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Abstract: Maintaining a proper balance between specific intermolecular interactions and non-specific
solvent interactions is of critical importance in molecular simulations, especially when predicting
binding affinities or reaction rates in the condensed phase. The most rigorous metric for characterizing
solvent affinity are solvation free energies, which correspond to a transfer from the gas phase into
solution. Due to the drastic change of the electrostatic environment during this process, it is also
a stringent test of polarization response in the model. Here, we employ both the CHARMM fixed
charge and polarizable force fields to predict hydration free energies of twelve simple solutes.
The resulting classical ensembles are then reweighted to obtain QM/MM hydration free energies
using a variety of QM methods, including MP2, Hartree–Fock, density functional methods (BLYP,
B3LYP, M06-2X) and semi-empirical methods (OM2 and AM1 ). Our simulations test the compatibility
of quantum-mechanical methods with molecular-mechanical water models and solute Lennard–Jones
parameters. In all cases, the resulting QM/MM hydration free energies were inferior to purely
classical results, with the QM/MM Drude force field predictions being only marginally better than
the QM/MM fixed charge results. In addition, the QM/MM results for different quantum methods
are highly divergent, with almost inverted trends for polarizable and fixed charge water models.
While this does not necessarily imply deficiencies in the QM models themselves, it underscores the
need to develop consistent and balanced QM/MM interactions. Both the QM and the MM component
of a QM/MM simulation have to match, in order to avoid artifacts due to biased solute–solvent
interactions. Finally, we discuss strategies to improve the convergence and efficiency of multi-scale
free energy simulations by automatically adapting the molecular-mechanics force field to the target
quantum method.
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1. Introduction

Biological systems are mostly composed of water, and the interactions with water are a central
feature of life as we know it [1–5]. Solvation influences a wide variety of processes, including
protein folding [6–10], crystal polymorphism [11], conformational equilibria [12–15] and even basic
reaction pathways [16]. Furthermore, water is one of the main actors in the selectivity of biochemical
interactions and has a profound influence on both the kinetics and thermodynamics of protein-protein,
protein-nucleic acid and protein-ligand binding [17]. Any binding event between a ligand and a
receptor in aqueous solution is first preceded by the desolvation of water molecules from the binding
site and the ligand’s surface. A binding event only occurs if the ligand-receptor interactions can
compensate for the loss of ligand-solvent and receptor-solvent interactions and the associated entropy
changes [18–20]. Given the fundamental importance of the solvent, no biomolecular model is adequate
without properly accounting for solvation.

The free energy costs of (de-)solvation are quantified by its solvation free energy, which
corresponds to the transfer free energy of the molecule from the gas phase to solution [21–25].
In aqueous solution, the solvation free energy is also known as hydration free energy (∆Ghyd). In the
molecular mechanics (MM) modeling community, ∆Ghyd values have been an essential benchmark
quantity for decades [14,26–54]. Furthermore, significant efforts have been invested in the quantum
mechanical (QM) community to develop highly accurate implicit solvent methods [55–63]. However,
when it comes to a hybrid QM/MM approach, where a quantum mechanical solute is embedded
in a classical explicit solvent, solvation free energies have received less attention because of the
computational cost and complexity of sampling the solvent degrees of freedom.

Gao was a pioneer in determining QM/MM solute–solvent interaction energies for amino acid
side chain analogs and nucleotide bases [64], as well as absolute solvation free energies [65]. This work
was a milestone for QM/MM, and significant efforts have since been invested by many groups all
around the world [66–80], making it an indispensable tool in computational chemistry [81–83]. It is
therefore also not surprising that QM/MM techniques have recently received increasing attention in
the context of free energy calculations [84–105]. Focusing on solvation, Stanton, Hartsough and Merz
used QM/MM to determine the solvation free energies of ions [106]. Shoeib et al. studied absolute
hydration free energies of ions and small solutes [107]. Using the quasichemical theory of solutions,
Asthagiri, Pratt and Kress calculated the hydration free energy of PBE water [108], and Weber and
Asthagiri provided the hydration free energy of BLYP-D water [109]. Vapor-liquid equilibria of QM
water were studied by McGrath et al. [110]. Radial distribution functions of QM water have received
the attention of multiple groups [110–118], as well as the interaction energies of multimers [119–123].
Relative solvation free energies were calculated by Reddy, Singh and Erion [124–126]. Kamerlin,
Haranczyk and Warshel discussed solvation free energies of acetate and methylamine in the context of
pKa calculations [127]. Shields, Temelso and Archer determined binding free energies of water to small
water clusters [128,129]. More recently, we have applied QM/MM solvation free energy calculations
within the framework of the SAMPL challenges [79,130,131].

One of the most important shortcomings of conventional force fields is the neglect of electronic
polarization. During a simulation, the charge distribution of an MM molecule cannot respond to its
environment. Since polarizability is known to be important, especially in QM/MM simulations, there
is major interest in the use of polarizable force fields such as the CHARMM Drude force field [132].
Here, we perform simulations with both the CHARMM fixed charge force field and the CHARMM
Drude polarizable force field, to discern the benefits and challenges of this new generation of force
fields and help lay the groundwork for future development of QM/MM methods with increased
predictive capability. It is of particular practical interest to ascertain the degree to which optimization
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of the QM/MM van der Waals interaction parameters may be needed for different QM methods, and
the additional computational efforts of the Drude force field are beneficial. Our recent work [133]
analytically showed that significant additional computational costs can be justified in multi-scale free
energy simulations, if the sampling method exhibits a higher phase space overlap with the target QM
Hamiltonian. Thus, it can be expected that polarizable force fields and, ultimately, quantum-mechanical
methods will play an increasing role in free energy calculations [134–139].

The remainder of this paper is organized as follows: First, we summarize the details of the model
systems and simulations. Next, we present the results for the ∆Ghyd values of twelve simple solutes,
using both the fixed charge and the Drude force field. Finally, we compare the performance of MP2,
Hartree–Fock, several density functional methods (BLYP, B3LYP, M06-2X) and semi-empirical methods
(OM2 and AM1 ) in terms of ∆Ghyd with QM/MM. This is done for both the fixed charge force field
and the Drude force field. We also discuss other aspects that can have an impact on the accuracy of the
results and the efficiency of the free energy simulations, including empirically scaling ∆Ghyd values,
using a self-consistent optimization of the Drude particles at each step, or increasing the overlap
between the MM force field and the QM target energy function by introducing a tailored MM’ force
field. The Appendix includes a comparison of the convergence properties of free energy estimates
based on the fixed charge and the Drude force field and also provides the detailed results of all MM
free energy sub-steps.

2. Methods

2.1. Simulations

A test set of 12 molecules was used: water, methanol, ethanol, methanethiol, acetamide,
tetrahydrofuran, benzene, phenol, aniline, ethane, n-hexane and cyclohexane (see Figure 1). These
molecules were chosen to cover a large range of hydration free energy values, between−8.05 kcal/mol
(acetamide) [140] and +2.55 kcal/mol (n-hexane) [24], encompassing different levels of hydrophobicity.
In addition, this set includes amino acid side-chain analogs, ring compounds and hydrophobic
molecules, thus providing a minimalistic test set without additional challenges, such as protonation,
tautomerism or extensive conformational flexibility. We have previously used this test set to study
polarization energies [141], the convergence of free energy simulations [133] and the use of 1-butanol
for the extraction of polar solutes [142].

Figure 1. Twelve simple molecules were employed for the determination of hydration free energies.

All free energy calculations were conducted using the CHARMM software [143,144], with the
CHARMM General Force Field (CGenFF) for organic molecules [145] (the fixed charge force field)
and the CHARMM Drude force field (polarizable force field) [146–151]. To determine ∆Ghyd, each
molecule was alchemically annihilated both in the aqueous phase and in the gas phase. The gas phase
simulations used Langevin dynamics with a friction coefficient of 1 ps−1 and a temperature of 300 K.
The simulation time was 500 ns, and coordinates were saved every 20 ps.

We modeled the aqueous phase with 1687 water molecules in a cubic simulation cell with edge
lengths between 36.85 and 36.89 Å, as determined from equilibration simulations of 0.5 ns in the isobaric
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isothermal ensemble (NPT). For the fixed charge simulations, we used CHARMM TIP3P water with
Lennard–Jones parameters on the hydrogens [152] and a Nosé–Hoover thermostat [153,154] at 300 K.
We performed the Drude simulations with the SWM4 water model [155] and an operator-splitting
velocity-Verlet algorithm [156], using a response time τ of 0.1 and a temperature of 300 K for the
atomic particles and a τ of 0.005 and a temperature of 1 K for the relative motion of Drude particles.
The friction constant was set to 10 ps−1. In all solvent simulations, long-range electrostatic interactions
were computed with the particle Mesh Ewald method [157], and Lennard–Jones interactions were
switched off between 10 and 12 Å. All molecules were first equilibrated for 0.5 ns using constant
pressure, followed by an equilibration of each alchemical transformation state (λ state) for 0.5 ns in the
constant volume ensemble (NVT). Production simulations in aqueous solution were conducted for
5 ns. All simulations used a time step of 1 fs, saving frames every 1000 steps. SHAKE [158] was used
to keep all bonds in the solvent rigid.

Both the simulations in the aqueous phase and in the gas phase employed λ-Hamiltonian
replica exchange [159] to enhance sampling by exchanging structures between adjacent λ states
every 20,000 steps, using the REPD module of CHARMM. The free energy calculation was broken
into two parts. First, the charges were scaled to zero (∆Gchar), using three steps for the fixed charge
force field (λ = 0.00, 0.20, 0.55 and 1.00) and five steps for the Drude force field (λ = 0.00, 0.10, 0.25,
0.5, 0.75 and 1.00). The choice of this protocol is discussed in more detail in Appendix A. Second,
the van der Waals interactions were turned off (∆Gvdw) with λ = 0.00, 0.15, 0.30, 0.45, 0.60, 0.75, 0.87,
0.96 and 1.00 for the fixed charge force field and λ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0
for the Drude force field. Soft core potentials, as implemented with the PSSP command in the PERT
module of CHARMM, were used with the default parameters to avoid the “van der Waals endpoint
problem [143,160].” Based on the information in the Hamiltonian replica exchange log file, free energy
differences were calculated with Bennett’s acceptance ratio (BAR) method [161], as implemented in the
FREN module of CHARMM. Each free energy simulation was repeated four times to calculate averages
and standard deviations.

2.2. QM/MM Corrections

The last 9000 frames of the physical end points were employed for multi-scale free energy
simulations between the MM and QM Hamiltonians. QM calculations were performed with
Q-Chem [162] based on the Q-Chem/CHARMM interface [163]. In particular, potential energy
differences were evaluated with four different methods using the 6-31G(d) basis set [164]:
BLYP [165,166], B3LYP [167], Hartree–Fock and M06-2X [168,169]. The second-order Møller–Plesset
(MP2) [170] results were calculated with the aug-cc-pVDZ basis set [171]. The SCF convergence
criterion was set to 10−10. The semi-empirical QM calculations (SQM) were performed with the MNDO
program [172], using OM2 [173,174] and AM1 [175]. Additional calculations were also performed
with PM3 [176], but the results were poor (RMSD > 3.5 kcal/mol), in agreement with our previous
experiences in the SAMPL5 challenge [130].

Electrostatic embedding was used (i.e., the QM or SQM solute is polarized by the MM point
charges of the solvent, but the solute–solvent van der Waals interactions are still calculated on
the MM level). Since Q-Chem and MNDO do not support periodic boundary conditions (PBC)
in a fully consistent manner, potential energy differences for the free energy corrections were
calculated by centering the solvent box around the solute molecule with the MERGE command of
CHARMM, followed by a potential energy evaluation of the simulation box without any cutoffs.
Only the solute–solute and electrostatic solute–solvent interactions were considered for the potential
energy differences, by using the BLOCK module of CHARMM. This is justified by the fact that the
solvent–solvent interactions and the solute–solvent van der Waals interactions cancel when calculating
the potential energy difference between MM and QM/MM. This way, also long-range electrostatic
interactions are still considered, but only at the MM level. This treatment is analogous to that done
in [79,130,177]. For the Hartree–Fock QM/MM corrections based on the Drude simulations, we also
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considered potential energy evaluations where all Drude particles within 6 Å of the solute were first
relaxed with 100 steps of conjugate gradient energy minimization using the MM force field, followed
by five steps of energy minimization with QM/MM. This allows some response to the polarization
from the QM region. All other particles were held in place during the minimization with the CONS FIX
command.

The MM→(S)QM/MM free energy corrections were computed with the Zwanzig equation (also
known as free energy perturbation or the exponential formula), as implemented in the FREN module of
CHARMM [178]. This choice is justified, since the limiting factor for convergence is the phase space
overlap between MM and QM [177,179]. A more thorough discussion of this aspect can be found
in [133], where Figure 10 is based on exactly the same data as some of the gas phase results here.

2.3. Generation of the MM’ Tailored Force Field

To illustrate the effect of adjusting the bonded parameters of the force field on the convergence of
multi-scale free energy simulations, tailored force field parameters were generated for each molecule
based on OM2. For this purpose, the initial conformation in the gas phase of each molecule was
energy minimized. The resulting OM2-optimized structure was then used to populate the bond and
angle parameters in CHARMM. To allow unique equilibrium bond length and angle values for all
atoms, every atom was assigned to its own unique type. Charge and Lennard–Jones parameters for
each unique atom type were obtained from the original parameterization. The overall procedure
of generating tailored bonded parameters was implemented as the new QMFIX command in the
FREN module of CHARMM. Tailored parameter and topology files were written with the MKDUMMY
command in the FREN module.

Based on the original parameters and the tailored MM’ force field, simulations of only the
physical end points in both the gas phase and in solution were performed. The simulation length was
adjusted to 100 ns in the gas phase and 10 ns in the aqueous phase, with 10,000 frames saved for later
analysis and all other settings unchanged. Three different ways to calculate the QM/MM free energy
corrections were employed: (a) using the Zwanzig equation based on a simulation with the original
force field; (b) using the Zwanzig equation based on a simulation with the MM’ tailored force field;
(c) combining the data of the original force field and the MM’ tailored force field simulation with the
Non-Boltzmann–Bennett (NBB) method [79,80,180].

3. Results and Discussion

Before discussing the impact of using QM/MM on the affinity for water, it is illustrative to
observe the faithfulness of the solute–water interactions in pure MM. Hydration free energies have
been classical benchmark systems for decades. In the CHARMM force field, the compatibility with a
particular water model such as TIP3P is a centerpiece of the parameterization strategy, in particular for
the charges. Thus, it is expected that the interactions with water are comparable to experiment.

Table 1 lists the hydration free energies for both the CHARMM fixed charge force field (∆GFC
hyd)

and the Drude force field (∆GDrude
hyd ). More detailed results, listing the free energy results of the gas

phase, electrostatic and van der Waals changes can be found in Appendix B. Since each simulation
was repeated four times, also the corresponding standard deviations of the results are provided.
The overall metrics for agreement with experiment are listed in the last three rows. While the fixed
charged force field exhibits a root mean squared deviation (RMSD) of 0.89 kcal/mol, the Drude force
field reaches an RMSD of 0.55 kcal/mol. Thus, the Drude force field outperforms the fixed charge force
field. Both force fields yield what is considered “chemical accuracy”, but this is most likely a reflection
of the simplicity of the test set and the high level of optimization of the parameters. In terms of mean
signed deviation, the Drude force field also yields a more favorable result (0.04 kcal/mol compared to
0.65 kcal/mol). This indicates some small systematic bias of the fixed charge force field in terms of
being overly hydrophobic. The correlation coefficients with the experiment are in both cases excellent
(R2 of 0.97 and 0.99).
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The last column of Table 1 lists the differences between the fixed charge and the Drude force field
results. While the deviations for most apolar molecules are not statistically significant, the results
for water, acetamide and phenol differ by more than one kcal/mol. Furthermore, several other polar
molecules exhibit a change of their ∆Ghyd, but all changes improve the agreement with experiment.
The only notable exception is cyclohexane, where the deviation from the experimental ∆Ghyd increases
from ca. half to one kcal/mol. On the other hand, the small differences for methanol and ethanol are a
bit surprising.

The increased accuracy of the Drude force field comes at a price though. First, the average CPU
times for the aqueous phase simulations increase by at least a factor of two due to the additional
Drude and lone pair particles. Second, additional λ points were required to achieve approximately
the same level of precision as the fixed charge force field. This aspect is more thoroughly discussed
in Appendix A based on the ∆Gchar calculations. The largest differences between the fixed charge
and the Drude force field are found for acetamide (2.5 kcal/mol), phenol (2.35 kcal/mol), aniline
(1.08 kcal/mol), benzene (1.07 kcal/mol) and water (−1.14 kcal/mol).

Table 1. Hydration free energies obtained with the CHARMM fixed charge and the CHARMM Drude
force field in kcal/mol.

Molecule Expt. a ∆GFC
hyd

b ∆GDrude
hyd

c ∆∆GFC−Drude
d

water −6.31 −6.91 ± 0.04 −5.77 ± 0.02 −1.14
methanol −5.10 −4.68 ± 0.02 −4.90 ± 0.03 0.21
ethanol −5.05 −4.62 ± 0.08 −4.65 ± 0.05 0.02
methanethiol −1.24 −0.23 ± 0.01 −1.04 ± 0.03 0.80
acetamide −9.68 −8.15 ± 0.06 −10.64 ± 0.06 2.50
tetrahydrofuran −3.47 −2.55 ± 0.05 −3.12 ± 0.03 0.57
benzene −0.86 −0.29 ± 0.03 −1.36 ± 0.05 1.07
phenol −6.61 −4.72 ± 0.07 −7.07 ± 0.03 2.35
aniline −5.49 −5.05 ± 0.04 −6.13 ± 0.05 1.08
ethane 1.83 2.23 ± 0.01 2.16 ± 0.02 0.07
hexane 2.48 2.77 ± 0.07 2.54 ± 0.08 0.23
cyclohexane 1.23 1.77 ± 0.04 2.15 ± 0.04 −0.38

RMSD e 0.89 0.53
MSD f 0.65 0.04
R2 g 0.97 0.99

a Experimental hydration free energies. b Hydration free energies obtained with the CHARMM fixed charge force
field. c Hydration free energies obtained with the CHARMM Drude force field. d Difference between fixed charge
and the Drude model. e Root mean squared deviation from experimental data. f Mean signed deviation from
experimental data. g Square of the Pearson correlation coefficient between calculated and experimental hydration
free energies.

The ∆Ghyd values obtained from different QM/MM methods based on trajectories with the
CHARMM fixed charge force field are presented in Table 2. The columns are ordered based on the
RMSD of the corresponding method from experimental hydration free energies, starting with the
lowest RMSD on the left. The last six rows again represent the root mean squared deviation from
experiment, the mean signed deviation and the Pearson correlation coefficient. RMSD, MSD and R2

are given twice: once for the complete dataset (unmarked) and once for all molecules except ethanol
and acetamide (marked with asterisks). The two molecules were omitted because of the high standard
deviations of more than one kcal/mol in some calculations (ethanol in the case of the fixed charge
force field and acetamide because of problems encountered with the Drude force field). This allows a
direct comparison of the converged parts of the two datasets.
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Table 2. Hydration free energies of QM/MM with different QM methods based on trajectories of the
CHARMM fixed charge force field.

Molecule Expt. a OM2 BLYP B3LYP M06-2X MP2 AM1 HF

water −6.31 −4.4± 0.2 −8.1± 0.2 −8.8± 0.2 −9.6± 0.2 −8.8± 0.2 −2.3± 0.2 −10.0± 0.2
methanol −5.10 −4.2± 0.4 −5.1± 0.2 −5.1± 0.1 −5.5± 0.1 −5.8± 0.1 −1.6± 0.1 −6.3± 0.2
ethanol −5.05 −6.7± 1.3 −8.5± 1.8 −7.0± 1.8 −7.2± 1.8 −8.1± 2.0 −2.0± 0.4 −6.6± 0.8
methanethiol −1.24 −0.8± 0.2 −2.6± 0.4 −3.0± 0.3 −3.2± 0.2 −3.2± 0.3 −4.0± 0.2 −3.5± 0.1
acetamide −9.68 −12.7± 0.6 −11.4± 0.9 −12.2± 0.6 −12.9± 0.6 −13.8± 0.5 −8.4± 0.4 −14.8± 0.7
tetrahydrofuran −3.47 −4.5± 0.6 −3.4± 0.3 −4.2± 0.2 −4.6± 0.3 −5.3± 0.3 −2.2± 0.5 −5.9± 0.4
benzene −0.86 −2.1± 0.2 −0.5± 0.2 −0.9± 0.2 −1.4± 0.2 −1.5± 0.2 0.1± 0.3 −1.8± 0.2
phenol −6.61 −5.5± 0.5 −6.0± 0.4 −6.9± 0.3 −7.7± 0.3 −7.7± 0.4 −2.7± 0.3 −8.3± 0.5
aniline −5.49 −6.0± 0.4 −7.3± 0.8 −7.9± 0.4 −8.7± 0.3 −9.0± 0.4 −3.6± 0.6 −8.8± 0.3
ethane 1.83 1.8± 0.1 2.0± 0.1 1.9± 0.1 1.9± 0.1 1.7± 0.1 2.1± 0.1 1.9± 0.1
n-hexane 2.48 1.8± 0.4 2.3± 0.3 2.1± 0.3 1.9± 0.3 1.5± 0.3 2.5± 0.4 2.1± 0.4
cyclohexane 1.23 0.9± 0.5 1.2± 0.2 1.1± 0.2 1.1± 0.2 0.8± 0.2 1.3± 0.3 1.0± 0.5

RMSD b 1.3 1.4 1.5 1.9 2.1 2.4 2.4
MSD c −0.3 −0.8 −1.0 −1.5 −1.7 1.5 −1.9
R2 d 0.90 0.94 0.97 0.97 0.97 0.74 0.97

RMSD * 1.0 0.9 1.3 1.7 1.7 2.4 2.0
MSD * 0.1 −0.4 −0.8 −1.2 −1.4 1.3 −1.6
R2 * 0.92 0.95 0.95 0.95 0.96 0.65 0.97

a Experimental hydration free energies. b Root mean squared deviation from experimental data. c Mean
signed deviation from experimental data. d Square of the Pearson correlation coefficient between calculated and
experimental hydration free energies. * marks results that exclude ethanol and acetamide due to the associated
high uncertainties.

Overall, the QM/MM results with electrostatic embedding and CHARMM TIP3P water in the
MM region are slightly disappointing. The RMSD vary between 1.3 and 2.4 kcal/mol, which is worse
than the pure MM result of 0.9 kcal/mol. This finding can partly be explained by the high level of
optimization of the MM force field. Furthermore, the QM methods were not adapted to cancel some of
the shortcomings of the TIP3P water model.

Before discussing the results in more detail, we want to validate our protocol for obtaining
QM/MM hydration free energies based on the existing literature. The ∆Ghyd values for water are in
good agreement with relative free energy results between MM and QM based on QM/MM sampling
with Monte Carlo simulations by Shaw, Woods and Mulholland [181]. Table 1 of [181] lists a free
energy difference between QM water and CHARMM TIP3P water of 1.5± 0.5 kcal/mol for MP2,
while we obtain a difference of 1.9± 0.2 kcal/mol. The discrepancies for BLYP (0.5± 0.3 versus our
1.2± 0.2 kcal/mol) and HF (2.7± 0.5 versus 3.1± 0.2 kcal/mol) are higher, but this can be explained
by the use of different basis sets (Shaw et al. used aug-cc-pVDZ, while we employed 6-31G(d)).
Furthermore, the BLYP and M06-2X ∆Ghyd values exhibit an average deviation of 0.5 and 0.3 kcal/mol
from the results published in Table 4 of [141]. The small discrepancies can be explained by the use of
rigid gas-phase geometries for the solutes in [141] and by the high uncertainty of the ethanol result
here. For B3LYP, the ∆Ghyd values for ethane (1.9 kcal/mol) and methanol (−5.1 kcal/mol) are in
excellent agreement with previously published hydration free energy differences (−7.0 kcal/mol here
compared to −6.96 kcal/mol in Table 1 of [80] and −7.15 kcal/mol in Figure 7 of [177]). The relatively
good agreement with previously published results, in conjunction with the simplicity of the solutes
and the high number of QM/MM potential energy evaluations, supports our findings.

In terms of the compatibility of different QM methods with CHARMM TIP3P water based on
the RMSD from experiment, the OM2 method seems to be the best (RMSD = 1.3 kcal/mol), followed
by BLYP (1.4 kcal/mol), B3LYP (1.5 kcal/mol), M06-2X (1.9 kcal/mol), MP2 (2.1 kcal/mol), AM1
(2.4 kcal/mol) and HF (2.4 kcal/mol). This finding agrees with the ranking by Shaw et al. based
on the free energy difference between QM and MM water (BLYP < MP2 < HF) [181]. To some
degree, it is surprising that the semi-empirical method OM2 and the pure functional BLYP clearly
outperform more advanced QM methods. As discussed in Section IV E and Table S14 of [141], the
QM/MM electrostatics become more attractive as the amount of Hartree–Fock exchange increases
from BLYP to B3LYP to M06-2X to HF/MP2. With fixed QM/MM van der Waals interactions, the
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hydration free energies become more negative. The MSD are −0.8 kcal/mol for BLYP, −1.0 kcal/mol
for B3LYP, −1.5 kcal/mol for M06-2X and −1.9 kcal/mol for Hartree–Fock. Thus, the QM/MM
results are significantly too hydrophilic. Although the CHARMM charges are based on Hartree–Fock
calculations [145], the results imply that Hartree–Fock itself is not particularly suited for QM/MM
simulations, due to the large systematic bias in favor of solute–solvent interactions. However, since
the QM/MM ∆Ghyd values are highly correlated with the experimental data, it is possible to address
this shortcoming by scaling the interactions. This is illustrated in Appendix C.

The ∆Ghyd values obtained from different QM/MM methods based on trajectories with the
CHARMM Drude force field are presented in Table 3. The columns are again ordered based on
the RMSD of the corresponding method from experimental ∆Ghyd values, starting with the lowest
RMSD on the left. Except for the two semi-empirical methods, the rank order of the QM methods
based on RMSD is actually inverted, with Hartree–Fock (RMSD = 2.4 kcal/mol) followed by MP2
(2.4 kcal/mol), M06-2X (2.6 kcal/mol), B3LYP (2.7 kcal/mol) and BLYP (3.1 kcal/mol). However, the
RMSD is not a reliable measure here, since the acetamide results are far from converged, with standard
deviations between 1.4 and 2.9 kcal/mol. As more thoroughly discussed in a recent paper, high
standard deviations in multi-scale free energy simulations can be an indicator that the MM energy
minimum is very far away from the QM energy minimum [133]. Indeed, when comparing the optimal
C–C bond length of acetamide of MM (1.153 Å for the types CD201A and CD33C) with, e.g., the bond
length of an energy optimized structure with OM2 (1.513 Å), there is a clear discrepancy of 0.36 Å,
which leads to substantial energy differences. Given that the equilibrium bond lengths of C–C bonds
are typically between 1.35 and 1.55 Å in the CHARMM force field, this is a clear indication for a typo
in the Drude parameter file for acetamide. A further investigation is in progress.

Table 3. Hydration free energies of QM/MM with different QM methods based on trajectories of the
CHARMM Drude force field.

Molecule Expt. a OM2 HF MP2 M06-2X B3LYP BLYP AM1

water −6.31 −2.8± 0.2 −6.3± 0.2 −4.4± 0.2 −5.4± 0.2 −4.6± 0.2 −3.2± 0.2 −1.8± 0.2
methanol −5.10 −3.2± 0.2 −4.7± 0.3 −4.6± 0.4 −4.3± 0.2 −3.7± 0.2 −3.3± 0.3 −1.7± 0.2
ethanol −5.05 −2.9± 0.4 −3.5± 0.4 −3.6± 0.2 −3.2± 0.3 −2.7± 0.2 −2.3± 0.4 −0.7± 0.5
methanethiol −1.24 −1.0± 0.2 −2.8± 0.4 −1.8± 0.2 −2.0± 0.3 −1.4± 0.3 −0.1± 0.4 −2.0± 0.2
acetamide −9.68 −7.5± 2.7 −2.6± 2.2 −2.8± 1.3 −1.9± 1.6 −1.5± 1.6 −0.6± 1.7 −3.0± 2.9
tetrahydrofuran −3.47 −3.8± 0.5 −2.6± 0.3 −2.3± 0.2 −1.6± 0.2 −1.2± 0.2 −0.5± 0.3 −1.6± 0.5
benzene −0.86 −2.3± 0.3 −1.1± 0.4 −0.9± 0.2 −0.7± 0.3 −0.4± 0.2 0.0± 0.2 −0.3± 0.3
phenol −6.61 −8.1± 0.8 −9.9± 1.2 −10.4± 0.4 −9.5± 0.9 −8.8± 0.7 −8.4± 0.4 −3.8± 0.4
aniline −5.49 −5.8± 0.6 −7.4± 1.1 −7.1± 0.4 −7.1± 0.7 −6.1± 0.5 −5.5± 0.5 −3.2± 0.5
ethane 1.83 1.9± 0.1 2.2± 0.2 2.4± 0.2 2.3± 0.2 2.4± 0.2 2.9± 0.2 2.5± 0.2
hexane 2.48 2.4± 0.3 2.5± 0.6 2.7± 0.3 2.9± 0.3 2.9± 0.3 3.3± 0.3 2.7± 0.3
cyclohexane 1.23 1.8± 0.3 1.9± 0.3 2.0± 0.2 2.1± 0.2 2.2± 0.2 2.5± 0.2 1.9± 0.3

RMSD b 1.6 2.4 2.5 2.6 2.7 3.2 3.2
MSD c 0.6 0.3 0.6 0.8 1.3 1.9 2.3
R2 d 0.85 0.63 0.64 0.61 0.61 0.57 0.78

RMSD * 1.4 1.4 1.5 1.3 1.3 1.7 2.2
MSD * 0.3 −0.5 −0.1 0.0 0.5 1.1 1.6
R2 * 0.82 0.92 0.88 0.90 0.90 0.87 0.84

a Experimental hydration free energies. b Root mean squared deviation from experimental data. c Mean
signed deviation from experimental data. d Square of the Pearson correlation coefficient between calculated and
experimental hydration free energies. * marks results that exclude ethanol and acetamide due to the associated
high uncertainties.
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Ignoring the flawed acetamide results and focusing on the metrics marked with an asterisk,
the overall results of most methods (except BLYP and AM1) are surprisingly similar, with RMSD *
between 1.3 and 1.5 kcal/mol and MSD * between mere −0.4 and 0.5 kcal/mol. While the RMSD *
are a little bit higher than the best results for the CHARMM TIP3P water model (RMSD * between
0.9 and 2.4 kcal/mol), the consistency between most methods and the low systematic errors can
be regarded as a sign of better compatibility with QM/MM methods. Given that the development
of polarizable Drude force fields is still in its early stages, one can still expect some improvements
in the future. The AM1 semi-empirical method is among the most inaccurate methods in the test
set, with RMSD of 2.4 kcal/mol for the fixed charge model and 3.1 kcal/mol for the Drude model.
In the light of such results, it is somewhat surprising that the popular AM1-BCC method to determine
MM charges [182,183], which builds upon AM1, is as effective as it is when it comes to hydration free
energies [44].

Another aspect that can influence the accuracy of the Drude oscillator model is the use of the
extended Lagrangian formalism [184], in which Drude particles have a mass and kinetic energy. This
implies that the particles do not necessarily reside at the energy minimum at each step. Also in our
QM/MM energy evaluations, the Drude particles in the MM region were not relaxed in response to
the QM wave function. To evaluate the effect of relaxing the Drude particles, five steps of conjugate
gradient energy minimization were performed with QM/MM after an MM SCF optimization of the
Drude particles. The resulting hydration free energies for Hartree–Fock with the extended Lagrangian
approach (HF-EL) and based on the self-consistent optimization of the Drude particles (HF-SCOD) are
shown in Table 4. While the overall agreement with experiment in terms of the RMSD does not change
significantly with the use of self-consistent Drude particles (RMSD of 2.4 and 2.5 kcal/mol), the solvent
affinity increases in all cases (as it should). For the Hartree–Fock calculations, this leads to a lower
systematic error in terms of MSD of a mere 0.04 kcal/mol (instead of 0.34 kcal/mol). The average
change of 0.3 kcal/mol is lower than the average standard deviation of ca. 0.7 kcal/mol, so most
differences here are not statistically significant.

Table 4. Comparison of the QM/MM hydration free energies with Hartree–Fock based on the
extended Lagrangian formalism (HF-EL) and with a self-consistent optimization of the Drude particles
(HF-SCOD) in kcal/mol.

Molecule Expt. a HF-EL b HF-SCOD c Diff d

water −6.31 −6.3± 0.1 −6.5± 0.1 0.2
methanol −5.10 −4.7± 0.4 −4.8± 0.3 0.1
ethanol −5.05 −3.5± 0.5 −3.7± 0.5 0.2
methanethiol −1.24 −2.8± 0.4 −3.1± 0.4 0.3
acetamide −9.68 −2.8± 2.2 −2.7± 2.2 0.0
tetrahydrofuran −3.47 −2.6± 0.3 −2.8± 0.3 0.3
benzene −0.86 −1.1± 0.7 −1.6± 0.7 0.5
phenol −6.61 −9.9± 1.2 −10.2± 1.0 0.3
aniline −5.49 −7.2± 1.2 −7.8± 1.2 0.6
ethane 1.83 2.2± 0.2 1.9± 0.2 0.3
n-hexane 2.48 2.6± 0.6 2.1± 0.6 0.5
cyclohexane 1.23 1.9± 0.3 1.5± 0.3 0.4

RMSD e 2.4 2.5
MSD f 0.3 0.0

a Experimental hydration free energies. b QM/MM hydration free energies with Hartree–Fock/6-31G(d)
based on CHARMM Drude trajectories using the extended Lagrangian formalism. c QM/MM hydration free
energies with Hartree–Fock/6-31G(d) based on CHARMM Drude trajectories after self-consistent optimization
in the post-processing step. d Difference between the extended Lagrangian and the self-consistent Drude
particle results. e Root mean squared deviation from experimental data. f Mean signed deviation from
experimental data.
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Because the convergence of some of the QM/MM ∆Ghyd results was not satisfactory, we also
explored the possibility to improve this situation by employing a tailored force field (denoted as MM’).
By adopting bonded terms that match more closely the bond lengths and angles encountered in the
target QM method, the phase space overlap is supposed to be increased, which also improves the
convergence of the free energy calculation between MM and QM [133]. The approach is outlined
in Figure 2. In particular, we explored three different ways to perform the “bookend” corrections:
(a) using the Zwanzig equation [178] to directly calculate the free energy difference between the
MM force field and the QM Hamiltonian; (b) generating an MM’ tailored force field with optimized
parameters to increase the phase space overlap with the QM Hamiltonian; the free energy difference
between the original force field and the tailored force field can be calculated with Bennett’s acceptance
ratio method (BAR) [161], while the free energy difference between the modified MM’ force field and
the QM state is calculated with the Zwanzig equation; (c) combining all the potential energy data from
MM, MM’ and QM with the Non-Boltzmann–Bennett equation [79,80,180].

a b c

Figure 2. Three ways to calculate the free energy difference between an MM state and a QM state:
(a) calculating the free energy difference between an MM end state and QM with the Zwanzig equation;
(b) generating a tailored force field (MM’) with better overlap with the QM target to calculate the free
energy difference; (c) combining data from both MM, MM’ and QM.

A comparison of the results of the three theoretically equivalent approaches is given in Table 5.
The third column (MM→QM) reflects the ∆Ghyd values from direct free energy calculations between
MM and QM energy surfaces using the Zwanzig equation. In principle, the results here should
correspond to those in the third column of Table 2 (OM2). However, since different trajectories and
setups were employed, one can expect some small discrepancies. The overall RMSD (1.5 compared to
1.3 kcal/mol) and MSD (0.3 versus −0.3 kcal/mol) are similar compared to Table 2, which serves as
another verification of the approach. The third column of Table 5 shows the results obtained using the
tailored MM’ force field to calculate the free energy difference to the QM state. The ∆Ghyd values of
Columns 2 and 3 should also match within the corresponding uncertainties, since the end points
are the same. Indeed, except for aniline, the differences between the two columns are below
0.2–0.3 kcal/mol, which also corresponds to the average standard deviation of the results (shown in
the last line). Importantly, the average standard deviation is a little bit lower for the MM→MM’→QM
transformation, due to the increased phase space overlap between the MM’ and the QM state. The last
column shows the result of an NBB calculation that combines the potential energy data of the
two transformations in an optimal way. The fact that the NBB results are almost identical to the
MM→MM’→QM transformation further indicates that there is more phase space overlap between the
MM’ and QM state, thus dominating the NBB calculation. However, the overall improvement is rather
small, which signifies that the original bonded parameters were already well optimized.



Molecules 2018, 23, 2695 11 of 25

Table 5. Comparison of the three different approaches to obtain QM/MM hydration free energies with
OM2 and the fixed charge force field.

Molecule Expt. a MM→QM b MM→MM’→QM c NBB d

water −6.31 −4.4± 0.2 −4.5± 0.2 −4.4± 0.2
methanol −5.10 −2.7± 0.1 −2.9± 0.1 −2.8± 0.1
ethanol −5.05 −3.0± 0.3 −3.1± 0.3 −3.1± 0.3
methanethiol −1.24 −0.7± 0.1 −0.7± 0.1 −0.7± 0.1
acetamide −9.68 −12.7± 0.4 −12.5± 0.4 −12.5± 0.4
tetrahydrofuran −3.47 −3.9± 0.5 −4.1± 0.4 −4.2± 0.4
benzene −0.86 −2.0± 0.2 −2.1± 0.2 −2.0± 0.2
phenol −6.61 −5.0± 0.5 −5.2± 0.3 −5.2± 0.3
aniline −5.49 −5.1± 0.5 −5.8± 0.2 −5.8± 0.2
ethane 1.83 1.8± 0.1 1.8± 0.1 1.8± 0.1
hexane 2.48 1.7± 0.3 1.6± 0.4 1.6± 0.4
cyclohexane 1.23 1.0± 0.2 0.9± 0.2 0.9± 0.2

RMSD e 1.5 1.5 1.5
MSD f 0.3 0.2 0.2
〈SD〉 g 0.3 0.2 0.2

a Experimental hydration free energies. b QM/MM hydration free energies obtained with the Zwanzig
equation based on the CHARMM fixed charge force field. c QM/MM hydration free energies obtained with
the Zwanzig equation based on a tailored force field that matches the gas phase bond lengths and angles,
plus the correction for the free energy change between the original force field and the tailored force field.
d QM/MM hydration free energies obtained with the NBB equation based on data from both the original
force field and the tailored force field. e Root mean squared deviation from experimental data. f Mean signed
deviation from experimental data. g Average standard deviation of simulations.

4. Conclusions

In this work, we computed hydration free energies for twelve simple solutes to determine an
effective choice of QM method to use in combination with explicit solvent. Here, we focused on the
fixed charge CHARMM TIP3P and the polarizable SWM4 water model in the CHARMM force field.
As a reference, we first provided hydration free energies based on pure MM simulations. Both the
fixed charge (RMSD = 0.89 kcal/mol) and the Drude force field simulations (RMSD = 0.55 kcal/mol)
exhibit excellent agreement with the experimental data and are well converged with respect to
conformational sampling.

For QM/MM hydration free energy calculations based on the CHARMM CGenFF fixed charge
force field, the best results were obtained with the OM2 semi-empirical method (RMSD = 1.3 kcal/mol)
and the BLYP method (RMSD = 1.4 kcal/mol). The other methods (B3LYP, M06-2X, MP2, AM1
and Hartree–Fock) yielded RMSD between 1.5 and 2.4 kcal/mol. This ranking of QM methods
agrees with the previous observation that the systematic error of hydration free energies of QM/MM
methods with CHARMM TIP3P water increases systematically with the amount of Hartree–Fock
exchange [141]. Therefore, we recommend using either OM2 or BLYP for QM/MM simulations in
aqueous solution with CHARMM TIP3P water. This QM/MM protocol was also successfully applied
to the calculation of distribution coefficients in SAMPL5 [130], which reflects the change from a
hydrophilic to a hydrophobic environment.

As for the QM/MM hydration free energy calculations based on the CHARMM Drude force field,
the best results were obtained with the OM2 semi-empirical method (RMSD = 1.6 kcal/mol). However,
the ranking of the other methods is nearly reversed, with Hartree–Fock (RMSD = 2.4 kcal/mol)
outperforming MP2, M06-2X, B3LYP, BLYP and AM1. The MP2, M06-2X and Hartree–Fock
methods perform slightly better with the Drude force field in terms of RMSD, and their systematic
error is significantly lower. Thus, if a potential bias from the solute–solvent interactions is
a concern, it might be advisable to employ the Drude force field for QM/MM simulations
with those methods. However, the performance of QM/MM with the Drude force field is only
marginally better. Furthermore, the Drude accuracy between the extended-Lagrangian (EL) and
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self-consistent optimization implementations is statistically indistinguishable, but can slightly affect
the systematic bias.

Overall, the OM2 semi-empirical method shows the best performance for both datasets with
RMSD of 1.3 and 1.6 kcal/mol, while the AM1 semi-empirical method exhibits the worst performance
with RMSD of 2.4 and 3.1 kcal/mol. The PM3 semi-empirical method was omitted in the manuscript
because of its RMSD of 3.5 and 4.5 kcal/mol, further demonstrating the high variability in the quality of
semi-empirical methods. However, both the accuracy and robustness of the OM2 hydration free energy
results are very encouraging, especially since the OM2 parametrization did not include solvation free
energies. This makes the method suitable for improving the quality of MM free energy predictions
via post-processing, as OM2 can be applied to thousands of snapshots within mere minutes on a
commodity laptop.

Our results also corroborate the conclusions of a recent study by Ganguly, Boulanger and
Thiel [185]. The effect of MM polarization via Drude particles on QM/MM hydration free energies
is only moderate compared to the well-developed CHARMM fixed charge force field. Fixed charge
force fields are well tested, faster and more robust than the recently developed polarizable force fields.
Therefore, they will most likely continue to play a significant role in computational chemistry. While
polarization is a highly relevant physical effect, Drude force fields still neglect other important factors
such as charge penetration, coupling of polarization with many-body exchange, dispersion and charge
transfer [186–188]. In addition, the impact of Drude point charges in proximity to the QM region is
still unclear at this point.

The force field parameters (e.g., the van der Waals parameters) will likely have to be adapted
according to the target QM function. Thus, some form of tailored MM’ force field will be beneficial for
future applications of QM/MM in multi-scale free energy simulations. The need for improvement is
highlighted by the systematic errors of QM/MM in the kcal/mol range, as well as the clear superiority
of the MM ∆Ghyd results compared to QM/MM. Our results show that spending computer power
to add all the right physics to the QM region in a QM/MM simulation will be in vain if the MM
description of the solvent environment is not compatible with the QM description of the solute.
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∆Ghyd Hydration free energy
∆Gchar Free energy difference of removing the charges of the solute
∆Gvdw Free energy difference of removing the Lennard–Jones interactions of the uncharged solute
BAR Bennett’s acceptance ratio
CGenFF CHARMM General Force Field
EL Extended Lagrangian
HF Hartree–Fock
MM Molecular mechanics
MP2 second-order Møller–Plesset
MSD Mean-signed deviation
NBB Non-Boltzmann–Bennett
PBC Periodic boundary conditions
QM Quantum mechanics
R2 Pearson’s correlation coefficient squared
RMSD Root mean squared deviation
SCF Self-consistent field
SCOD Self-consistent optimized Drude
SD Standard deviation
SQM Semi-empirical QM
TI Thermodynamic integration

Appendix A. Convergence of MM Charge Change Simulations

Figure A1 shows a comparison of the convergence of the ∆Gchar free energy estimates of the
fixed charge (left side) and Drude force field (right). The first row shows the average deviation of
all twelve molecules with respect to a reference BAR protocol with four λ steps (λ = 0.00, 0.25, 0.50,
0.75, 1.00). Each λ point uses 1900 snapshots from 1.9 ns of simulation time, and each simulation
was repeated four times to obtain standard deviations. The second row shows the average standard
deviation of the free energy estimates. In addition, each plot also shows a comparison of BAR free
energy estimates (blue) with the corresponding estimates based on Thermodynamic Integration
(TI) [189] using Clenshaw–Curtis numerical quadrature (red) [190]. Clenshaw–Curtis quadrature is
an attractive option for Thermodynamic Integration because it uses the physical end points of the
simulation and is nestable. In addition, it is almost as efficient as the well-known Gauss–Legendre
method [191–193]. In contrast to Gauss–Legendre quadrature, which does not include the physical
end points, Clenshaw–Curtis quadrature allows a direct comparison to BAR, using exactly the same
potential energy data.

Focusing on the average deviation of the free energy estimates (top of Figure A1), one can observe
that more λ steps are necessary with the Drude force field in order to yield the same level of accuracy
and precision as the fixed charge force field. The TI results based on one λ step only use the physical
end points, which implicitly assumes that the ∂G

∂λ is linear. Thus, the errors of the one-step TI protocol
are an indicator for higher-order coupling within the system and that the probability distribution of the
potential energy difference cannot be described by a Gaussian [30,194]. Not surprisingly, this problem
is more pronounced in the polarizable Drude force field with an average error of 4.37 kcal/mol of
the one-step protocol (compared to an error of 1.11 kcal/mol for the fixed charge force field). This
suggests that linear response methods such as the Linear Interaction Energy method [195] or low-order
cumulant expansion [196] are only marginally compatible with the Drude force field.
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The average standard deviation (bottom of Figure A1) is elevated for the one-step BAR protocol
(0.14 kcal/mol for the fixed charge force field and 0.29 kcal/mol for the Drude force field), while all
other protocols exhibit average standard deviations between 0.04 and 0.08 kcal/mol. This demonstrates
that the precision is not a reliable measure for the accuracy of the free energy estimates. This is especially
striking for TI, where the main source of error arises from the treatment of the higher derivatives of the
integrand. This notwithstanding, both BAR and TI can reach converged values of ∆Gchar with just two
or three λ steps for the molecules considered here. Our choice of using more λ points than necessary
was motivated by the exchange rate of the Hamiltonian replica exchange scheme to increase sampling.

Fixed Charge Drude
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Figure A1. Convergence of the free energy of uncharging (∆Gchar) with respect to the number of λ

steps. (a) Average deviation from reference results for all twelve molecules using the fixed charge force
field. (b) Average deviation from reference results using the Drude force field. (c) Average standard
deviation using the fixed charge force field. (d) Average standard deviation using the Drude force field.
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Appendix B. Detailed MM Free Energy Results

Table A1. Free energy differences of all substeps of the hydration free energy calculations with the
CHARMM fixed charge force field in kcal/mol.

Molecule ∆Ggas
a ∆Gchar

b Ovl c ∆Gvdw
d Ovl c ∆Ghyd

e

water 0.000 ± 0.000 8.99 ± 0.04 33 −2.08 ± 0.01 77 −6.91 ± 0.04
methanol −15.284 ± 0.001 −8.84 ± 0.02 44 −1.76 ± 0.01 64 −4.68 ± 0.02
ethanol 5.217 ± 0.004 11.76 ± 0.02 43 −1.92 ± 0.08 54 −4.62 ± 0.08
methanethiol −5.060 ± 0.001 −3.94 ± 0.01 82 −0.88 ± 0.01 61 −0.23 ± 0.01
acetamide 78.514 ± 0.004 88.01 ± 0.03 31 −1.35 ± 0.05 53 −8.15 ± 0.06
tetrahydrofuran 0.400 ± 0.001 4.12 ± 0.01 56 −1.17 ± 0.05 44 −2.55 ± 0.05
benzene −13.300 ± 0.004 0.00 ± 0.01 76 −13.02 ± 0.03 37 −0.29 ± 0.03
phenol −0.592 ± 0.003 16.79 ± 0.01 48 −12.66 ± 0.07 33 −4.72 ± 0.07
aniline 8.049 ± 0.004 25.89 ± 0.01 47 −12.79 ± 0.04 31 −5.05 ± 0.04
ethane −8.861 ± 0.001 −8.94 ± 0.00 98 −2.15 ± 0.01 59 2.23 ± 0.01
n-hexane −5.165 ± 0.005 −4.69 ± 0.01 94 −3.24 ± 0.06 31 2.77 ± 0.07
cyclohexane −1.584 ± 0.002 −2.29 ± 0.00 96 −1.06 ± 0.04 32 1.77 ± 0.04

a Free energy difference associated with turning off all non-bonded interactions in the gas phase. b Free energy
difference of uncharging the solute in aqueous solution. c Smallest BAR overlap integral of all λ-steps in %
(cf. [133,161,197,198]). d Free energy difference of removing all Lennard–Jones interactions of the uncharged
solute in aqueous solution. e Total hydration free energy (cf. Table 1).

Table A2. Free energy differences of all substeps of the hydration free energy calculations with the
CHARMM Drude force field in kcal/mol.

Molecule ∆Ggas
a ∆Gchar

b Ovl c ∆Gvdw
d Ovl c ∆Ghyd

e

water 0.000 ± 0.000 7.92 ± 0.02 52 −2.15 ± 0.02 78 −5.77 ± 0.02
methanol −11.646 ± 0.003 −5.33 ± 0.01 57 −1.42 ± 0.03 51 −4.90 ± 0.03
ethanol −0.931 ± 0.003 6.08 ± 0.01 51 −2.36 ± 0.05 35 −4.65 ± 0.05
methanethiol −2.528 ± 0.000 −0.28 ± 0.01 83 −1.21 ± 0.03 32 −1.04 ± 0.03
acetamide 104.139 ± 0.004 119.42 ± 0.01 29 −4.63 ± 0.05 35 −10.64 ± 0.06
tetrahydrofuran 0.648 ± 0.002 4.61 ± 0.02 63 −0.84 ± 0.03 20 −3.12 ± 0.04
benzene −22.578 ± 0.003 0.98 ± 0.01 76 −22.20 ± 0.05 8 −1.36 ± 0.05
phenol −16.280 ± 0.010 11.82 ± 0.02 44 −21.03 ± 0.02 7 −7.07 ± 0.03
aniline −7.691 ± 0.014 19.98 ± 0.02 43 −21.54 ± 0.05 7 −6.13 ± 0.06
ethane −3.769 ± 0.001 −3.64 ± 0.00 95 −2.29 ± 0.02 43 2.16 ± 0.02
n-hexane −3.597 ± 0.005 −2.39 ± 0.01 79 −3.75 ± 0.08 7 2.54 ± 0.08
cyclohexane −0.026 ± 0.002 −0.09 ± 0.00 84 −2.09 ± 0.04 7 2.15 ± 0.04

a Free energy difference associated with turning off all non-bonded interactions in the gas phase. b Free energy
difference of uncharging the solute in aqueous solution. c Smallest BAR overlap integral of all λ-steps in %
(cf. [133,161,197,198]). d Free energy difference of removing all Lennard–Jones interactions of the uncharged
solute in aqueous solution. e Total hydration free energy (cf. Table 1).

Appendix C. Scaling the Hydration Free Energies

The high correlation coefficient between the QM/MM derived hydration free energies and the
experimental data in Table 2 indicates that a better agreement with experiment can be achieved by
scaling the results. Using the ratio of the experimental chemical potential of water in its own liquid

relative to the computational result, i.e.,
∆Gwater Expt

hyd

∆Gwater
hyd

, as a scaling factor, one can obtain significantly

better agreement with experiment. Table A3 illustrates this for the QM/MM results with the fixed
charge force field and Hartree–Fock (which yielded the worst RMSD with 2.4 kcal/mol and an
MSD of −1.9 kcal/mol). The employed scaling factor was 0.6317. Interestingly, the RMSD drops to
0.8 kcal/mol and the MSD to a mere −0.02 kcal/mol. This is an indicator that the scaling factor might
be transferable. The results also show that the bias of QM/MM ∆Ghyd values is not constant and,
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therefore, does not cancel if the end points of a free energy calculation involve different chemical
species (such as in chemical reactions).

Table A3. Hartree–Fock QM/MM hydration free energies scaled by
∆Gwater Expt

hyd

∆Gwater HF
hyd

= 0.6317. All results are

in kcal/mol.

Molecule Expt. ∆Ghyd

water −6.31 −6.31± 0.20
methanol −5.10 −4.01± 0.16
ethanol −5.05 −4.15± 0.81
methanethiol −1.24 −2.19± 0.15
acetamide −9.68 −9.38± 0.66
tetrahydrofuran −3.47 −3.71± 0.39
benzene −0.86 −1.11± 0.20
phenol −6.61 −5.22± 0.51
aniline −5.49 −5.58± 0.33
ethane 1.83 1.19± 0.13
n-hexane 2.48 1.36± 0.37
cyclohexane 1.23 0.62± 0.52

RMSD 0.80
MSD −0.02
R2 0.97
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