15 days) in which the simulation time windows [t0,
tF] is subdivided. The parameters chosen to be constant in time are: tR, gI and gT, while bU,k, rI,k, rH,k, qT,k and gH,k, k¼ 1,…, n are
constant on the k-th phase [tk, tkþ1]. All these parameters are calibrated through a two-step calibration: a first estimate is
obtained with a least square procedure, this estimate is then used as initial condition for aMonte Carlo Markov Chain (MCMC)
procedure. The prior is a uniform distribution around the least square estimate with ±30% of the parameter value interval. For
a more detailed description of the calibration process, see (Parolini et al., 2021a).

2.1. Accounting for virus variants

With the appearance of virus variants featuring a higher transmission rate than the wild type virus (Campbell et al., 2021),
predicting the evolution of the epidemic curve has become more challenging. As a matter of fact, when a more aggressive
variant starts spreading, the epidemiological characteristic could change, even drastically. When using the model for fore-
casting the future evolution of the epidemic in the presence of an emerging variant, it is necessary to include in model (1) the
effects of variants. In particular, the model is modified by splitting the Undetected compartment, in which the contagion
occurs, into two new compartments:

C Ub: number of Undetected (both asymptomatic and symptomatic) infected with the base variant, that is the variant
being dominant at the initial time of the simulation,

C Uv: number of Undetected (both asymptomatic and symptomatic) infected with the variant of concern that is spreading
faster among the population.
Fig. 3. Time-evolution of the probability pD of being detected.
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Susceptible individuals have different probabilities of being infected by people belonging to each of these two com-
partments, typically the new variant has a higher transmission rate than the base one. For example the Delta variant has been
estimated to be around 50%more transmissible than the Alpha one (Scientific Advisory Group for Emergencies, 2021), and, in
turn, it was previously estimated to be 38% more transmissible than the wild type virus (Tanaka et al., 2021).

The extended SUIHTER model with variants reads:

_SðtÞ ¼ �SðtÞ b
b
U UbðtÞ þ bvU UvðtÞ

N
� v1;

_U
bðtÞ ¼

�
SðtÞ þ sb1 V1ðtÞ þ sb2 V2ðtÞ

� bbU UbðtÞ
N

� ðdþ rUÞUbðtÞ;

_U
vðtÞ ¼ �

SðtÞ þ sv1 V1ðtÞ þ sv2 V2ðtÞ
� bvU UvðtÞ

N
� ðdþ rUÞUvðtÞ;

_IðtÞ ¼ d ðUbðtÞ þ UvðtÞÞ � ðrI þ ~uI þ ~gIÞ IðtÞ;
_HðtÞ ¼ ~uI IðtÞ � ðrH þ ~uH þ gHÞHðtÞ þ qT TðtÞ;
_TðtÞ ¼ ~uH HðtÞ � ðqT þ gT Þ TðtÞ;
_EðtÞ ¼ ~gI IðtÞ þ gH HðtÞ þ gT TðtÞ;
_RðtÞ ¼ rU ðUbðtÞ þ UvðtÞÞ þ rI IðtÞ þ rH HðtÞ � vR;

_V1ðtÞ ¼ v1 � v2 � sb1 V1
bbU UbðtÞ

N
� sv1 V1

bvU UvðtÞ
N

;

_V2ðtÞ ¼ v2 � sb2 V2
bbU UbðtÞ

N
� sv2 V2

bvU UvðtÞ
N

;

_VRðtÞ ¼ vR;

(4)

endowed with suitable initial conditions. After calibrating model (1) on a time range ½t0; tf0�, model (4) can be initialized at
time tf0 using the parameters of the last phase of the calibration to forecast the epidemic evolution in the presence of an
emergent variant. Notice that, when a single virus type is considered, we have Uv(t) ¼ 0 and Ub(t) ¼ U(t), thus model (4)
reduces to model (1).

Model (4) is initialized at time tf0 with data from DPC if available. In order to allow the model to account for possible errors
in reported data, we introduced a Gaussian error ε � Nð0; s2kÞ on these values, where sk is the standard deviation of theweekly
average data for the compartment k during the whole calibration period. The other compartments, i.e. Susceptible, Undetected
base, Undetected variant, Recovered, Vaccinated with one dose, Vaccinated with two doses, are initialized with the values at tf0
obtained from thande simulation with model (1).

The initial values for Ub and Uv are obtained by splitting the value of U by accounting for the prevalence of the rising variant
pv given by surveillance reports of ISS (Istituto Superiore di Sanit�a, 2021b). The transmission rate for the base virus bbU is the
last calibrated parameter bU at time tf0, suitably rescaled to take into account the fact that the fraction pv of infected individuals
already contracted the virus variant. Given the increase in transmissibility fv of the spreading variant, we obtain the following
estimates for the transmission rates at time tf0

bbUðtf0Þ ¼
bUðtf0Þ

1þ ðfv � 1Þpv; (5)

bv ðtf Þ ¼ f bb ðtf Þ: (6)
U 0 v U 0
The coefficients sb1 and sb2 accounts for the susceptibility of vaccinated individuals w.r.t. the base version of the virus and
their value are the same as s1 and s2 introduced in Section 1. The coefficients sv1 ¼ 0:5 and sv2 ¼ 0:22 (England, 1000England)
instead are modified to take into account the reduced vaccines effectiveness against virus variants. The parameters ~uI , ~uH and
~gI are modified parameters to take into account the vaccines effect in reducing the severity of the disease and the mortality.
Based on the vaccines surveillance report of Italian (Istituto Superiore di Sanit�a, 2021a) and UK governments, we defined the
coefficients h1, h2, t1, t2, m1, and m2.

C h1 ¼ 0.655 and h2 ¼ 0.417 denote the probabilities of a isolated infected individual who is vaccinated (with one or two
doses, respectively) to be hospitalized w.r.t. an unvaccinated isolated infected individual;

C t1 ¼ 0.63 and t2 ¼ 0.6 denote the probabilities of a hospitalized individual who is vaccinated (with one or two doses,
respectively) to be admitted in ICU w.r.t. an unvaccinated hospitalized individual;
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C m1 ¼0.724 andm2¼ 0.35 denote the probabilities of an isolated infected individual who is vaccinated (with one or two
doses, respectively) to die w.r.t. an unvaccinated isolated infected individual.

Since in model (4), the infected compartments (U, I,H and T) collect both vaccinated and unvaccinated individuals, in order
to quantify the effect of the vaccination on the worsening and mortality parameters (uI, uH and gI), we first estimate the
partition of new positives coming from either S, V1, or V2 and entering either Ub or Uv compartments as follows

ubSðtÞ ¼
SðtÞ
NbðtÞ

; ub1ðtÞ ¼
sb1V1ðtÞ
NbðtÞ

; ub2ðtÞ ¼
sb2V2ðtÞ
NbðtÞ

; (7)

uvSðtÞ ¼
SðtÞ
NvðtÞ; uv1ðtÞ ¼

sv1V1ðtÞ
NvðtÞ ; uv2ðtÞ ¼

sv2V2ðtÞ
NvðtÞ ; (8)

where Nb(t) ¼ S(t) þ s1V1(t) þ s2V2(t) and NbðtÞ ¼ SðtÞþ sv1V1ðtÞþ sv2V2ðtÞ.
The modified worsening and mortality parameters ~uI , ~uH and ~gI including the vaccine effects are then obtained as

~uIðtÞ ¼ uIðtf0Þ
usðtÞ þ h1u1ðtÞ þ h2u2ðtÞ

usðtf0Þ þ h1u1ðtf0Þ þ h2u2ðtf0Þ
; t > tf0; (9)

f usðtÞ þ t1u1ðtÞ þ t2u2ðtÞ f
~uHðtÞ ¼ uHðt0Þ
usðtf0Þ þ t1u1ðtf0Þ þ t2u2ðtf0Þ

; t > t0; (10)

f usðtÞ þm1u1ðtÞ þm2u2ðtÞ f
~gIðtÞ ¼ gIðt0Þ
usðtf0Þ þm1u1ðtf0Þ þm2u2ðtf0Þ

; t > t0: (11)

where the total partition (including both base and variant contributions) of new positives coming from S, V1, or V2 is given by
uSðtÞ ¼
ubSðtÞNbðtÞUbðtÞ þ uvSðtÞfvNvðtÞUvðtÞ

NbðtÞUbðtÞ þ NvðtÞfvUvðtÞ

u1ðtÞ¼
ub1ðtÞNbðtÞUbðtÞ þ uv1ðtÞfvNvðtÞUvðtÞ

NbðtÞUbðtÞ þ NvðtÞfvUvðtÞ

u2ðtÞ ¼
ub2ðtÞNbðtÞUbðtÞ þ uv2ðtÞfvNvðtÞUvðtÞ

NbðtÞUbðtÞ þ NvðtÞfvUvðtÞ
:

(12)
We notice that, when new variants are not spreading, then the latter equations simply reduce to Eq. (7). Moreover, we
point out that the rescaling in (12) using the partition at the initial time tf0 of the forecast simulation has been used to account
for the fact that the values uIðtf0Þ, uHðtf0Þ and gIðtf0Þ have been obtained calibrating the model on data which were already
affected by the vaccination campaign (until time tf0).

Although more complex models could be devised to deal with the vaccination, for instance by splitting each infected
compartment (U, I, H, T) in vaccinated and unvaccinated, we preferred to keep themodel as simple as possible, but still able to
account for both the reduced susceptibility of vaccinated individuals, as well as the lower risk of hospitalization and death
through relations (9)e(11). Moreover, in the present model we are neglecting the waning immunity over time, which has
been recently highlighted in several studies (Cohn et al., 2021; Goldberg et al., 2021; Tartof et al., 2021), since the time-frame
considered in the simulations (see Section 4) are limited to the Summer 2021.

3. Forecast scenarios

The COVID-19 pandemic put a heavy burden on the Italian health system and caused a huge loss of human lives. During
2020 and early 2021, the Italian Government imposed restrictive measures to the population, in attempts to restrain and to
contain the epidemic waves. Different NPIs have been applied since the beginning of the COVID-19 epidemic, ranging from
basic containment measures (such as the mandatory use of masks) to drastic ones (full lockdown). All these interventions
modified the transmissibility of the virus by reducing the number of contacts between people or the probability to contagion
associated to a contact. Within epidemiological models, the effect of these NPIs can therefore be accounted for by acting on
the transmission rates bfb;vgU . We included in themodel the possibility of considering different future scenarios, corresponding
to different possible NPIs or social events that may also lead to a change in the transmission rate (such as, for instance, school
re-openings or holidays). We introduced a transmission coefficient t that measures the change of the transmission rate at a
given time due to imposition of restrictions (NPIs) or other social events and occurrences (schools opening, holidays, etc.). The
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coefficient t is computed for the scenario to simulate, as well for the actual conditions in the last phase of the calibration; see
A. The transmission rates bfb;vgU are indeed modulated by considering the change of the restriction coefficient as follows

b
fb;vg
U ðtÞ ¼ tðtÞ

tðtf0Þ
b
fb;vg
U ðtf0Þ; t > tf0: (13)
We remark that the transmission coefficient t is used in a relative fashion for predictions, i.e. changes in NPIs and social
activities are encapsulated in the term tðtÞ

tðtf0Þ
that modulates the predicted transmission rate. Several scenarios can be

considered, each one with its own restriction coefficient. Novel restrictions soon to be implemented can be referred to
population belonging to a specific age group (e.g. distance learning for schools) or to specific places (e.g. restaurants and bars
closed). In order to take into account the heterogeneity of the measures we consider the interactions between people of
different age groups in different contexts andmodify them according to the scenario considered. Starting from thematrices of
average number of contacts by age and context obtained from (Mossong et al., 2008), we associate a level of risk to each age
group and context of exposure. SUIHTER is a homogeneous model and does not explicitly accounts for age or exposition
context structure, thus the restriction coefficient is obtained from the restriction matrix by a weighted mean on the age
groups with weights given by the amount of population in each group. Examples of scenario analyses using this approach to
quantify the effect of different NPIs have already been presented and discussed in (Parolini et al., 2021b). The procedure for
computing the restriction coefficient t for a given NPI scenario is described Appendix A. Additional details will be available in
a forthcoming paper.

4. Results and discussion

In this section we present the results obtained with the proposed model. In particular, in Section 4.1, we first provide a
validation of the forecast capabilities of the model by comparing with other single model forecasts as well as ensemble
forecasts. The role of the new features introduced in the model, namely variants and vaccines, are investigated in the nu-
merical results presented in Sections 4.2 and 4.3, respectively. Finally, in Section 4.4, the results of a scenario analysis related
to the introduction of Green Pass restrictions are presented and discussed.

4.1. Forecast assessment

The extended SUIHTER model (4) with variants has been included in the European COVID-19 Forecast Hub (European
Covid-19 Forecast Hub, 2021) which collects short-term forecasts of COVID-19 cases (i.e. new contagions) and deaths
across Europe, obtained by a multitude of infectious disease modelling teams, under the coordination of the European Centre
for Disease Prevention and Control.

Every week, the different teams upload their forecasts of the cumulative value of incidence cases and incidence deaths per
week for one or several European countries, with a forecast horizon between 1 and 4 weeks. The forecasts are supplied in an
interval format, including for each quantity point evaluation and confidence interval in 23 quantiles ranging from 0.01 to 0.99.

For each forecast the absolute error (AE) and the weighted interval score (WIS), for both cases and deaths, are computed.
The absolute error is simply the absolute value of the difference between the forecast and the measured data. The weighted
interval score is a proper scoring rule proposed in (Bracher et al., 2021a) to evaluate and score forecasts in an interval format.
It is a generalization of the absolute error and has three components: dispersion, overprediction and underprediction.
Dispersion is aweighted average of thewidth of prediction intervals for different levels of uncertainty, the higher the level the
higher the weight. The overprediction and underprediction are penalties added whenever an observation falls outside a
central prediction interval. The penalties depend on how far the observation fall from the interval and the nominal level of the
interval. For more details on these metrics, see (Cramer et al., 2021).

The number of forecasts supplied by the different teams may be different since some of them joined the project later than
others, or forecasts in certain weeks for some models may be missing. In order to allow a fair comparison, in (Cramer et al.,
2021) a relative measure of forecast performance, called relative WIS (relWIS), was introduced, taking into account that
different teams may not cover the same forecast targets. The relative WIS is obtained performing a pairwise comparison
tournament in which a score ratio between each pair of models is computed on the set of shared targets. The relative WIS is
then obtained as the geometric mean of these ratios and normalized with the corresponding quantity computed for a
reference baseline model. The forecast of the baseline model is defined with median given by the data measured in the most
recent week, with uncertainty around the median based on changes in the past of the time series (see (Cramer et al., 2021)).

Models with smaller values of relWIS are thus performing better and a value below one means that the model performs
better than the baseline model. The relWIS indicator can then be used to score different models.

The same procedure can be used to define a second scoring rule, the relative absolute error (relAE), in which the pairwise
comparison tournament is performed based on the absolute error instead of the weighted interval score (see (Cramer et al.,
2021)).
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Table 1
Relative absolute error and relative weighted interval score for the SUIHTER, baseline and ensemble forecast (with 1-week horizon) over the entire forecast
history (32 weeks from May 2, 2021 to December 11, 2021).

Model Cases Deaths

relAE relWIS relAE relWIS

EuroCOVIDhub-baseline 1 1 1 1
EuroCOVIDhub-ensemble 0.59 0.55 0.48 0.42
SUIHTER 0.31 0.47 0.29 0.36

Table 2
Relative absolute error and relative weighted interval score for the SUIHTER and ensemble forecast (with 1 to 4-week horizons) over the last 10 weeks (from
August 28, 2021 to October 30, 2021).

Model Horizon Cases Deaths

relAE relWIS relAE relWIS

EuroCOVIDhub-ensemble 1 0.72 0.69 0.78 0.40
2 1.02 0.93 0.59 0.32
3 1.16 1.00 0.52 0.30
4 1.35 1.15 0.64 0.38

SUIHTER 1 0.62 0.60 0.73 0.36
2 0.93 0.89 0.49 0.27
3 1.13 1.21 0.48 0.28
4 1.21 1.39 0.49 0.31

N. Parolini, L. Dede', G. Ardenghi et al. Infectious Disease Modelling 7 (2022) 45e63
The 1-week horizon forecast obtained with the SUIHTER model has been uploaded weekly on the European COVID-19
Forecast Hub (European Covid-19 Forecast Hub, 2021) since April 2021. The performance metrics over the entire forecast
history (32 weeks from May 2, 2021 to December 11, 2021) are reported in Table 1.

The table reports a comparison between the 1-week forecast obtained with the SUIHTER model, the baseline forecast and
the EuroCOVIDhub-ensemble forecast obtained using all the forecast upload on the hub for each target. By definition, the
baseline forecast has a relWIS and relAE equal to one. As discussed in the introduction, ensemble forecasts are usually ex-
pected to be more accurate and robust than those produced by single models. The results presented in Table 1 clearly show
that the SUIHTERmodel is able to produce short-term forecasts which outperforms the ensemble forecasts for both cases and
deaths. Moreover, the results reported for Italy on (European Covid-19 Forecast Hub, 2021) show that, according to the relWIS
scoring indicator, the SUIHTERmodel ranked second on cases forecast (behind theMUNI-ARIMAmodel and second on deaths
forecast (behind the LANL-Growth Rate model) among 24 models.

For the 10 forecasts in the time range from August 28, 2021 to November 2, 2021, multiple horizon forecasts (ranging from
1 to 4weeks) have also been evaluated and comparedwith the EuroCOVIDhub-ensemble. The results are presented in Table
2. As expected both the relative weighted interval score and the relative absolute error increase as longer time horizon are
considered. It is worth noticing that the good performances of the SUIHTERmodel are confirmed for short term predictions of
cases forecast (up 2-weeks horizons), where the SUIHTER results are found to be better than both the baseline and ensemble
forecasts in terms of absolute error and weighted interval score. Moreover, superior performances of the SUIHTER model for
deaths forecast are found even for longer time horizons (up to 4 weeks), where very low values of both relAE and relWIS are
obtained.

In Figs. 4 and 5 we report the forecasts with the predicted median value and 95% prediction interval along with the actual
data of cases and deaths, respectively. The dates on the x-axis denote the target end date, i.e. the last day of theweek for which
the forecast has been made. We can note that for the cases forecast the data fall within the prediction intervals (with only 2
exceptions for longer-time forecasts). Concerning deaths forecasts, themodel fails to supply a reliable forecast in one case (see
Fig. 5 (f)). However, we should point out that the reported data for the week ending on October 23, 2021 were biased by the
large number of deaths (28) not previously reported that have been added that week to correct the data.

Remark 1. The forecasts produced with the extended SUIHTER model (4) and submitted to the European COVID-19 Forecast Hub
were obtained considering (i) only the Alpha variant fromMay 2, 2021 to June 12, 2021, (ii) both the Alpha and Delta variants from
June 13, 2021 to August 6, 2021, (iii) only the Delta variant from August 7, 2021 to December 11, 2021.
4.2. Effect of new variants

During the spreading of a new variant it is fundamental to consider that it is way more transmissible than the prevalent
one. For this reasonwe tried to predict the evolution of the epidemic when the Delta variant was spreading in Italy in the time
period between July 5, 2021 and August 5, 2021, eventually becoming the prevalent one. We considered a 50% increase in
transmissibility (fv ¼ 1.5) for the Delta variant w.r.t. the Alpha variant (Scientific Advisory Group for Emergencies, 2021). We
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Fig. 4. Weekly new cases forecasts computed with the SUIHTER model on a 4-weeks horizon with 95% confidence interval along with actual data provided by
DPC.
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performed two simulations, the first one with model (4) described in section 2.1, initialized with the Delta prevalence data
provided by the ISS surveillance reports (Istituto Superiore di Sanit�a, 2021b), namely pv ¼ 0.31. The second simulation was
made with pv ¼ 0, thus assuming that no new variant was spreading. In this case the calibrated transmission rate bU is not
rescaled but used as is. The model parameters have been calibrated taking into account data available from February 20, 2021
to July 5, 2021. The two simulations are shown in Fig. 6 where it is possible to appreciate that considering the Delta variant the
model was able to predict the rise of the epidemic curve occurred in July, which would not be predicted if the role of the
variant would have been neglected.

Note that this case features the effect of summer holidays with people gathering in tourism regions and contracting the
virus. This was accounted for in the simulations by introducing a summer scenario as detailed in Section 3, resulting in a 42.7%
increase on bU, i.e. such that tðtÞ

tðtf0Þ
¼ 1:427 in Eq. (13). Should we have neglected the spreading of the Delta variant (see Fig. 6),

the summer re-opening scenario alone would not be enough to justify the number of cases observed. Similarly, we simulated
for the same period, with the same set of parameters, but without accounting for the summer scenario, thus considering only
the effect of the Delta variant. The result is shown in Fig. 7 alongside with the simulation including both the Delta variant and
the summer scenario. Also in this case, the Delta variant alone could notmake the epidemic curve rise as it has been observed,
thus implying that the phenomenon witnessed in July was very likely due to a combination of the spreading of the Delta
variant as well as the growth in the number social contacts due to summer vacations.

4.3. Effects of the vaccination

The evolution of the COVID-19 epidemic in 2021 has been strongly influenced by the introduction of effective vaccines. In
the present sectionwe present a set of numerical results to illustrate how the extended SUIHTERmodel introduced in Section
2 can improve the forecast quality. To show the effect of the presence of vaccinated compartments, we simulated the trend of
the epidemic starting from May 22, 2021 and lasting for two months until July 22, 2021. The parameters are obtained by
calibrating the SUIHTER model on the DPC data from February 20, 2021 to May 22, 2021 including the vaccinated com-
partments too. Then, the model has been recalibrated over the same period of time, on the same data, but neglecting the
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Fig. 5. Deaths forecasts computed with the SUIHTER model on a 4-weeks horizon with 95% confidence interval along with actual data provided by DPC.

Fig. 6. Simulations performed from 5 July to 5 August with (red) and without (blue) taking into account the spreading of the highly infectious Delta variant.
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Fig. 7. Simulations performed from 5 July to 5 August with (red) and without (green) taking into account the summer openings resulting in an increased number
of social contacts.

Fig. 8. Comparison between the models with vaccines (red) and without vaccines (blue in a forecast analysis covering the time interval between May 22, 2021
and July 22, 2021.
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presence of vaccinated compartments (setting to zero both v1 and v2 as well as the initial values of V1 and V2). The results are
reported in Fig. 8. Even though the two simulations yield almost the same values for most of the compartments, the one
without vaccines produces a higher number of deaths. This is due to the fact that it includes the observed effect of vaccines
directly in the calibrated transmission rates so obtaining a similar result on positive cases but it does not consider the
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Fig. 9. Simulations of the epidemic during vaccination campaign with what-if scenarios neglecting the presence of vaccinated compartments.
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mortality reduction given by vaccines, which is instead considered in model (4). Furthermore, model (4) can give us an
estimation of how positives split into unvaccinated, partially vaccinated with one dose or fully vaccinated with second dose.

To show the effect of the vaccines on the model and estimate how the epidemic would have evolved without the vaccines,
we compared three simulations obtained with the same set of parameters calibrated from January 10, 2021 to October 10,
2021. The first simulation is obtained with model (1) described in Section 2, used also for calibration, and thus taking into
account vaccination compartments and reproduces faithfully the epidemic history. The simulation is then repeated with the
same set of parameters removing the vaccinated compartments. In Fig. 9, we see that the epidemic curves have an uncon-
trolled exponential increase from the beginning of July, corresponding to summer openings and spreading of the Delta
variant. Obviously this scenario in unrealistic as some containment measures would have been applied before reaching a
critical level of new cases and hospital beds occupancy. The third analyzed scenario (in green in Fig. 9) considers the
imposition of automatic restrictions when critical incidence levels are reached. Three thresholds are set, based on the
guidelines prescribed by the Italian government.1 The first restrictions are the ones imposed in yellow zones and are applied
once the weekly incidence is above 50 cases per 100 000 population. When the incidence reaches 150 cases per 100 000
population, orange zone restrictions are applied and finally red zone restrictions are imposed once the limit of 250 cases per
100 000 population has been exceeded. Even though in this scenario the number of cases has been greatly reduced, the
containment measures are not enough to prevent a big epidemic wave in the summer. Analyzing these scenarios we can
speculate on how things would have gonewithout the vaccination campaign and on howmany human lives have been saved.
4.4. Scenario analysis: adoption of Green Pass

Since August 6, 2021, people are required to hold the so-called Green Pass for certain activities, a document that certifies to
have been vaccinated, having been tested negative in the previous 48 h, or recovered from COVID-19. The Green Pass started
to be required for accessing indoor restaurants, long-distance travel, and cultural and leisure activities. Starting September 1,
2021, the Green Pass has been also required to all the personnel working at school (from grade 1 to universities) as well as to
university students. More recently, on October 15, 2021, this rule has been extended to all working categories. The objective of
1 Decreto Legge 23 luglio 2021, n. 105, https://www.gazzettaufficiale.it/eli/id/2021/09/30/21A05687/sg.
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Fig. 10. Scenario analysis comparing the effect of different levels of imposition of Green Pass in schools.
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the measure is clearly to control the spread of the epidemic and to encourage a further extension of the vaccination campaign
to those people which are not yet vaccinated.

In this context, the SUIHTER model has been applied to estimate the effect of the introduction of the Green Pass at school,
with the two-fold objectives:

1. Estimating whether the school re-opening in mid September 2021 would have produced a new epidemic wave (as
happened in September 2020);

2. Quantifying at which extent a strict control on the Green Pass certificationwould have been critical to guarantee a control
of the epidemic.

A scenario analysis has been carried out calibrating the SUIHTER model with the data available until September 10, 2021
and performing a two-months forecast until November 10. In order to account for the effect of the adoption of the Green Pass
in schools, we computed two different contact matrices for each scenario: one for the vaccinated people (assuming all the
people having the Green Pass from vaccination only) and the other for susceptible individuals. From these matrices, we
obtained two different restriction coefficients, leading to two bU rates, one for the compartment S, accounting for unvacci-
nated people, and thus without Green Pass and one for V1 and V2. We considered three different scenarios with increased bU
due to school re-openings, assuming the Green Pass is made compulsory for high schools and university students and staff:

1. the Green Pass is strictly enforced so that unvaccinated individuals are not entering schools and universities;
2. the Green Pass is mildly enforced resulting in 50% of unvaccinated individuals still entering schools and universities;
3. there are no controls on Green Pass so that everyone can enter schools and universities, even though they are not

vaccinated.

The results are shown in Fig.10. In none of the three cases analyzed the increase of bU is enough to produce a new epidemic
wave. However, there is a significant difference on the number of positive cases. This difference may have been important in
view of the new epidemic wave that occurred in Italy (as in the rest of Europe during the Fall 2021, since it allowed to start
from a lower incidence level the new exponential growth phase.
5. Conclusions

In this paper, we have presented a new epidemiological model derived from the original SUIHTER model introduced in
(Parolini et al., 2021a) for the analysis of the COVID-19 epidemic in Italy. The range of applicability of the model has been
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extended to cover new aspects of the epidemic that became indispensable to be considered for an accurate description of the
phenomenon, namely the emergence of new virus variants and the role of the vaccination campaign.

In particular, the newmodel accounts for the presence of different virus variants to describe the transition phases inwhich
the wild-type virus (or the variant which is predominant at a given time) is replaced by a new variant characterized by a
higher transmission rate. This feature has to be accounted for in order to capture variant outbreaks, such as the one observed
in Italy in Summer 2021 when the Delta variant increased its prevalence from 22% to 95% in one month.

The variant model can also be combined with the vaccine model by considering different transmission rate reduction
factors (which define to the efficacy of the vaccination in reducing the transmission) for wild type virus or specific variants.

The reduced transmission is not the only way vaccines contributes in the model. The worsening rates also account for the
increasing number of vaccinated individuals, by including the consequent reduced probability of developing a serious disease
once vaccinated.

The role of the vaccination in controlling the evolution of the epidemic in Italy during the Spring and Summer 2021 has
been quantified through awhat-if scenario analysis. The results indicate that, without the vaccination campaign, the Summer
outbreak (mostly due to the Delta variant) would have stroke Italy with an unprecedented force and, even with strict NPIs
restrictions, a new epidemic wave, even stronger than the previous ones, would have likely occurred.

The reliability of the results produced by the SUIHTER model, in particular concerning forecast analysis, have also been
investigated. The competitive performances of the SUIHTERmodel in short-term forecasting have been quantitatively verified
by comparison with other single model forecasts that joined the European COVID-19 Forecast Hub project (European Covid-
19 Forecast Hub, 2021). These results highlight the capability of our model to supply reliable near-future forecasts of cases up
to twoweeks horizon), while longer-term horizon scenarios (up to four weeks) can be successfully covered when considering
forecasts of deaths, thanks to the rich compartmental structure of the SUIHTER model which includes the number of in-
dividuals who are hospitalized and hosted in ICUs.

The limitation of the original SUIHTER model, which are shared by several models involving a large number of com-
partments, were discussed in details in (Parolini et al., 2021a). Most of them, in particular the homogeneous nature of the
model which does not include spatial heterogeneity neither age stratification, also apply to the extension presented in the
present paper. The range of applicability of the new model is broader since it allows to simulate and forecast the epidemic
evolution in the presence of virus variants and vaccines. The proposed approach to deal with emerging virus variants is rather
general and may applied to any new variant of concern for which an estimate on the increased transmission rate (relative to
previous variants) is available. The vaccination model can be further extended to include the reduction of the vaccine efficacy
over time and the additional booster dose that should be able to guarantee a longer vaccine immunity (Bar-On et al., 2021).
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A. Determining the transmission coefficient for NPI scenarios

The transmission coefficient t introduced in Section 3 (Eq. (13)) encapsulates in a single scalar value the effect of different
NPIs (distancing measures, restriction on leisure activities, distance learning) or social occurrences and events (school
opening and closing, school breaks and holidays) that may be accounted in forecasting the evolution of the epidemics. Since
the NPIs are often involving specific age-groups e like schools activities e as well as specific contexts of exposition, we
evaluate the transmission coefficient t based on a multi-age multi-group characterization of the contact matrix. We consider
the POLYMOD contact matrices for Italy proposed in (Mossong et al., 2008), counting the average number of contacts that
individuals from different age-groups (0e4, 5e9,10e14,15e19, 20e24, 25e29, 30e34, 35e39, 40e44, 45e49, 50e54, 55e59,
60e64, 65e69, 70þ for a total of Na ¼ 15 groups) have in the different contexts: home, school, work, transport, leisure and
other. We remark that, with respect to the standard table, we use data on the composition of households obtained from ISTAT
(for 2019) (ISTAT, 2021), to further split the contacts taking place at home into a family context (in which contacts between
familymembers are counted) and a house context (inwhich contacts occurring at home among individuals who are not family
members are counted); see (Dede’ et al., 2021). This has the advantage to account for NIPs limiting visits of non-family
members to other households, a restriction that was often enforced in Italy during 2020 and early 2021. As example, we
limit here to report in Table 3 the average number of contacts by age group in the Nc ¼ 7 contexts of exposition.
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Table 3
Average number of contacts in Italy by age group and social context of exposition.

Ages Total Family Home School Work Transport Leisure Other

0e4 16.54 2.30 2.19 5.27 0.00 0.98 3.06 2.75
5e9 20.49 2.27 2.34 8.87 0.00 1.12 4.53 1.37
10e14 27.38 2.21 2.22 11.98 0.05 1.35 5.62 3.80
15e19 29.28 2.05 2.54 13.22 0.05 1.74 6.83 2.87
20e24 22.15 1.49 2.02 1.17 4.49 0.96 7.23 4.80
25e29 21.00 1.04 2.43 2.23 5.21 1.13 6.30 2.66
30e34 18.03 1.26 2.29 0.85 3.92 0.76 5.24 3.72
35e39 21.25 1.75 2.63 0.68 7.78 1.05 3.92 3.45
40e44 22.35 1.63 2.25 2.53 7.00 0.67 4.48 3.79
45e49 19.27 1.50 1.49 2.61 8.24 0.88 1.93 2.64
50e54 22.30 1.38 1.37 5.54 8.05 0.52 2.02 3.41
55e59 18.27 1.11 1.77 1.41 4.60 0.68 3.62 5.06
60e64 18.43 0.91 2.37 1.07 6.05 0.87 3.53 3.63
65e69 12.74 0.71 2.39 0.55 0.48 0.95 3.33 4.33
70þ 10.55 0.71 2.53 0.06 1.04 0.22 4.22 1.77
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Let us indicate by ckij the (average) number of contacts of individuals in age group i with individuals in age group j in the
context of exposition k, where i, j ¼ 1, …, Na ¼ 15 and k ¼ 1, …, Nc ¼ 7. Then, Table 3 represents ~cki ¼ PNa

j¼1c
k
ij, i.e. the average

number of contacts of individuals in age group i with other individuals in the context of exposition k. The transmission
coefficient from individuals in the age group i to other individuals in context of exposition k reads

~tki ¼ ~cki p
k
i ;

for i ¼ 1, …, Na ¼ 15 and k ¼ 1, …, Nc ¼ 7, where pki is the probability that a contact of a infectious individual in age group i is
able to expose any other individual in context k. Specifically, we determine pki as

pki ¼ ra;i f
k
i

�
rkc;i; s

k
i

�
;

where: ra,i is the transmission risk associated to age group i (ra,i ¼ 0.34 for i ¼ 1, 2, 3, ra,i ¼ 1 for i ¼ 4, …, 13, and ra,i ¼ 1.47 for
i¼ 1, 2, 3 (ComitatoTecnico Scientifico, 2021); rkc;i is the risk of transmission associated to individuals in the age group iwithin
the exposition context k (for example contacts occurring in context k ¼ 1 “family” are riskier than those occurring in k ¼ 4
“work”); ski 2½0;1� accounts for NPIs and social occurrences for individuals in age group i and in context k (for example, during
school holidays s3i ¼ 0 for all i ¼ 1, …, Na ¼ 15, instead if NPIs prescribe students in high schools attending only at 50% in
presence, then s3i ¼ 0:5); the functions f ki combine the coefficients rkc;i and ski based on age group i and context k. These
functions are designed to account for different subcontexts of expositionwithin a given k, like it occurs for k¼ 6 (“leisure”) in
restaurants, bars, sports, etc… or for k ¼ 4 (“work”) for different working environments as healthcare, manufacturing, etc …
The function f ki is also used to account for the mismatch between age groups and grades in school or other contexts; for
example, NIPs regarding schools are prescribed in Italy based on grades, not age. For more details on the definition of the
transmission coefficient ~tki we refer the interested reader to (Dede’ et al., 2021).

Finally, the transmission coefficient t used in Eq. (13) is obtained as

t ¼
XNc

k¼1

XNa

i¼1
2i ~t

k
i ;

where 2i is the percentage of Italian population within the age group i (ISTAT, 2021).
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