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Abstract: Phthalates are a group of chemicals used in a multitude of important industrial products
(e.g., medical devices, children’s toys, and food packages), mainly as plasticizers to improve me-
chanical properties such as flexibility, transparency, durability, and longevity of polyvinyl chloride
(PVC). The wide occurrence of phthalates in many consumer products, including foods (e.g., bottled
water, soft drinks, wine, milk, and meat) brings that most people are exposed to phthalates every
day, which raises some concerns. Adverse health outcomes from phthalates exposure have been
associated with endocrine disruption, deformities in the human reproductive system, increased risk
of preterm birth, carcinogen exposure, among others. Apprehension related to the health risks and
ubiquitous incidence of phthalates in foods inspires the development of reliable analytical approaches
that allow their detection and quantification at trace levels. The purpose of the current review is to
provide information related to the presence of phthalates in the food chain, highlighting the health
risks associated with their exposure. Moreover, an overview of emerging extraction procedures and
high-resolution analytical approaches for a comprehensive quantification of phthalates is presented.
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1. Introduction

Phthalates, generally known as phthalate esters (PAEs, Supplementary Material), are
a family of chemicals used industrially in a wide variety of consumer products, primarily
as plasticizers (e.g., substances added to plastics to increase their flexibility, longevity,
durability, and transparency), is durable, flexible polyvinyl chloride (PVC) applications
and polyvinyl acetate, largely for the construction, automotive, wire and cable sectors, in
addition to non-PVC applications such as rubber products, sealants, adhesives, and coat-
ings. Generally, they are organized into two main distinct groups: higher-molecular weight
(HMW) phthalates (chemical backbone with 7–13 carbon atoms), and lower-molecular
weight (LMW) phthalates (chemical backbone with 3–6 carbon atoms), with differentiated
applications, legal requirements, and toxicological properties. While the LMW phthalates,
such as butyl benzyl phthalate (BBP), di-n-butyl phthalate (DBP), and diethyl phthalate
(DEP), are mainly used as solvents in different consumer and personal care products, HMW
phthalates including di-isononyl phthalate (DiNP), and di-2-ethylhexyl phthalate (DEHP),
are primarily used as plasticizers to soften PVC products. The structures, common uses,
and health effects of phthalates commonly monitored in foods and packaging materials are
summarized in Table 1.
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Table 1. The most widely used PAEs and their metabolites [1–6].

Phthalate Chemical
Structure CF a/MW b Common Uses Effects Metabolites c

Butyl benzyl
phthalate (BBP)
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Besides being easily released into the environment, they are rapidly biodegraded and
photodegraded, leading to a lower persistence.

The most common exposure routes of phthalates are: (i) personal care products (e.g.,
shampoos, deodorants, soaps, perfumes, nail polish, and body lotions); (ii) food contact
plastics (e.g., bottled water and food transporting containers) [7]; (iii) sucking or chewing
soft plastic/vinyl products (e.g., plasticizers used in children’s products) [5]; (iv) medical
devices (e.g., catheters and blood bags). In addition, phthalates can be found in wall
coverings, coated textiles, sports equipment, footwear, electrical cables, and house flooring.
Figure 1 summarizes the distribution of the application of plasticizers in Europe in 2020.
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Figure 1. Average distribution of plasticizers use in Europe (2020). Other*: surface coatings, rubber compounds, medical
applications, and elastomers (Source: 2020 IHS and European Plasticizers estimates).

From the described potential routes, food and beverage constitute, undoubtedly,
the most important source of human exposure to phthalates [8,9]. Particularly, bottled
water, due to its high and regular consumption, has drawn considerable attention. Besides
the polyethylene terephthalate (PET), the most common polymer used in bottled water
packaging is reported to be free from phthalates, as few studies have shown the presence
of phthalates in bottled water packed in PET containers [10–12]. Dairy products, infant
formula, meat, baked goods, fats and oils, and fast foods are major contributors to dietary
phthalates exposure. Therefore, the monitoring exposure of chemicals from packaging
materials into foods has become a fundamental part of ensuring food safety and protecting
human health.

The phthalates are naturally released into the environment through their production,
use, and/or disposal, and therefore can be absorbed by the human body by different routes
(skin absorption, inhalation, and ingestion), as seen in Figure 2 [3]. Few studies have
examined the health effects of phthalates on humans. In lab animals, phthalate exposure
has been found to be associated with numerous reproductive health and developmental
problems such as the early onset of puberty, interference with the male reproductive tract
development, and with the natural functioning of hormonal systems.
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According to Bennett et al. [13], exposure from the prenatal stage of childhood to some
phthalates discloses an unacceptably high risk of future developing neurologic disorders
(e.g., autism and intellectual disabilities). In addition, the exposition to phthalates might
cause a reduction in testosterone levels in adolescent males and a decreased sperm count
in adult males. When absorbed as androgen blocking chemicals and weak endocrine
disruptors, phthalates can suppress the hormones involved in male sexual development
and can either mimic or block male and female hormones. In Europe [14], most phthalates
are banned in plastic food contact materials for fatty food, including dairy products and
infant food.

In the following sections, we provide descriptive information related to the pres-
ence of phthalates in the food chain, highlighting the health risks associated with their
exposure. An overview of the emerging extraction procedures and analytical approaches
for a comprehensive quantification of phthalates is also discussed. For this purpose, the
keywords “phthalates”, “PAEs”, “environmental”, “food”, “healthy risks”, “extraction
technique”, and “analytical platforms” were researched in Pubmed, Scopus, Web of Science,
and Google Scholar over the period of 2015 to 2021. It should be pointed out that other
references were included outside of the established period due to their relevance to this
review.

2. Phthalates Background

As previously mentioned, PAEs are a class of synthetic chemicals mainly obtained
from petroleum and added to an enormous number of everyday products. PAEs, linear and
branched, are added to improve the properties of plastic materials (e.g., softness, flexibility,
transparency, durability, and longevity) [15]. Lately, the cosmetic industry has added
them to fragrances, perfumes, and especially lotions, nail polish, hair spray, and soap, as
a vehicle for these preparations, providing the feeling that their effects last longer [16].
However, such applicability raises a current concern in the European Union due to the
possibility of adverse effects when they are added to toys and their handling by young
children due to their tendency to put them in the mouth [17]. Bekö et al. [18] analyzed the
total daily intakes (TDI) of DEP, DnBP, DiBP, BBzP, and DEHP based on metabolites levels
in the urine of 431 Danish children between 3 and 6 years of age. The results obtained
showed that DEHP had the highest TDI (median: 4.42 µg/d/kg-bw) and BBzP the lowest
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(median: 0.49 µg/d/kg-bw). For DEP, DnBP, and DiBP, exposures to air and dust in the
indoor environment accounted for approximately 100%, 15%, and 50% of the total intake,
respectively, with dermal absorption from the gas-phase being the major exposure pathway.
More than 90% of the TDI of BBzP and DEHP result from other sources such as indoor air
and dust [18]. Based on these, health care organizations have begun investigating their
risks to human health.

2.1. Human Exposure Routes

Due to the widespread use of these types of compounds and their immense ap-
plications, there is a potential risk, for both children and adults, of being exposed to
phthalates. Phthalates are relatively released from the products into the environment due
to the weak chemical bond between phthalates and other chemicals due to their dipolar
interactions [19].

Maternal diet and food preparation practices, such as maternal prenatal high-fat milk
consumption was associated with higher benzyl butyl (BBz) and DEHP [20]. The presence
of these endocrine disruptors, DBP, DEP, dioctyl phthalate (DOP), was found in vegetable
cans, baby bottles, microwaveable containers [5,21], and the well-known plastic beverage
bottles [7]. As mentioned, the simple contact of a child’s mouth and saliva with their toys
can contract PAEs and fastly converted them into respective metabolites [22]. The phthalate
plasticizer DEP is illegally used in clouding agents and used in foods and beverages [23].

Non-dietary exposure is another source, where they can be emitted from materials
into the air and easily partitioned into the indoor and outdoor environment. Different
phthalates have been detected, such as DEHP, diisobutyl phthalate (DiBP), and di-n-butyl
phthalate (DnBP) in soil dust [24]. The drawback with phthalates is that once they are
already in the indoor environment, their elimination becomes difficult. It must be taken
into account that people that have spent a lot of time indoors, for several years [25], leading
to health effects [26,27]. Phthalates have been detected in a variety of medical devices,
such as intravenous tubing, umbilical artery catheters, blood bags and infusion tubing,
enteral nutrition feeding bags, nasogastric tubes, among others. Tubing is normally used
in cardiopulmonary bypass procedures, in extracorporeal membrane oxygenation, during
hemodialysis, and during peritoneal dialysis. Their flexibility can make medical devices
easier to use and less likely to cause damage to tissues, and they are also more comfortable
for patients [28–30].

2.2. Healthy Risks

There are numerous studies where it has been shown that phthalates can alter the
endocrine system and induce a plethora of effects such as carcinogens, teratogens, and
mutagens [31,32].

Many phthalates, even at a low concentration, are known endocrine disruptors
(Figure 3) that have an influence on the development of organisms and their reproductive
system [33]. For instance, PAEs have been recognized to induce changes in oxidative
stress, disturb sex hormone balances, which can decrease fertility and increase the rate of
reproductive defects and malformations [33–36]. Interference with testosterone activity,
especially early in life, can have irreversible effects on male reproduction [37]. Evidence of
the existence of infertility in male animals has been found in terms of a drastic decrease in
sperm and some other malformations related to the reproductive system [28].
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Phthalate exposure in humans has been linked to metabolic changes, such as increasing
obesity problems (metabolic syndrome) [38] and the inherent chronic illnesses associated
with diabetic episodes [6,39]. Other studies related to the toxicity of phthalates monoesters
have been demonstrated possible alterations in the gene expression of antioxidant enzymes,
thyroid endocrine, and balance of sex hormone disrupting their effects [33,40,41].

Some other studies have concluded there is a relationship between phthalate accu-
mulation (DEHP, BBP, and DBP) and breast cancer [42]. Furthermore, it was suspected
that the interference with the cell cycle is related to genes and, therefore, to cancer pro-
liferation. Other studies revealed that exposure to phthalates increases tumor activity in
terms of activation of different signaling processes [43]. Taking all these into account, our
review provides strong evidence that the presence of phthalates plays an important role in
the proliferation of different cancer stem cells by interference in the associated signaling
processes [2,42,43].

Several mechanisms have been proposed to explain the increase in blood pressure in
pregnancy due to exposure to phthalates, namely an increase in oxidative stress, a decrease
in serum thyroxin, and an increase in inflammatory cytokines, which could promote
gestational hypertension or preeclampsia development [3,44–47]. Su et al. [48] assessed
the relationship between phthalate exposure and atherosclerosis in young populations.
The data obtained showed that DEHP and DBP have a significant correlation with carotid
intima-media thickness, an indicator of atherosclerosis development. Regarding human
in vitro studies, the data obtained demonstrated that MEHP leads to apoptosis and may be
promoted by increased autophagosomes mediated by ROS in a mitochondrial-dependent
manner in human endothelial cells [3]. Sicińska [1], also in vitro, assessed the effects of
DBP, BBP, and their respective metabolites upon the induction of apoptosis in human
peripheral blood mononuclear cells. The data obtained showed an increase in calcium
levels and caspases activity and a decrease in transmembrane mitochondrial potential,
which indicates significant pro-apoptotic alterations [1]. Another correlation between PAEs
and the development of some cardiometabolic risks, including hypertension, heart disease,
stroke, and atherosclerosis, has been extensively discussed by Mariana and Cairrao [3].

2.3. Phthalates Regulation

Due to the generalized exposure of phthalates, as mentioned above, in a great diversity
of products, both at a domestic and industrial level, the different international health
agencies had to regulate the levels of these chemical contaminants.

In the United States, the Environmental Protection Agency (EPA) regulated the pres-
ence of eight compounds, namely DBP, DiBP, BBP, di-n-pentyl phthalate (DnPP), DEHP,
di-n-octyl phthalate (DnOP), DiNP, and diisodecyl phthalate (DiDP) in consumers [37,38],
restricting the daily intake of all of them to 20 µg/g of body weight [49], and also regulated
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their presence as excipients in products, namely DBP [50]. In 2019, the European Food
Safety Agency (EFSA) established TDI of 0.05 mg/kg for DBP, BzBP, DEHP, and DiNP [2,51].
The European Union (EU) established the Directive 2011/65/EU ‘RoHS Recast’, which
was amended recently to include the presence of phthalates as BBP, DBP, DEHP, DiDP, and
DiNP used as additives or polymer production aids in domestic devices and toys, in order
to control their use [52]. This was recently modified with the Directive (EU) 2015/863,
where the presence of four phthalates (BBP, DBP, DEHP, DiDP, and DiNP) was limited
to be used as additives or coadjutants for the production of polymers. They are listed
as restricted substances in Annex II of the Directive 2011/65/EU (RoHS 2) since they
are used in domestic devices or toys. Regarding the EU, member states intend to apply
their adopted provisions starting on 22 July 2019. The highlights of this Directive state
that the maximum concentration values tolerated by weight in homogeneous materials
is 0.1% [53]. In China, DMP, DEP, and DnOP have been listed as priority pollutants by
the China National Environmental Monitoring Center [54]. BBP is controlled in Canada
according to the Canada Consumer Products Safety Act: Phthalates Regulations. These
regulations restrict the usage of phthalates, including BBP, in soft vinyl children’s toys and
child care articles to not more than 1000 mg/kg of DEHP, DBP, or BBP [55]. Australia and
Japan have an important directive for phthalate regulations [2,56]. Moreover, the USA,
Australia, New Zealand, and Japan have established a DEHP maximum level in drinking
water at 6, 9, 10, and 100 µg/L, respectively [57]. Many other regulations and guidelines
related to soil, water, sediment, and sludge have been compiled by Net et al. [58].

3. Occurrence of Phthalates
3.1. Environmental

PAEs are a group of chemicals that are widely used as plasticizers [59–61]. In this sense,
they became common environmental contaminants since they tend to migrate into the
environment during the disposal of the PAE-containing product [62]. As a result, there is a
risk of exposure of phthalates in humans, leading to their accumulation in several matrices
such as soil, seawater, sediments, sludge, surface waters, among others [60,62–67]. Thus,
the monitoring of their levels is imperative due to the possible implications for human
health. These compounds are usually extracted from the matrices using several extraction
procedures being the most common the liquid-liquid extraction (LLE) [68], ultrasound-
assisted extraction (UAE) [61], solid-phase microextraction (SPME) [60,69], followed by
gas chromatography coupled with mass spectrometry (GC-MS). GC-MS analysis is still the
analytical approach of choice in many cases for target and non-target analysis of these target
compounds [70]. Table 2 summarizes the recent investigations related to the determination
of PAEs in environmental and in food samples. Moreover, Ning et al. [67] used accelerated
solvent extraction (ASE) to determine the levels of phthalates (DMP, DEP, DBP, and DEHP)
in mine tailings. The obtained limit of detection (LOD) and limit of quantitation (LOQ)
values were in the range of 1.2–2.0 µg/kg and 3.0–4.6 µg/kg, respectively, while recoveries
ranged from 71% to 115%. Zhang et al. [64] analyzed the seamount area of the Tropical
Western Pacific Ocean, and the concentrations ranged from 12.13 ng/L to 60.69 ng/L.
The recoveries obtained were ranged between 93% to 97%. Among the 14 PAEs detected,
DBP, DEHP, and DiBP were also dominant in the surface seawater samples. Jebara and
collaborators [63] monitored the presence of PAEs in seawater, sediment, seagrass, and fish
from several sites along the Tunisian coast. The levels ranged from 5 to 763 µg/g, with the
higher levels being obtained in fish and sediments, while seagrass presenting the lower
levels. Another study with sediments was performed by Lee et al. [62] that determined the
concentrations of PAEs in sediment samples collected along the Korean coast. They verified
that the higher amounts were obtained for harbors, suggesting that they were contaminated
hotspots. The average levels ranged from 24.3 to 3700 ng/g, while for non-phthalate
plasticizers varied from 0.32 to 92.2 ng/g. Furthermore, Hu et al. [71] also analyzed PAEs
sediment samples collected from several China bays, and the detected PAEs were in the
range of 654 to 2603 ng/g. With regard to soil samples, Rodrígues-Ramos et al. [72] used
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several nanomaterials as an alternative method to extract the PAEs from soil samples and,
by using the 1,3,5-benzenetricarboxylate metal-organic framework, the best results were
obtained. The LODs obtained varied from 0.14 to 2.7 µg/kg of dry weight. Moreover,
Hu et al. [73] determined the amount of PAEs and phthalate monoesters in soil using ASE as
the extraction technique, and the LODs were verified to be in the range of 0.59 to 10.08 ng/g.
Wei et al. [74] determined the PAEs levels in samples from soil and vegetables, and the
levels varied from 5.42 to 1580 ng/g and from 10.9 to 16,400 ng/g dry weight, respectively.
In addition, for surface waters, Liu et al. [75] studied the impact of microplastics and levels
of PAEs in surface seawater by solid-phase extraction (SPE) followed by GC-MS, and the
concentrations obtained varied from 129.96 ng/L to 921.22 ng/L, while recovery ranged
from 84 to 101%. Nagorka and Koschorreck [76] investigated phthalates in suspended
particulate matter (SPM) samples from 2000 until 2017. The LODs obtained varied from
0.33 to 43 ng/g with good recoveries rates. Regarding water samples and sediments, Chen
and collaborators [68] using UAE coupled with GC-MS, found that the levels varied from
2.65–39.31 µg/L in water, 1.97–34.10 µg/g in SPM, and 0.93–34.70 µg/g in sediments.

3.2. Foods

Food contaminants can also occur with the migration of PAEs from packaging to food.
In that sense, Arfaeinia et al. [77] investigated the levels of these target compounds in acidic
juices. The results showed that DEHP and DnBP were the major compounds identified with
the median values of 8.1 and 6.8 µg/L, 10.5 and 7.2 µg/L, and 9.8 and 6.7 µg/L, in lemon
juice, vinegar, and verjuice, respectively. In addition, the results showed that the migration
level is higher in PET containers than in glass containers, which indicates that the migra-
tion from the wall of the plastic containers to its contents was accelerated at high storage
temperatures [77]. On the other hand, the presence of PAEs in glass containers could result
from the other processing steps (e.g., storage tanks, filtration steps, and cap-sealing). Re-
garding baby foods, several authors have investigated many PAEs. Notardonato et al. [78]
used an ultrasound-vortex-assisted liquid-liquid microextraction (UVA-DLLME) to ex-
tract the amount of PAEs and pesticides in baby food, and DEP, DBP, and DEHP were
quantified in almost all the samples at levels ranging between 1 and 40 ng/g. In addition,
Socas-Rodríguez et al. [79] determined the levels of 14 PAEs using the quick, easy, cheap,
effective, rugged, and safe (QuEChERS) combined with gas chromatography-tandem mass
spectrometry (GC-MS/MS). BBP, bis(2-n-butoxyethyl) phthalate (DBEP), DEHA, DEP, and
diisodecyl phthalate (DiDP) were found in abundance in the samples particularly DEHA,
with concentrations in the range from 0.50 to 8.71 µg/kg, while DPP was only found
in plastic-packed products. Furthermore, Pang et al. [80] used the magnetic solid-phase
extraction(MSPE) to extract 15 PAEs from beverages, and from these 8 PAEs were detected
milk-containing beverages, including dimethyl phthalate (DMP), DEP, bis(4-methyl-2-
pentyl) phthalate (BMPP), di-n-amyl phthalate (DPP), dihexyl phthalate (DHXP), BBP,
dicyclohexyl phthalate (DCHP), and DnOP. The DEHP concentration in the fresh-made
milk tea was 1.69 µg/L. Concerning beverages in plastic containers, Notardonato et al. [61]
analyzed the migration of PAEs from plastic containers to beverages using a solvent-based
dispersive liquid–liquid microextraction (SB-DLLME) combined with GC-MS. After the
release simulation, DiBP, DBP, DHEP, and DnOP were found at very low concentrations
(below 1.2 ng/mL) in two water samples from (sport) bottles. Huang et al. [81] also studied
PAEs from bottled waters using a hollow fiber-SPME (HF-SPME). After the characterization
of fibers, they were applied to the analysis of real samples, with values ranging from 2.42 to
185.95 µg/L for DEP and di(methoxyethyl) phthalate (DMEP), respectively. Additionally,
Abtahi et al. [59] also analyzed bottled and tap waters for PAEs content, and the average
levels of DEHP, BBP, DBP, DEP, DMP, and DnOP were found to be 0.46 µg/L in surface
waters, 0.10 µg/L in groundwaters, 0.17 µg/L in surface waters, 0.18 µg/L in bottled
water, 0.52 µg/L in bottled water, and 0.01 µg/L in groundwaters, respectively. Panio and
collaborators [82] compared two extraction procedures, namely direct immersion SPME
and ultrasonic-assisted solvent extraction (UASE), to determine the levels of PAEs in fish
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fillets. Using UASE, the values of PAEs ranged from 4.3 to 62.2 µg/kg, and for SPME
ranged from 1.3 to 37.4 µg/kg. In addition, the study revealed that SPME provided better
control of background contamination than UASE. Ibarra et al. [70] studied the amount
of PAEs migration from plastic containers to several classes of foodstuff and beverages
using purge and trap coupled to GC–MS. The data showed that migration occurs to a
larger extent in tenax than in isooctane. Li et al. [83] also used vortex-assisted liquid–liquid
microextraction (VALLME) to analyze PAEs in several food-contacted plastics, and their
values ranged from 0.92 to 5.67 µg/g. In addition, Perestrelo et al. [60] used the SPME
extraction procedure to analyze food-contacted plastics in which the amounts detected
ranged from 1.0 to 2.8 µg/L for BBP and DOP, respectively. Diamantidou and collabora-
tors [84] determined the levels of PAEs in 45 samples from Greek grape marc spirits using
the ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-
MS/MS) method. The amounts in samples ranged from 1.25 to 113,220 µg/L for dipentyl
phthalate (DPeP) and DEHP, respectively. On the other hand, Otoukesh et al. [85] used a
graphene oxide/layered double hydroxides@sulfonated polyaniline (GO/LDHs@SPAN)
to analyze four PAEs in drinking water and distilled herbal beverages. The data obtained
showed that GO/LDHs@SPAN is more efficient than the SPE in extracting PAEs from
drinking water and distilled herbal beverages. Notardonato et al. [86] analyzed honey
samples to determine the levels of plastic residues by dispersive liquid–liquid microex-
traction (DLLME) and GC-MS. The lowest concentration was obtained for DnOP with
5.1 ng/g, while the highest was for bisphenol A (BP-A) with 996.8 ng/g. Using honey
samples, Notardonato et al. [87] also developed and validated a UVA-DLLME combined
with GC-MS to determine PAEs in six honey samples. The highest amount was obtained
for DEP with 5.05 µg/g while the lowest for di-isobutyl phthalate (DiBP) with 0.01 µg/g.
Dobaradaran et al. [88] analyzed bottled milk samples to determine the levels of PAEs. The
study allowed the quantification of five PAEs, which exhibited the highest amounts for
DnOP (1261.10 ng/L), while for DMP (2.66 ng/L), lower amounts were obtained. Korkmaz
and collaborators [89] also analyzed milk products (36 yogurt and 24 ayran samples) for
the presence of PAEs. The lowest and the highest amounts of DBP, DEHP, and BBP in
yogurt samples were in the range of 6–229 µg/kg, 24–122 µg/kg, 22–63 µg/kg, respectively.
Furthermore, the lowest and highest PAEs amounts in ayran samples were 38–59 µg/kg for
DBP and 26–81 µg/kg for DEHP. Concerning olive oil, Pereira et al. [90] analyzed olive oil
samples from the European market. All samples analyzed had an average concentration of
1.31 and 1.52 mg/kg for DEHP and with the highest concentration of 7.52 and 6.29 mg/kg
for DiNP, respectively. Moreover, Kiralan et al. [91] analyzed different types of olive oils for
PAEs levels, and DEHP was the abundant PAEs in all olive oil samples ranging from below
the LOQ (0.23 mg/kg) to 602 mg/kg. In all analyzed samples, the levels of DiNP and
diisodecyl phthalate (DiDP) were lower than their LOQ. In addition, Perestrelo et al. [69]
evaluated the occurrence of PAEs in 20 Portuguese wines by SPME and GC-MS. The values
obtained ranged from 0.71 to 23.2 µg/L for DBP. The results also indicated that the PAE
concentration depends on the wine quality as well as the aging process, as the choice of the
raw material is a critical condition. Aghaziarati at al. [92] developed an electrodeposited
terephthalic acid-layered double hydroxide (Cu-Cr) nanosheet coating for the extraction
of PAEs from alcoholic beverages. The results confirmed the presence of DMP, DBP, di-
amyl phthalate (DAP), DEHP in alcoholic beverages. Mirzajani et al. [93] developed and
characterize a metal-organic framework-deep eutectic solvents/molecularly imprinted
polymers (MOF-DES/MIPs) for the detection of PAEs in yogurt, water and soybean oil
samples. Upon validation, the levels of PAEs were determined and ranged from 0.05 to
0.18 µg/L, while recoveries were between 96% and 100%.
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Table 2. Analytical approaches used for determination of phthalates esters (PAEs) in environmental and food samples.

Target Analytes Matrices
(Amount)

Extraction Technique
(Conditions)

Analytical
Tool/Column Method Performance Ref.

Environmental

DMP, DEP, DBP, and DEHP Mine tailings (5 g) ASE (2 × DCM)
GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (µg/kg) 1.2–2
[67]LOQ (µg/kg) 3.0–4.6

RSD (%) <7
Rec. (%) 71–115

DMP, DEP, DiPrP, DnPrP,
DiBP, DBP, DPP, DiHP, BBP,
DCHP, DPhP, DEHP, DOP,
and DDP

Seawater (2 L) LLE (2 × 40 mL DCM)
GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/mL) 0.07–0.32
[64]LOQ -

RSD (%) <10
Rec. (%) 93–97

DMP, DEP, DiPrP, DBP, DiBP,
BBP, DPhP, DCHP, DHepP,
and DEHP

Seawater
(500 mL),
Sediments (5 g),
Seagrass (0.2 g),
and Fish (0.2 g)

LLE (30 mL HEX:ACET,
1:1 v/v), SPE (5 g
Floridil, and 60 mL
Et2O:HEX, 1:1 v/v)

GC-MS/SPB-
5MS (30 m ×
0.25 mm i.d. ×
0.25 µm)

LOD (ng/Kg) 5–763
[63]LOQ -

RSD (%) <10
Rec. (%) 79–110

DMP, DEP, DAIP, DiPrP,
DnPrP, DiBP, DnBP, DnPeP,
BBzP, DCHP, DnHxP, DiHpP,
DEHP, DnOP, DiNP, and DiDP

Sediments (5 g) LLE (3 × DCM), SPE
(clean-up, EtAc)

GC-MS/DB-5MS
(-)

LOD -
[62]LOQ (ng/g) 0.002–3.92

RSD (%) -
Rec. (%) 74–98

DMP, DEP, DiBP, DBP, BMPP,
DMEP, DNPP, DEEP, DNHP,
BBP, DEHP, DBEP, DCHP,
DnOP, and DNP

Sediments (2 g) LLE (10 mL HEX:EtAc,
1:1 v/v)

GC-MS/MS/HP-
35MS (30 m ×
0.25 mm i.d. ×
0.25 µm)

LOD (ng/mL) 0.14–0.88
[71]LOQ -

RSD (%) <15
Rec. (%) 71–102

DBP, BBP, DEHP, DnOP, DiNP,
and DiDP

Sediments (5.0 g) LLE (2 × 10 mL
ACET:HEX)

GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/mL) 0.12–1.04
[94]LOQ (ng/mL) 1.78–2.98

RSD (%) <9
Rec. (%) 81–105

DMP, DEP, DBP, BBP, DEHP,
and DOP

Sediments (2 g) LLE (DCM:ACET, 7:3
v/v)

GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (µg/L) 1.25–9.43
[95]LOQ (µg/L) 4.17–31.4

RSD (%) -
Rec. (%) 72–99

DMP, DEP, DiBP, DBP, DMEP,
DNPP, DeoEP, DNHP, DBEP,
BBzP, DMPP, DEHP, DCHO,
Dnop, and DnNP

Sediments (5 g)
and plants (5 g)

LLE (2 × HEX:ACET,
1:1 v/v) clean-up SPE
(500 mg Florisil,
ACET:HEX 1:4 v/v)

GC-
MS/SHR5XLB
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ppb) -
[96]LOQ (ppb) 2.8–21.2

RSD (%) -
Rec. (%) 79–137

DBP Sediments (2 g) UAE (3 × 45 mL DCM)
GC-FID/HP-5 (30
m × 0.25 mm i.d.
× 0.25 µm)

LOD -
[97]LOQ (ng/g) -

RSD (%) -
Rec. (%) -

DMP, DEP, DiBP, DBP, DMEP,
BMPP, DEEP, DPP, DnHP, BBP,
DBEP, DCHP, DEHP, DPhP,
DnOP, and DiNP

Sediments (0.5 g) UAE (1 × 2 mL DCM)
GC-MS/DB-5 (30
m × 0.25 mm i.d.
× 0.25 µm)

LOD (pg/g) 3–5
[98]LOQ -

RSD (%) <10
Rec. (%) 84–119

DMP, DEP, DBP, DEHP, and
DnOP

Sediments (3 g)
Microwave (110 ◦C),
clean-up (2 × 5 mL
HEX:TOL 4:1 v/v and 5
mL EtAC)

GC-FID/DB-5 (30
m × 0.32 mm ×
0.25 µm)

LOD (µg/g) 0.015
[65]LOQ -

RSD (%) -
Rec. (%) 85–103

DMP, DEP, DBP, BBP, DEHP,
and DnOP

Sediments (20 g)
and Water (500
mL)

LLE (30 mL DCM)
GC-MS/DB-5MS
(30 m × 0.25 mm
× 0.25 µm)

LOD (ng/mL)
[66]LOQ (ng/mL) 0.60–0.80

RSD (%) <10
Rec. (%) 77–110

DMP, DEP, DAIP, DiPrP,
DnPrP, DiBP, DBP, DnPeP,
BBzP, DCHP, DnHxP, DiHpP,
DEHP, DnOP, DiNP, and DiDP

Sludge (0.1 g)
LLE (10 mL DCM),
clean-up (SPE, 8 mL
EtAC)

GC-MS/MS/DB-
5MS (30 m × 0.25
mm i.d. × 0.25
µm)

LOD (ng/g) -
[99]LOQ (ng/g) 0.093–196

RSD (%) <21
Rec. (%) 68–103

DMEP, DPP, DBP, DCHP,
DnOP, DiNP, and DiDP Soil (1 g) MSPD (30 mg MOF, 5

mL MeCN)

UHPLC-
MS/MS/BEH
C18 (50 mm ×
2.1 mm i.d. ×
1.7 µm)

LOD (µg/kg) 0.042–0.80
[72]LOQ (µg/kg) 0.14–2.7

RSD (%) <20
Rec. (%) 70–115

DMP, DEP, DiBP, DBP, DMGP,
DEEP, DCHP, DMPP, BBP,
DNHP, HEHP, DBEP, DEHP,
and DnOP

Soil (1 g) ASE-in-line clean-up
(MeOH 0.01% FA)

UHPLC-
MS/MS/BEH
Phenyl (100 mm
× 2.1 mm i.d. ×
1.7 µm)

LOD (ng/g) 0.59–10.08
[73]LOQ (ng/g) 0.93–17.20

RSD (%) <15
Rec. (%) 69–131
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Table 2. Cont.

Target Analytes Matrices
(Amount)

Extraction Technique
(Conditions)

Analytical
Tool/Column Method Performance Ref.

DMP, DEP, DBP, BBP, DEHP,
and DnOP

Soil (5 g) and
Vegetables (1 g)

LLE (20 mL HEX:DCM,
1:1 v/v)

GC-MS/DB-5 MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/g) 0.1–0.5
[74]LOQ -

RSD (%) -
Rec. (%) 73–105

DMP, DEP, DBP, BBP, DEHP,
and DnOP

Surface water
(500 mL)

SPE (2 mL MeOH, 5 mL
EtAC)

GC-MS/DB-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/L) 0.61–2.96
[75]LOQ -

RSD (%) <9
Rec. (%) 84–101

DMP, DEP, DAP, DMEP, BBP,
DIBP, DBP, DBEP, DPP, DcHP,
DHP, DHpP, DEHP, DiNP,
DiDPP, DPHP, and DiUP

SPM (1 g)
LLE (15 mL
ACET:DCM:HEX,
20:20:60 v/v/v; 15 mL
HEX/ACET 30/70 v/v)

LC-MS/HSS T3
(75 mm × 2.1 mm
i.d. × 1.7 µm)

LOD (ng/g) 0.33–43
[76]LOQ (ng/g) 1–130

RSD (%) <20
Rec. (%) 91–117

DMP, DEP, DiBP, DBP, BBP,
and DEHP

Water (1L) and
SPM (2 L)

Soxhlet (40 mL
HEX:ACE, 8:2 v/v)

GC-MS/DB-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (µg/g) 0.1–0.5
[100]LOQ (µg/g) -

RSD (%) -
Rec. (%) 71–106

DMP, DEP, DiBP, DBP, DEHP,
and DOP

Water (1 mL),
SPM (1 g), and
Sediments (1 g)

SPE (500 mg C18, 10 mL
MeOH/DCM)

GC-MS/DB-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/L) 0.54–12.36
[68]LOQ (ng/L) -

RSD (%) <11
Rec. (%) 81–112

Foods

DMP, DEP, DBP, BBP, DEHP,
and DnOP

Acidic juice (5
mL)

LLE (20 mL ACET:HEX,
1:1 v/v) GC-MS (-)

LOD (ng/L) 0.001–0.002
[77]LOQ (ng/L) 0.004–0.008

RSD (%) -
Rec. (%) 72–111

DEP, DMP, BBP, DBP, DiBP,
DnOP, and DEHP

Animal tissue (1
g), Vegetable
powders (5 g),
and Water (0.5 L)

Soxhlet (ACET:HEX, 1:1
v/v) and SPE (15 mL
EtAC)

UPLC-TOF-
MS/BEH C18
column (100 mm
× 2.1 mm i.d. ×
1.7 µm)

LOD (ng/mL) 0.03–0.14
[101]LOQ (ng/mL) 0.1–0.50

RSD (%) -
Rec. (%) 60–120

DMP, DEP, DBP, iBcEP, BBP,
and DEHP

Baby foods
(0.1–0.2 g)

UVA-DLLME (250 µL
heptane, 0.1 g NaCl)

GC-MS/SE-54 (30
m × 0.25 mm i.d.
× 0.25 µm)

LOD (ng/g) 0.4–4.4
[78]LOQ (ng/g) 2.3–7.5

RSD (%) <10
Rec. (%) 91–110

BBP, DBEP, DBP, DCHP, DEEP,
DEP, DiDP, DiNP, DiPP,
DMEP, DMP, DnOP, DnPP,
DPP, and DEHA

Baby foods (10 g)

QuEChERS-dSPE (4 g
MgSO4, 1 g NaCl, 10
mL MeCN) clean-up
dSPE (1.2 g MgSO4, 200
mg PSA)

GC-MS/MS/HP-
5MS (15 m × 0.25
mm i.d. × 0.25
µm)

LOD (µg/kg)
[79]LOQ (µg/kg) 0.03–1.11

RSD (%) <19
Rec. (%) 70–120

DMP, DEP, DiBP, DBP, DMEP,
BMPP, DEEP, DPP, DHXP, BBP,
DBEP, DCHP, DEHP, DPhP,
and DnOP

Beverages (30
mL)

MSPE
(COF-(TpBD)/Fe3O4)

GC-MS/MS/Rxi-
5MS (30m × 0.25
µm i.d. × 0.5 µm)

LOD (µg /L) 0.005–2.748
[80]LOQ (µg /L) 0.018–9.15

RSD (%) <10
Rec. (%) 80–120

DPP, DMEP, DCHP, DnOP,
DiNP, DiDP, DiPP, DEEP,
DnPP, BBP, DEHA, and DBEP

Beverages (10
mL)

QuEChERS (4 g MgSO4,
1 g NaCl, 10 mL MeCN)
and clean-up dSPE (1.2
g MgSO4, 200 mg PSA)

GC-MS/MS/HP-
5MS (15 m × 0.25
mm i.d. × 0.25
µm)

LOD (µg /mL) -
[102]LOQ (µg /mL) 0.034–1.415

RSD (%) <20
Rec. (%) 75–120

DMP, DEP, DiBP, DBP, DEHP,
and DOP

Beverages plastic
containers (10
mL)

DLLME (40 µL HEX)
GC-MS/SE-54 (30
m × 0.25 mm i.d.
× 0.25 µm)

LOD (ng/mL) 0.1–1.2
[61]LOQ (ng/mL) 2.1–4.9

RSD (%) <13
Rec. (%) 76–102

DPRP, DEP, DBP, DiBP, DPP,
DMEP, BBP, DnHP, DEHP, and
DnOP

Bottled water (4
mL) HF-SPME (PSF fiber)

FE-GC-FID /DB-5
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (µg/L) 0.001–0.130
[81]LOQ -

RSD (%) <10
Rec. (%) 87–118

DEHP, BBP, DBP, DEP, DMP,
and DnOP

Bottled water (2
L) and Tap water
(2 L)

MSPE (C18, 3 mL
MeOH:DCM, 1:1 v/v)

GC-FID/CP-Sil 8
CB (30 m × 0.32
mm i.d. × 0.25
µm)

LOD (ng/L) 17–31
[59]LOQ -

RSD (%) <20
Rec. (%) 98–102

DMP, DEP, DPrP, DiBP, DBP,
DMEP, BMPP, DEEP, DPP,
DHP, BBP, DCHP, DEHP, and
DnOP

Brands (5 mL),
Rice (0.5 g),
Wheat (0.5 g), and
Sorghum (0.5 g)

VSLLME (500 µL C2Cl4,
125 µL Tween-20)
QuEChERS-dSPE (0.32
g NaCl, 0.70g MgSO4, 2
mL MeCN)

GC-MS/TG-5MS
(30m × 0.25 µm
× 0.25 µm)

LOD (µg/L) 0.05–2.50
[103]LOQ (µg/L) 0.125–5.00

RSD (%) <10
Rec. (%) 85–121
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Table 2. Cont.

Target Analytes Matrices
(Amount)

Extraction Technique
(Conditions)

Analytical
Tool/Column Method Performance Ref.

DEHP and DBP
Edible vegetable
oil (0.5 g)

LLE (2 × 2 mL MeCN +
100 µL Hex) and
clean-up SPE (5 mL
MeCN)

GC-MS/Rtx-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/mL) -
[104]LOQ -

RSD (%) -
Rec. (%) -

DMP, DEP, DBP, BBzP, and
DEHP

Fish fillets (2 g)
SPME (C18
fibers)/UASE
(Acet:HEX 1:1, v/v)

LC-
MS/MS/Accucore
C-18 aQ (100 mm
× 2.1 mm i.d. ×
2.6 mm)

LOD (µg/kg) 0.1–0.5
[82]LOQ (µg/kg) 0.3–1.5

RSD (%) <24
Rec. (%) -

DMP, DEP, DiBP, DBP, DEHP,
and DnOP

Food contacted
plastics (1 L) DLLME (200 µL HEX)

GC-MS/TRB-
Meta X5 (30 m ×
0.25 mm i.d. ×
0.25 µm)

LOD (ng/mL) 1.0–8.0
[105]LOQ (ng/mL) 5.0–14

RSD (%) <10
Rec. (%) 93–104

DEHP, DEP, DiBP, and DBP Food contact
plastics (2 g) LLE (20 mL MeCN)

GC-MS/ZB-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/mL) 1–13.3
[106]LOQ (ng/mL) 2.5–36.3

RSD (%) <16
Rec. (%) 83–116

DnPP, DAP, BBP, and DOP Food contact
plastics (0.8 g) VALLME (80 µL DES)

GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (µg/L) 1
[83]LOQ (µg/L) 5

RSD (%) <6
Rec. (%) 86–103

DBP, BBP, BDE, and DOP Food contact
plastics (2 mL)

SPME (0.2 g NaCl,
PDMS/DVB)

GC-MS/HP-5 (60
m × 0.25 mm i.d.
× 0.25 µm)

LOD (µg/L) 0.03–0.08
[60]LOQ (µg/L) 0.10–0.24

RSD (%) <13
Rec. (%) 90–111

DMP, DEP, DBP, BBP, DEHP,
and DnOP

Foodstuffs (1 g
for solids, 200 mL
liquids)

UAE (DCM, 30 min),
clean-up with GP-MSE
(10 µL DCM, 2 min, 280
◦C)

GC-MS/DB-5 (30
m × 0.25 mm i.d.
× 0.25 µm)

LOD (ng/g) solid 0.14–0.38
[107]LOD (ng/L)

liquid 2.1–9.6

RSD (%) <10
Rec. (%) 86–103

DMP, DBP, DEP, DPeP, DPP,
DEHP, DiPP, DnOP, DPhP,
DiNP, BBP, and DiDP

Grape marc spirit
(-)

UHPLC-
MS/MS/U-
VDSpher PUR
100 C18-E (100
mm × 2.0 mm i.d.
× 1.8 µm)

LOD (µg/L) 0.3–33.3
[84]LOQ (µg/L) 1.0–100

RSD (%) <10
Rec. (%) 82–110

DMP, DBP, BBP, and DEHP
Herbal beverages
(10 mL) and
Water (10 mL)

UA-D-SPE (5 mg hybrid
nanocomposite)

GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/mL) 0.06–0.3
[85]LOQ (ng/mL) 0.20–1.00

RSD (%) <12
Rec. (%) 55–113

DMP, DEP, DiBP, DBP, DEHP,
and DNOP

Honey (2.5 g) UVA-DLLME (75 µL
benzene, NaCl 10 g/L)

GC-MS/TRB-
5MS (30 m × 0.25
mm i.d. × 0.25
µm)

LOD (ng/g) 3.0–13
[86]LOQ (ng/g) 7.0–22

RSD (%) <10
Rec. (%) 71–10

DMP, DEP, DiBP, DBP, DEHP,
and DnOP

Honey (2.5 g) UVA-DLLME (150 µL
TOL, and NaCl 10 g/L)

GC-MS/ SE-54
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/g) 2.0–6.0
[87]LOQ (ng/g) 7.0–11

RSD (%) <4
Rec. (%) 86–117

BBP, DAP, DBEP, DCHP, DEEP,
DiDP, DiNP, DiPP, DNOP,
DNPP, and DPP

Jellies (25 mL)
and Apple-based
beverages (25
mL)

m-µ-dSPE (40 mg
Fe3O4@PPy, 2 mL
MeCN)

UHPLC-
MS/MS/BEH
C18 (50 mm × 2.0
mm i.d. × 1.7
µm)

LOD (µg/L) -
[108]LOQ (µg/L) 0.15–0.42

RSD (%) <20
Rec. (%) 60–114

DMP, DEP, DBP, DEHP, and
DnOP

Milk (10 mL)
QuEChERS-dSPE (0.01
g MWCNT-Fe3O4 and
0.5 g NaCl, 5 mL
MeCN)

GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (ng/L) 1.2–19
[88]LOQ (ng/L) 3.3–63

RSD (%) <7
Rec. (%) 82–112

DBP, DEHP, BBP, DiNP,
DNOP, and DiDP

Milk products (2
g)

LLE (2mL MeOH, 2 mL
HEX, 2 mL TBME)

LC-
MS/MS/Zorbax
SB-C18 (50 m ×
2.1 mm i.d. × 1.8
µm)

LOD (µg/kg) 6.0–9.0
[89]LOQ (µg/kg) 20–30

RSD (%) <20
Rec. (%) 84–96

DBP, BBP, DEHP, DiNP, and
DiDP

Olive oil (1 g) LLE (10 mL MeCN)
GC-MS/MS/Rxi-
5MS (30 m × 0.25
µm i.d. × 0.25
µm)

LOD (ng/mL) 7–130
[90]LOQ 23–420

RSD (%) <4
Rec. (%) 90–108

DBP, BBP, DEHP, DiDP, and
DiNP

Olive oil (1 g) LLE (10 mL MeCN)
GC-MS/HP-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (mg/kg) 0.06–1.97
[91]LOQ (mg/kg) 0.09–2.28

RSD (%) <12
Rec. (%) 87–100
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Table 2. Cont.

Target Analytes Matrices
(Amount)

Extraction Technique
(Conditions)

Analytical
Tool/Column Method Performance Ref.

DEHP, BBP, DiDP, DBP, and
DiNP

Pork (0.5 g) and
Chicken (0.5 g)

LLE (3 mL PENT:MeOH
1:4 v/v)

LC-MS/MS/BEH
C18 (100 m × 2.1
mm i.d. × 1.7
µm)

LOD (ng/g) -
[109]LOQ (ng/g) 40

RSD (%) <10
Rec. (%) 96–103

DBP Red lettuce (-) LLE (20 mL DCM)
HPLC-
UV/Venusil C18
(250 mm × 4.6
mm i.d. × 5 µm)

LOD -
[110]LOQ -

RSD (%) -
Rec. (%) -

MMP, MEP, MBP, MBzP,
MEHP, MOP, DMP, DEP, BzBP,
DBP, DEHP, and DnOP

Seafood species (1
g)

QuEChERS (4 g MgSO4,
1 g NaCl, 0.5 g SCDE, 1
g SCTD, 10 mL MeCN),
and clean-up dSPE (200
mg C18)

LC-
HRMS/Ascentis
Express C18 (100
mm × 2.1 mm i.d.
× 2.7 µm)

LOD (ng/g) 1–100
[111]LOQ (ng/g) 5–250

RSD (%) <15
Rec. (%) 13–79

MMP, MEP, DMP, MBP, MBzP,
DEP, MEHP, MOP, BzBP, DBP,
DEHP, and DOP

Seafood species (1
g)

ASE (MeOH, 80 ◦C, 10
min, 1500 psi), clean-up
SPE (200 mg bond elut
plexa and 5 mL MeOH)

LC-
HRMS/Ascentis
Express C18 (100
mm × 2.1 mm i.d.
× 2.7 µm)

LOD (µg/L) 0.5–25
[33]LOQ (µg/L) 1–50

RSD (%) <25
Rec. (%) 6–76

DMP, DEP, DiBP, DBP, DMEP,
BMPP, DEEP, DPP, DHXP, BBP,
DBEP, DCHP, DEHP, DPhP,
DnOP, and DNP

Suet Oil (1 g) LLE (2 × 5 mL MeCN
(HEX saturared))

GC-MS/CD-
5MD (30 m × 0.25
mm i.d. × 0.25
µm)

LOD (ng/mL) 0.10–0.70
[112]LOQ 0.33–2.31

RSD (%) <10
Rec. (%) 83–106

BBP, DiBP, DnPP, DnOP, DiNP,
and DiDP

Tea (10 mL),
Apple juice (10
mL), and
Pineapple juice
(10 mL)

VA-EDLLME (440 µL
DES ChCl:phenol 1:2)

LC-DAD-
MS/MS/X-
BridgeC18 (100 m
× 4.6 mm i.d. ×
3.5 µm)

LOD (µg/L) 5.1–17.8
[113]LOQ (µg/L) 17.2–59.4

RSD (%) <20
Rec. (%) 84–120

DMP, DBP, BBP, DEHP, DnOP,
and DEP

Vegetables (2 g)
and soil (10 g)

Soxhlet (220 mL
MeOH:ACET, 1:1 v/v)

GC-MS/DB-5MS
(30 m × 0.25 mm
i.d. × 0.25 µm)

LOD (µg/kg) 0.032–0.191
[114]LOQ -

RSD (%) <11
Rec. (%) 70–120

DEP, DPP, DAP, DBP, BBP, and
DEHP

Water (-)
SPME
(OH50%-TPB-COF
fiber)

GC-FID/HP-5 (50
m × 0.32 mm i.d.
× 0.52 µm)

LOD (µg/L) 0.032–0.451
[115]LOQ -

RSD (%) <10
Rec. (%) 79–100

DEP, DPrP, DiBP, and DCHP Water (20 mL) MSPE (20 mg MagC-TA,
500 µL MeCN)

HPLC-
UV/InertSustain-
C18 (250 m × 4.6
µm i.d. × 5 µm)

LOD (ng/mL) 0.10–0.62
[116]LOQ 0.33–2.06

RSD (%) -
Rec. (%) 82–118

DEHP, DBP, DiNP, DiDP, and
DEP

Water (10 mL) DLLME (250 µL
Heptane, 1 g NaCl)

GC-FID/TRB-
Meta X5 (30 m ×
0.25 mm i.d. ×
0.25 µm)

LOD (ng/mL) 2.0–19
[117]LOQ (ng/mL) 4.0–48

RSD (%) <10
Rec. (%) 82–102

DBP, BBP, BDE, and DOP Wines (2 mL) SPME (0.2 g NaCl,
PDMS/DVB)

GC-MS/HP-5 (60
m × 0.25 µm i.d.
× 0.25 µm)

LOD (µg/L) 0.03–0.11
[69]LOQ (µg/L) 0.09–0.36

RSD (%) <13
Rec. (%) 80–108

DMP, DBP, DAP, and DEHP Whisky (10 mL) IT-SPME (15 % w/v
NaCl and TPA/LDH)

HPLC-UV/ODS-
3 (250 m × 4.6
µm i.d. × 5 µm)

LOD (µg/L) 0.01–0.1
[92]LOQ (µg/L) 0.03–0.2

RSD (%) <7
Rec. (%) 92–112
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Table 2. Cont.

Target Analytes Matrices
(Amount)

Extraction Technique
(Conditions)

Analytical
Tool/Column Method Performance Ref.

DMP, DEP, DIBP, and DBP
Yogurt (1 g),
Water (1 g), and
Edible oil (1 g)

HFLMP-SPME
(monolithic fiber, 6 µL
n-hexane)

GC-FID/BP-5 (25
m × 0.32 mm i.d.
× 0.5 µm)

LOD (µg/L) 0.01–0.03
[93]LOQ (µg/L) 0.03–0.12

RSD (%) <5
Rec. (%) 96–100

Abbreviations: ASE: Accelerated solvent extraction; ACET: acetone; BBP: butyl benzyl phthalate; BEHP: bis(2-ethylhexyl) phthalate;
BMPP: bis(4-methyl-2-pentyl) phthalate; BzBP: benzyl butyl phthalate; C2Cl4: tetrachloroethylene; DAP: diamyl phthalate; DBEP: bis(2-
n-butoxyethyl) phthalate; DBP: dibutyl phthalate; DCHP: dicyclohexyl phthalate; DCM: dichloromethane; DDP: diphenyl phthalate;
DEEP: bis(2-ethoxyethyl) phthalate; DEHP: di(2-ethylhexyl) phthalate; DEP: di(2-ethylhexyl) phthalate; DES: deep eutectic solvent;
DHXP: dihexyl phthalate; DIBP: di-isobutyl phthalate; DiDP: di-isodecyl phthalate; DiHP: di-isoheptyl phthalate; DiNP: di-isononyl
phthalate;DiPrP: di-isopropyl phthalate; DLLME: dispersive liquid-liquid microextraction; DMEP: di(methoxyethyl) phthalate; DMP:
dimethyl phthalate; DnOP: di-n-octyl phthalate; DNP: dinonyl phthalate; DnPP: di-n-pentyl phthalate; DnPrP: di-n-propyl phthalate;
DOP: dioctyl phthalate; DPhP: diphenyl phthalate; DPP: di-n-amyl phthalate; EPA: environmental protection agency; EtAc: ethyl acetate;
Et2O: diethyl ether; GC-FID: gas chromatography with flame ionization detection; GC-MS: gas chromatography-mass spectrometry;
GC-MS/MS: gas chromatography tandem mass spectrometry; GP-MSE: gas purge microsyringe extraction; HEX: hexane; HF-SPME:
hollow fiber-solid phase microextraction; HPLC-UV: liquid chromatography with ultraviolet detection; IT-SPME: in-tube solid-phase
microextraction; LC-DAD-MS/MS: liquid chromatography coupled to diode array detection tandem mass spectrometry; LC-HRMS: liquid
chromatography-high resolution mass spectrometry; LC-MS/MS: liquid chromatography with tandem mass spectrometry; LLE: liquid-
liquid extraction; LOD: limit of detection; LOQ: limit of quantification; m-µ-dSPE- magnetic-micro-dispersive solid phase extraction; MBP:
monobutyl phthalate; MBzP: monobenzyl phthalate; MEP: monoethyl phthalate; MEHP: mono(2-ethylhexyl)phthalate; MeCN: acetonitrile;
MeOH: methanol; MgSO4: sulphate magnesium; MMP: monomethyl phthalate; MOP: monooctyl phthalate; MSPD: matrix solid phase
dispersion; MSPE: magnetic solid phase extraction; NaCl: sodium chloride; PDMS/DVB: polydimethylsiloxane/divinylbenzene; PENT:
pentane; PSA: primary secondary amine; QuEChERS-dSPE: quick, easy, cheap, effective, rugged, and safe: dispersive solid phase extraction;
RSD: relative standard deviation; SCDE: sodium citrate dibasic sesquihydrate; SCTD: sodium citrate tribasic dihydrate; SPE: solid phase
extraction; SPME: solid phase extraction; SPM: suspended particulate matter; TOL: toluene; UA-D-SPE: ultrasound-assisted dispersive-
solid phase extraction; UAE: ultrasound assisted extraction; UHPLC-MS/MS: ultra-high performance liquid chromatography-MS/MS;
UPLC-TOF-MS: ultra-performance liquid chromatography coupled time-of-flight mass spectrometry; UVA-DLLME: ultrasound vortex
assisted dispersive liquid–liquid microextraction; VA-EDLLME: vortex assisted-emulsification dispersive liquid-liquid microextraction;
VSLLME: vortex-assisted surfactant-enhanced emulsification liquid–liquid microextraction.

4. Analytical Approaches
4.1. Sample Preparation and Extraction Techniques

Special attention should be given to the sample preparation step as the sample can cer-
tainly be contaminated with laboratory material such as solvents (e.g., HEX and EtAc), sor-
bents (e.g., Florisil and silica gel), plastic consumables (e.g., pipet tips and SPE cartridges),
glassware, laboratory air, fibers, stir bar, among others [11,118]. This cross-contamination
results in an overestimated contamination levels and/or false positives. Consequently, to
overcome the contamination problems, the step involved in the sample preparation, as well
as solvent amounts, glassware, extraction time, and exposure of the sample to air, should
be minimized [118]. Some studies have been performed to reduce the contamination level
in laboratory material [11,119–122]. Reid et al. [119] performed a screening of common
laboratory equipment and components, and the results indicated that plastic syringes,
pipette tips produced maximum leaching of 0.36 µg/cm2 of DEHP and 0.86 µg/cm2 of
DiNP, plastic filter holders releases maximum leaching of 2.49 µg /cm2 of DBP from poly-
tetrafluoroethylene (PTFE) and Parafilm® leached levels up to 0.50 µg/ cm2 of DEHP. To
reduce the high levels of PAEs in these materials, a heat or high-temperature process was
applied since there is no covalent bond between the PAEs and plastics. Tienpont et al. [122]
verified that polypropylene SPE cartridges contained 3 to 14 ng of DiBP, DBP, and DEHP,
and in order to reduce this contamination, advised washing the SPE cartridges with an
organic solvent. Guo et al. [11] measured PAEs concentration in alumina (100–200 mesh),
Florisil (60–100 mesh), and anhydrous sodium sulfate (Na2SO4), and DiBP and DEHP were
found at trace concentration (ng/g) in alumina and Na2SO4. These authors also measured
the PAEs concentration in the commercial solvents (e.g., HEX, acetone (ACET), DCM, and
acetonitrile (MeCN)), being DEP (0.01 to 0.03 ng/mL), DiBP (0.002 to 0.21 ng/mL), DBP
(0.01 to 0.80 ng/mL), di-n-hexyl phthalate (DnHP, 0.002 to 0.41 ng/mL), benzylbutyl phtha-
late (BzBP, 0.02 to 0.07 ng/mL), and DEHP (0.28 to 6.39 ng/mL) found in all solvents. The
presence of these PAEs in solvents can be reduced by redistillation and/or by SPE [11,118].
Nevertheless, redistillation is not efficient since it can introduce solvents from other sources
of contamination (e.g., exposure solvent to laboratory air, requires deactivated alumina),
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being SPE the most suitable efficient process to remove phthalates from solvents [11,123].
The phthalate contamination in HEX was reduced to 99.8% using 3% of deactivated alu-
mina, but DBP and DEHP were detected at 0.1 ng/mL after purification with activated
alumina [123]. Nevertheless, the SPE technique is more suitable for apolar solvents (e.g.,
pentane and HEX), which will extract PAEs from alumina rather than the phthalates be-
ing adsorbed from the solvents [11]. After that, the solvent bottles should be capped to
avoid interaction with the surrounding air [118]. Regarding glassware, according to the
Fernández-González et al. [121], all material used during sampling and sample preparation
should be glass-made and should be washed soaking the material in an alkaline solution
for 48 h, rinse with purified water, and then washed gently with methanol (super purity
grade). Finally, the glassware should be calcined at 450 ◦C overnight. In summary, during
sample preparation, plastic materials should be avoided, the laboratory material (e.g.,
solvents and glassware) should not be exposed to air, the glassware should be selected
carefully, and the time and the solvent amount involved during sample preparation should
be minimized [11,118].

4.2. Extraction Techniques

Efficient pre-concentration and clean-up procedures are necessary to guarantee the
quality of the analytical methods, due to the predictable low concentration of these tar-
get analytes in samples, as well as the sample complexity [118]. Table 2 summarizes
the extraction techniques adopted in the last three years to analyze PAEs in environ-
mental and food matrices. It is possible to observe that the most common extraction
techniques used to extract phthalates from environmental and food samples are LLE
[62–64,71,74,76,77,89,91,94–96,99,104,106,109,110,112], SPME [60,69,81,82,92,93,115],
QuEChERS-dSPE [79,88,102], SPE [68,75], and soxhlet [100,101,114].

In the LLE procedure, the sample is put in contact with a solvent with a high affin-
ity to PAEs, followed by phase-separation caused by solvent properties, centrifugation,
and removal of moisture by treatment with Na2SO4 [11]. In general, no clean-up pro-
cedure is necessary. The most common solvents used in LLE are DCM [62,64,66,99],
ACET [94], MeCN [90,91,106], and solvents mixes (HEX:ACET, HEX:EtAc, DCM:ACET)
[63,71,74,76,77,95,96]. Despite the high extraction efficiency of LLE to extract PAEs from
different samples, which results in recovery rates of 70% to 120%, lower LODs and LOQs
(Table 2), the up-to-date tendencies related to extraction procedures are founded on the
principles of green chemistry, which include low solvent volumes, simplicity, and quick-
ness. In this sense, compared to LLE, dispersive liquid-liquid microextraction (DLLME)
is simpler, fast, and environmentally friendly since it requires few µL of solvent volume.
DLLME comprises the formation of a cloudy solution endorsed by the rapid injection of a
mixture of extractive and dispersive solvents to an aqueous sample with a great contact
surface. The droplets formed and dispersed through the aqueous sample are collected by
centrifugation, promoting high yields and enrichment factors [124,125]. DLLME using
HEX as solvent was used to evaluate the migration of PAEs from different beverage and
food plastic containers [61,105], as well as to determine 6 PAEs in waters [117]. The data
obtained in these studies confirm the potentiality of DLLME in PAEs extraction since good
recoveries (76 to 104%), accuracy (RSD < 10%), low LODs (1.0 to 19 ng/mL), and LOQs (2.1
to 48 ng/mL) were attained. Ultrasound-vortex-assisted DLLME (UVA-DLLME) has been
proposed by Notardonato et al. [78], as a modified DLLME with no dispersant solvent,
in order to determine 19 organophosphorus pesticides and 6 PAEs in baby food. This
method involved analyte extraction using 250 µL of heptane followed by the addition
of sodium chloride (NaCl) to break the microemulsion. The results obtained showed
that UVA-DLLME is sensitive and more reliable with lower LODs (<4.4 ng/g), LOQs
(<7.5 ng/g), high recoveries (91% to 110%), and accuracy (RSD < 10%). Recently, Notar-
donato et al. [86,87] used UVA-DLLME to determine PAEs and BP-A in honey samples
and to evidence the presence of plasticizer residues in nectar honey samples. The advan-
tage of these studies related to the previous one was the reduction in solvent volume,
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namely 75 µL of heptane [86] and 150 µL of toluene [87]. For both studies, good recoveries
(71%–117%), accuracy (RSD < 10%), low LODs (<13 ng/g), and LOQs (<22 ng/g) were
achieved, which demonstrate the efficiency of this technique in PAEs extraction. On the
other hand, Li et al. [83] used deep eutectic solvents (DESs, 80 µL) as an extraction solvent
in a vortex-assisted liquid-liquid microextraction (VALLME) for the extraction and pre-
concentration of four PAEs in water and in food-contacted plastics. The LODs and LOQs
obtained were lower than 1 and 5 µg/L respectively, and good recoveries (86%–103%)
and accuracy (<6%) were obtained, which support that VALLME is a simple, sensitive,
fast, efficient, and low-cost extraction technique for the determination of PAEs from food
contacting plastics.

Other extraction techniques used in the determination of PAEs are Soxhlet and SPE.
Nevertheless, these extraction techniques are time-consuming, require solvents, and ex-
tensive sample handling (Table 3), which induces phthalates contamination and are not
environmentally friendly [118,121]. In addition to the traditional SPE, magnetic solid-phase
extraction (MSPE) using a magnetic covalent organic framework (COF) [80] and a core-shell
nanostructured magnetic Ti-silica (Mag@MCM-41/TiO2) [116] as adsorbents have been
used to determine phthalates in bottle waters.

Table 3. Advantages and disadvantages of extraction technique and analytical approaches used for determination of
phthalates esters (PAEs) in environmental and food samples.

Extraction Technique Advantages Disadvantages

LLE

XEconomical
XHigh extraction efficiency
XSimple operation
XSuitable for small scale

XLarge volume of solvent
XLow selectivity
XDifficult to automate
XTime-consuming

DLLME assisted (UVA-DLLME, VSLLME, VALLME,
VS-EDLLME)

XEconomical
XHigh recovery
XLow amount of sample
XLow extraction time
XLow volume of solvent

XLow selectivity
XRequires centrifugation
XRequires the use of three
solvents

Soxhlet XSimple operation
XSuitable for small scale

XLarge volume of solvent
XLimited extraction efficiency
XTime-consuming

ASE

XEasy of automatization
XHigh efficiency
XLow volume of solvent
XShort extraction time

XRequires high temperatures
(40 to 200 ◦C) and pressures
(1500 psi)

UAE

XEconomical
XEnvironmentally friendly
XHigh extraction efficiency
XShort extraction time
XThermally stable molecules

XDecline of power with the
time
XLack of uniformity in the
distribution of ultrasound
energy

Microwave assisted

XEnvironmentally friendly
XHigh recovery
XLow volume of solvent
XNo clean-up
XReduced extraction time

XExpensive
XLow selectivity
XRequires
centrifugation/filtration

SPE
XAlternative of LLE
XEasy automation
XSuitable for large scale

XInvolve many steps
XLarge volume of solvent
XPossibility of low recoveries

MSPE

XEnvironmentally friendly
XLimited number of steps
XLow amount of sorbent
material
XReuse of sorbent material
XShort extraction time

XRequires
vortex/shaker/magnetic
stirrer
XSelection of suitable sorbent
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Table 3. Cont.

Extraction Technique Advantages Disadvantages

MSDP

XEnvironmentally friendly
XLimited number of steps
XQuick
XSimple

XRequires anhydrous
sorbents activated at high
temperatures

SPME

XAlternative to SPE
XLimited number of steps
XLow amount of samples
XReuse of the polymeric
phase
XShort extraction time

XPotential contamination of
the SPME needle

QuEChERS-dSPE

XEconomical
XEfficient clean-up by dSPE
XLimited solvent
consumption
XQuick
XSimple

XReduced precision and
accuracy
XReduced sensitivity

Analytical platforms

GC

FID

XEconomical
XHigh sensitivity
XQuick
XWide linear range

XNo information related to
structure
XTime consuming

EI-MS

XVolatiles
XEconomical
XHigh resolution
XInformation related to
structure
XLibrary database
XMinimal matrix effect
XUser friendly

XHard ionization
XImpossible analysis of
thermally stable molecules
XLow response factor
consistency
XLow-volatility compounds
need to be derivatized
XModerate sensitivity

LC

UV

XEconomical
XHigh sensitivity;
XHPLC columns can be
reused without repacking or
regeneration
XSpeed of analysis
XUser friendly

XSensitivity is chromophore
dependent
XLow specificity at short
wavelengths
XIdentification based on
retention time and UV/vis
absorbance

ESI-MS

XDerivatization is
unnecessary
XHigh sensitivity
XLarge mass range
XMid- to high
chromatographic resolution;
XNonvolatile, polar, and ionic
molecules (mid- to
high-polarity)
XSoft ionization
XSpeed of analyses
XThermally stable molecules

XExpensive
XMatrix effect
XNo universal Library
XLimited potential in
identification unless the
MS/MS is used
XDe-salting may be required
XA few restrictions on LC
eluents
XLow limit of detection (few
pg to 10−15 g)

HRMS

XHigh resolution
XMass accuracy
XHigh selectivity
XHigh specificity

XExpensive
XInstrument maintenance
XData file storage

Abbreviations: ASE: Accelerated solvent extraction; DLLME: dispersive liquid-liquid microextraction; EI-MS: electron ionization mass
spectrometry; ESI-MS: electrospray ionization mass spectrometry; FID: flame ionization detection; GC: gas chromatograph; HRMS: high
resolution mass spectrometry; LC: liquid chromatography; LLE: liquid-liquid extraction; MS/MS: tandem mass spectrometry; MSPD: matrix
solid phase dispersion; MSPE: magnetic solid phase extraction; QuEChERS-dSPE: quick, easy, cheap, effective, rugged, and safe: dispersive
solid phase extraction; SPE: solid phase extraction; SPME: solid phase extraction; UAE: ultrasound assisted extraction; UV: ultraviolet
detection; UVA-DLLME: ultrasound vortex assisted dispersive liquid–liquid microextraction; VA-EDLLME: vortex assisted-emulsification
dispersive liquid-liquid microextraction; VSLLME: vortex-assisted surfactant-enhanced emulsification liquid–liquid microextraction.



Toxics 2021, 9, 157 18 of 26

In contrast to LLE, soxhlet, and SPE, SPME comprises sampling, extraction, purifi-
cation, concentration, and injection into a single procedure. This extraction procedure is
solvent-free, does not need previous sample preparation, and consequently, the risk of cross-
contamination from solvents, samples, and glassware was reduced [121]. SPME fibers can
be directly immersed (DI) and/or placed in the headspace (HS) of the sample. In HS-SPME,
the analytes are released from the gas phase equilibrated with the sample, and in this mode,
the fiber is protected from aggressive effects produced by high molecular-weight com-
pounds existing eventually in the sample [121]. However, the main disadvantages of SPME
are the price of the fibers and the time to achieve the equilibrium between sample and target
analytes (Table 3), which can contribute to inexact quantities [11]. Perestrelo et al. [60,69]
used HS-SPME mode to determine four PAEs in table and fortified wines and to assess
the occurrence of PAEs in plastic materials used in food packaging. In both studies, using
suitable method performance characteristics, recovery (80%–108%), precision (RSD < 13%),
and LODs (0.03–0.11 µg/L) and LOQs (0.09–0.36 µg/L) were obtained, which indicate
the sensitivity and efficiency of HS-SPME in the PAEs determination. Huang et al. [81]
determined 10 PAEs in bottle waters using SPME with polysulfone hollow fiber (HF-SPME).
This extraction technique allowed to obtain recovery values in the range of 87%–118%, low
LODs (0.001–0.130 µg/L), and accuracy with RSD lower than 10%. The data suggested
that HF-SPME is simple, environmentally friendly, and accurate for the determination of
phthalates in bottled waters. Mirzajani et al. [93] fabricated, for the first time, monolithic
and hollow fiber using a metal–organic framework/deep eutectic solvents/molecularly
imprinted polymers (MOF-DES/MIPs) and used for microextraction of PAEs under hollow-
fiber liquid membrane-protected solid-phase microextraction (HFLMP-SPME) from yogurt,
water, and edible oils. Satisfactory method performance characteristics in terms of recovery,
LODs, LOQS, and accuracy were achieved under optimal conditions. Moreover, com-
paring this study with that of Huang et al. [81], lower LODs (0.01–0.03 µg/L) and LOQs
(0.03–0.12 µg/L) were attained, which demonstrated the high sensibility of the HFLMP-
SPME compared to HF-SPME. On the other hand, Aghaziarati et al. [92] introduced an
electrodeposited terephthalic acid-layered double hydroxide (Cu-Cr) nanosheet coating for
in-tube SPME of PAEs in whiskeys. The data obtained in terms of recovery, LODs, LOQs,
precision, and accuracy demonstrated the potentiality of IT-SPME on the determination of
phthalates.

QuEChERS-dSPE is an extraction technique that comprises two stages, namely ex-
traction and clean-up. The extraction relies on the partitioning via salting-out extraction
where an equilibrium between an aqueous and an organic layer (e.g., MeCN) was endorsed,
while the clean-up by dSPE used various mixtures of porous sorbents and salts to eliminate
matrix interfering compounds [126]. QuEChERS-dSPE has been used to determine PAEs
in baby foods [79], beverages [102], and milk [88], and satisfactory method performance
characteristics were achieved in these studies, demonstrating the sensitivity of this extrac-
tion technique. Nevertheless, special attention should be given to the study performed by
Dobaradaran et al. [88] that proposed a novel adsorbent resulting from a combination of
multi-walled carbon nanotubes (MWCNT) and iron oxide (Fe3O4) nanoparticles to extract
10 PAEs from milk. The data obtained, with recoveries ranging from 82% to 112%, and
LODs and LOQs lower than 19 and 63 ng/L for all target analytes, supported the successful
application of this modified QuEChERS-dSPE approach.

4.3. Analytical Approaches

The selection of the most suitable analytical approaches to separate, detect and iden-
tify a class of target compounds depends essentially on their physic-chemical properties
and the sensitivity requested. As can be observed in Table 2, the most common analyti-
cal approaches used for PAEs determination were gas chromatography (GC) and liquid
chromatography (LC) combined with mass spectrometry (MS).
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4.3.1. Gas Chromatography

Gas chromatography is the most used analytical approach for PAEs determination
since these target analytes present low molecular weight (e.g., DMP, DEP, DBP, and DEHP),
relatively low polarity, and thermally stable and appropriately volatility [118]. In the case
of phthalates with high molecular weight, a derivatization step is required to convert
phthalates to their volatiles through the methylation (-COOCH3) or silylation (-COOSiR3)
process of the carboxylic acid group [120]. Nevertheless, excess derivatization agents
or byproducts should be removed prior to GC analysis to avoid the deterioration of the
stationary phase (column) [120]. Generally, the PAEs separation is carried out using apolar
fused-silica capillary columns coated with 5% phenyl and 95% dimethylpolysiloxane, under
temperature programs starting from 60 ◦C up to 330 ◦C, in total run time analysis ranging
from 20 to 51 min [66,67,69,79,85,86,91,100,103]. Nonetheless, the PAEs have also been
determined using apolar fused-silica capillary columns coated with 5%-phenyl(1%-vinyl)-
methylpolysiloxane (SE-54) [61,78,87]. Conventionally, flame ionization detector (FID)
was applied to determine PAEs in sediments [65,97], waters [59,115,117] and foods [93],
but FID has been replaced by MS detector due to its specificity and high sensitivity
[60,63,66–69,75,87,94,105,108,114,125]. In the case of GC-MS, it is crucial to use an internal
standard (IS) to promote a more accurate quantification of phthalates in a diversity of sam-
ples. The isotopically-labeled phthalates as IS [90,100,127], such as d4-DBP, d4-DEHP, and
d4-DnOP, are the most suitable to correct errors caused by matrix effects and to correct prob-
able dissimilarities occurring in the analyses, even though non-deuterated compounds like
as 2,6-di-ter-butyl-4-methyl phenol (BHT) [91], bromopropylate [78] and anthracene [61]
have also been used with good results. Regarding ionization techniques, electron ioniza-
tion (EI) is the most suitable for the determination of PAEs by GC-MS, being reproducible
and not suffering from ion suppression effects [60,61,69,91,100,103,112]. Furthermore,
gas chromatography-tandem mass spectrometry (GC-MS/MS) [71,79,80,90,99,102,127]
and flash evaporation GC-FID [81] have also been explored as an alternative to de-
termine PAEs in a diversity of samples with excellent results. The tandem MS spec-
trometry compared to MS demonstrated more sensitivity, mass accuracy, and resolution.
Concerning to the analyzer, single quadrupole [60,69,91,100,112], ion trap [61,78] and
triple quadrupole (QqQ) [79,102,127] using full scan [60,61,69,103], single ion monitoring
(SIM) [90,91,100,112] and multiple reaction monitoring (MRM) [79,102,127] are the most
commonly used. The recovery, accuracy, LODs, and LOQs could change based on the
extraction technique applied and analytical approaches (Table 2).

In summary, the main advantages of GC-MS are high sensitivity (low LODs), especially
by splitless injection, high reproducibility of the generated mass spectra by EI, low cost,
ease of operation, requires less maintenance, and the identification of compounds is easier
due to the available spectra libraries (e.g., NIST).

4.3.2. Liquid Chromatography

GC is possibly the most used analytical platform in PAEs analysis. Liquid chro-
matography (LC) appears as a suitable alternative due to its potentiality in the analysis
of thermally unstable and non-volatiles compounds providing a high selectivity [125].
High-performance liquid chromatography (HPLC) using C18 analytical columns with an
internal diameter (ID) of 4.6 mm running either in isocratic and gradient elution with
ultraviolet (UV) detector have been widely used in the measurement of phthalates in
meat and water samples [110,116]. Although UV detectors have been demonstrated to
be suitable for quantification of PAEs, they do not provide detailed structural informa-
tion of known target compounds, being this its main drawback. Liquid chromatography
coupled with tandem mass spectrometry (LC-MS/MS) [76,82,89] has been explored as
an alternative to HPLC-UV, HPLC-DAD since it has shown higher sensitivity, selectivity,
resolution, and effectiveness. Moreover, MS detectors are a potent instrument to identify
and check molecular structures of unidentified compounds and qualitative analysis. Re-
cently, ultra-performance liquid chromatography coupled with tandem mass spectrometry
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(UPLC-MS/MS) compared to LC-MS/MS have the potentiality to separate the PAEs in
a shorter run time (14 to 16 min) and use smaller particle LC columns (2.1 µm), which
allows obtaining narrower peaks and high sample throughput [73,84,101,108]. Electrospray
ionization (ESI) interface, triple quadrupole (QqQ), and/or quadrupole time of flight (TOF)
mass analyzer and MRM modes are the most common combination used in LC-MS for
quantification of PAEs [73,84,101,108]. Diamantidou et al. [84] have proposed a direct
UPLC-MS/MS for analysis of 12 PAEs in grape marc spirits of Greek origin. The PAEs
were separated using a U-VDSpher PUR 100 C18-E (100 mm × 2.0 mm, 1.8 µm) column
by gradient elution. Satisfactory method performance characteristics in terms of recovery
(90%–111%), accuracy (RSD < 13%), LODs (0.3–0.33 µg/L), and LOQs (1.0–100 µg/L)
were obtained, which indicate the sensitivity and efficiency of direct UPLC-MS/MS in
the PAEs determination. Perhaps MS/MS continues to be the method of choice; liquid
chromatography-high resolution mass spectrometry (LC-HRMS) has been recently used
for the determination of PAEs and their metabolites in seafood species [33,111] and to
dust samples from different indoor environments [128]. HRMS coupled to LC for PAEs
determination allows better selectivity and sensitivity compared to the low resolution of
MS due to accurate masses. Moreover, HRMS provides the possibility of a selection of a
very narrow mass window, consequently reducing the chemical background.

In summary, LC-MS offers several benefits in comparison to GC-MS, such as being
faster, not requiring derivatization, minimal sample preparation, and facilitating the iden-
tification and quantification of a greater diversity of compounds (Table 3). Moreover,
contrarily to GC, the LC does not require sample volatilization, which circumvents com-
plications related to the chemical degradation and formation of new products under high
temperatures.

5. Conclusions

The wide occurrence of phthalates, mainly PAEs, in many products has contributed
to the rising concerns about their effects on human health. Nevertheless, the health
impacts of PAEs exposure are not completely elucidated. This fact highlights the need
for the development of sample preparation and analytical approaches with the purpose
of quantifying these target compounds with more accuracy. The evolution of sample
preparation has been focused on quickness, simplicity, automatic, low sample handling,
low solvent volume, use of green extractant with the aim to reduce the risk of cross-
contamination from solvents, samples, and glassware, and also environmentally friendly.
The most common extraction techniques used for the measurement of PAEs are LLE
and SPME. Regardless, SPME compared to LLE presents several advantages such as
being solvent-free, easy to operate, and comprising sampling, extraction, purification,
concentration, and injection into a single procedure. Regarding analytical approaches,
GC coupled with MS is the most used for the quantification of PAEs, as a result of their
well-known volatility. Satisfactory figures of merit in terms of recoveries, accuracy, LODs,
and LOQs, was obtained to demonstrate the success of GC-MS in PAEs determination.
Despite this fact, a direct UHLC-MS/MS has also been used in PAEs determination with
excellent results.

The determination of PAEs in samples represents an inspiring task, not only because
of the low concentration of these target compounds but also due to the complexity of
the sample and the potential risk of cross-contamination during all steps of the analysis.
This problem can be minimized by avoiding extraction techniques that require solvents
and only using glassware. However, prior to analysis, all glassware should be submitted
to washed soaking in an alkaline solution for 48 h, rinsed with purified solvents, and
then calcined at 450 ◦C overnight. After all, as mentioned in this review, it is expected
that miniaturized and automated extraction techniques and high-throughput analytical
approaches will continue to be developed to improve the accuracy of PAEs determination.
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