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The appearance of tyrosine kinase inhibitors (TKIs) has been a major breakthrough in 
renal cell carcinoma (RCC) therapy. Unfortunately, a portion of patients with TKIs resistance 
experience disease progression after TKIs therapy. Epigenetic alterations play an important 
role in the development of TKIs resistance. Current evidence suggests that epigenetic 
alterations occur frequently in RCC patients with poor response to TKIs therapy, and 
modulation of them could enhance the cytotoxic effect of antitumor therapy. In this review, 
we summarize the currently known epigenetic alterations relating to TKIs resistance in 
RCC, focusing on DNA methylation, non-coding RNAs (ncRNAs), histone modifications, 
and their interactions with TKIs treatment. In addition, we discuss application of epigenetic 
alteration analyses in the clinical setting to predict prognosis of patients with TKIs treatment, 
and the potential use of epigenetics-based therapies to surmount TKIs resistance.

Keywords: renal cell carcinoma, epigenetics, microRNA, long non-coding RNA, methylation, histone modification, 
target therapy, tyrosine kinase inhibitor

INTRODUCTION

Renal cell carcinoma (RCC) is the most common type of renal cancer, causing more than 
14,000 deaths yearly (Capitanio et  al., 2019). For early stage of RCC, surgical excision is the 
recommended treatment. However, there are nearly 15% of patients with distant metastasis 
when diagnosed with RCC (Siegel et  al., 2019).

Angiogenesis plays an important role in the biology and the pathogenesis of RCC. Loss of 
function of von Hippel–Lindau (VHL) tumor suppressor gene is a vital event in renal carcinogenesis 
and occurs in about 90% of all clear cell renal cell cancer (ccRCC; Nickerson et  al., 2008). 
VHL encodes and forms a VHL protein complex, which acts as an essential factor in the 
oxygen-sensing pathway through ubiquitin-mediated degradation of hydroxylated hypoxia 
inducible factor 1 (HIF-1α) and HIF-2α (Maxwell et  al., 1999; Kaelin, 2002). Loss of VHL 
function leads to the accumulation of HIF-1α and HIF-2α, which consequently facilitates 
transcription of the hypoxia response genes, such as genes in vascular endothelial growth 
factor (VEGF), platelet-derived growth factor (PDGF), and transforming growth factor alpha 
(TGF-α), eventually, resulting in angiogenesis and progression of tumor (Kourembanas et  al., 
1990; de Paulsen et  al., 2001). The expression of VEGF and PDGF is significantly upregulated 
in RCC as a result of VHL inactivation, which, on the one hand, accelerates growth of tumor, 
on the other hand, is also its weakness. Tyrosine kinase inhibitors (TKIs), including sunitinib, 
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pazopanib, axitinib, sorafenib, and cabozanitinib are thought 
to exert their major therapeutic effects in RCC by antagonism 
of VEGF receptor (VEGFR) and PDGF receptor (PDGFR), 
leading to a reduction of tumor angiogenesis.

For metastatic RCC (mRCC), sunitinib, pazopanib, and 
cabozantinib are approved for first-line treatment, while 
axitinib and sorafenib are chosen as second-line treatment. 
Sunitinib is the most commonly used TKIs which can delay 
tumor progression and improve patient survival. However, 
only 20–30% of patients respond to sunitinib treatment 
initially, and almost all initial responders develop resistance 
in 2  years (Morais, 2014). Subsequent antitumor therapies 
are followed by immune-checkpoint inhibitor and mammalian 
target of rapamycin (mTOR), such as nivolumab and 
everolimus. TKIs resistance poses a great challenge for the 
TKIs treatment. Therefore, understanding the distinct 
molecular mechanisms underlying TKIs resistance is vital 
to find efficient biomarkers to predict the effect of TKIs 
and facilitate the development of novel antitumor drugs 
which overcome this resistance.

AN OVERVIEW OF EPIGENETIC 
MODIFICATION

Epigenetics refers to the study of molecules and mechanisms 
that can control chromatin structure and influence gene 
expression or the propensity for genes to be transcribed within 
organisms in the context of the same DNA sequence. The 
ability of cells to retain and transmit their special gene expression 
patterns to the progeny cells, referred to as epigenetic memory, 
is governed by epigenetic marks, such as DNA methylations, 
histone modifications, and non-coding RNAs (ncRNAs; 
Thiagalingam, 2020). Epigenetic modification is heritable but 
reversible (Cavalli and Heard, 2019). The unique epigenome 
defining the genetic code associated with each individual gene 
regulates the expression status of that gene. Defects in epigenetic 
factors and epigenetic modifications could act as pushers for 
various diseases including cancer.

Epigenetic modification is associated with drug resistance 
in numerous types of cancer, including RCC (Chekhun et  al., 
2007; Knoechel et al., 2014; Adelaiye-Ogala et al., 2017; Leonetti 
et  al., 2019), which regulates gene expression at the protein 
level (histone modification and nucleosome remodeling), DNA 
level (DNA methylation), and RNA level (ncRNA). Histones 
are the central component of nucleosomal subunit, including 
four types of histone proteins [histone 2A (H2A), H2B, H3, 
and H4], which are wrapped by a 147-base-pair segment of 
DNA (Santos-Rosa and Caldas, 2005; Audia and Campbell, 
2016). Histone modifications mainly take place at histone tails, 
which are densely populated with basic lysine and arginine 
residues (Audia and Campbell, 2016). The acetylation and 
methylation of lysine residues are well-known. Acetylation can 
alter the charge on the lysine residues and weaken the interaction 
of these histones with DNA, making the chromatin structure 
more open and accessible (Dawson and Kouzarides, 2012). 
This process is regulated by two enzymatic families with 

competing activities: promoted by histone lysine acetyltransferases 
(HATs) and inhibited by the histone deacetylases (HDACs; Li 
et  al., 2019). Methylation of lysine residues in histone tails 
contains three forms: monomethylation (me1), demethylation 
(me2), and trimethylation (me3), making activation or repression 
of transcription (Kouzarides, 2007). This process is also 
competitively regulated by histone lysine methyltransferases 
(KMTs) and histone lysine demethylases (KDMs). Generally, 
acetylation of lysine 14 of H3 (H3K14), monmethylation of 
H3K4, H3K9, and H3K79, and phosphorylation of serine 10 
(H3S10) are all linked with transcriptional activity (Cheung 
et  al., 2000; Lo et  al., 2000; Barski et  al., 2007), while 
trimethylation of H3K9, H3K79, and H3K27 marks 
transcriptional repression (Boyer et al., 2006; Barski et al., 2007).

At the DNA level, the methylation of the 5-carbon on 
cytosine CpG dinucleotides is considered as an important 
epigenetic marker. Catalyzed by DNA methyltransferases 
(DNMTs), 5-carbon of the cytosine ring on promoter CpG 
islands gets a methyl from S-adenosylmethionine, converting 
to 5-methycytosine (5mc). 5mc attracts HDACs and methy-
CpG-binding domain proteins (MBDs) to the site, resulting 
in removal of acetyl groups from histone proteins, compact 
conformation of nucleosome, and downregulation of gene 
transcription (Robert et  al., 2003; Feinberg and Tycko, 2004; 
Wang et  al., 2009). This process can be  reversed by ten-eleven 
translocation (TET) proteins, which oxidize 5mc into 
5-hydroxymethylcytosine (5hmc) and subsequently into 
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in an 
Fe(II)- and 2-oxoglutarate-dependent dioxygenases manner 
(Wu and Zhang, 2014; Rasmussen and Helin, 2016).

Non-coding RNAs regulate gene expression at RNA level, 
including mircoRNAs (miRNAs), small nucleolar RNAs 
(snoRNAs), piwiRNAs (piRNAs), and long ncRNA (lncRNA; 
Ma et  al., 2013). In general, composed by about 19–25 
nucleotides, miRNAs can lead to posttranscriptional gene 
silencing and translation stopping through binding to the 
3'-untranslated region (3'-UTR) of the targeted messenger 
RNAs (mRNAs) and leading to its degradation or destabilization 
(Brennecke et  al., 2005). lncRNAs are collectively defined as 
longer than 200 nucleotides in length, which modulate local 
or global gene expression in a neighboring (cis) or distal 
(trans) manner (Kopp and Mendell, 2018). For example, one 
classic cis-acting lncRNA is the X-inactive specific transcript 
(Xist) resulting in the X chromosome inaction (XCI) in 
mammals by recruiting various protein complexes to specific 
position (Lee and Bartolomei, 2013). Notably, lncRNAs can 
function as competing endogenous RNAs (ceRNAs) to compete 
with miRNAs by binding to their protein-coding transcripts, 
thereby antagonizing the repressive effects of miRNAs on 
mRNAs (Salmena et  al., 2011; Du et  al., 2016).

In this review, we summarize the currently known epigenetic 
alterations relating to TKIs resistance in RCC, focusing on 
DNA methylation, ncRNAs, histone modifications, and their 
interactions with TKIs treatment. In addition, we  discuss the 
application of epigenetic alteration analyses in the clinical setting 
to predict prognosis of patients with TKIs treatment and develop 
new agents.
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Mechanisms of Primary and Acquired 
Resistance to TKIs Treatment
There is no specific definition of TKIs resistance in RCC. 
Response to drug therapy is normally defined by the Response 
Evaluation Criteria In Solid Tumors (RECIST) criteria as evidence 
of tumor progression regardless of persistent treatment. 
Unfortunately, the current clinical studies depended on their 
own criteria to divide patients into responders and 
non-responders, which made their outcomes difficult to compare. 
Resistance to antiangiogenic therapy can be  classified into 
intrinsic (primary) and acquired (secondary) resistance (Mollica 
et al., 2019). Intrinsic resistance is defined as an initial inefficacy 
of therapeutic agents, which may be  attributed to the presence 
of resistant tumor clones prior to therapy due to inherited 
resistance or evolutionary clonal selection. Acquired resistance 
is classified as the progression of tumor after initial tumor 
regression during the therapy, which is often driven by the 
development of other pathways stimulating angiogenesis, such 
as AXL, MET, and PDGF/PDGFR, and thus the escape of 
cancer cells from VEGF/VEGFR blockade (Crawford et  al., 
2009; Zhou et  al., 2016). While the explicit mechanisms of 
TKIs resistance are still being explored, several potential factors 
have been reported to be  associated with TKIs resistance in 
RCC: lysosomal sequestration, mutations and modification of 
expression level, downstream signaling pathway activation, 
bypass or alternative pathway activation, ATP-binding cassette 
(ABC) efflux transporters, tumor microenvironment, epithelial-
mesenchymal transition (EMT), and epigenetic modification 
(Housman et al., 2014; Makhov et al., 2018). Epigenetic regulation 
of the TKIs resistance is always linked to activation of downstream 
signaling pathways, promotion of EMT, and stimulation of 
alternative pathways.

Modulation of Downstream Signaling Pathways
Tyrosine kinase inhibitors exert their major antiangiogenic and 
antitumor effect in RCC by suppressing tyrosine kinase receptors 
on VEGFR and PDGFR and inhibiting their downstream 
signaling pathways. Therefore, RCC cells escape TKIs blockade 
through an important mechanism of activation of parallel 
downstream signaling pathways, among which PI3K/AKT and 
RAS/RAF/ERK are pivotal transduction cascades responsible 
for cell survival, proliferation, and invasion (Fresno Vara et al., 
2004; Guo et  al., 2015; Huang and Fu, 2015). The PI3K/AKT 
pathway is frequently activated in cancer and leads to the 
development and progression of numerous tumor types, including 
RCC (Samuels et  al., 2004; Lawrence et  al., 2014). PI3K, a 
family of lipid kinases, is normally activated by extracellular 
signals, such as growth factors, cytokines in physiologic 
conditions. Activated PI3K phosphorylates phosphatidylinositol 
4,5-bisphosphate [Ptdlns(4,5)P2], propagating activation signals 
to downstream molecules (Hennessy et  al., 2005). Phosphatase 
and tensin homolog deleted on chromosome 10 (PTEN) can 
turn off this pathway by inhibiting the phosphorylation of 
Ptdlns(4,5)P2 (Gewinner et al., 2009). AKT is the key mediator 
to respond to the PI3K signaling. The phosphorylated active 
AKT translocates from the cell membrane to other cell 

compartments to phosphorylate multiple downstream substrates, 
resulting in cell survival, growth, tumorigenesis, metastasis, 
and sunitinib resistance (Andjelković et  al., 1997; Sakai et  al., 
2013; Fang et  al., 2019). Activated by pAKT, mTOR complex 
1 can lead to protein translation and lipid or nucleotide synthesis 
via phosphorylating numerous substrates, such as p70 ribosomal 
S6 kinase (p70S6K) and Eif4e-binding proteins (Manning and 
Cantley, 2003; Fruman and Rommel, 2014), eventually leading 
to the translation and accumulation of HIF-1α and HIF-2α. 
Acting as an inhibitory protein of the pathway, PTEN contributes 
to the downregulation of AKT activity, and loss of PTEN 
leads to sunitinib resistance due to lack of inhibitory input 
(Makhov et  al., 2012). Sekino et  al. (2019) identified miR-130 
upregulation was associated with sunitinib resistance through 
suppression of PTEN.

Focal adhesion kinase (FAK) signaling plays an important 
role in activation of PI3K/AKT pathway by interacting with 
PI3K (Zhao and Guan, 2009; Poettler et  al., 2013; Hung et  al., 
2017). Activation of FAK signaling contributes to the sorafenib 
and sunitinib resistance in a variety type of cancer, including 
RCC (Bai et  al., 2012; Zhang et  al., 2016; Zhou et  al., 2017). 
The chromatin modifier enhancer of zeste homolog 2 (EZH2), 
a polycomb group protein homolog of Drosophila enhancer 
of zeste, is a histone methytransferase unit of polycomb repressive 
(PRC2), which can catalyze the trimethylation of H3K27, change 
chromatin configuration, and promote transcriptional silencing 
(Margueron and Reinberg, 2011; Di Croce and Helin, 2013). 
Adelaiye-Ogala et  al. (2017) reported that increased EZH2 was 
associated with sunitinib resistance through redistribution in 
RCC cells, decreasingly binding to the PTK2 gene, which 
encodes the FAK, and increasingly binding to DAB2IP and 
PTPN2, which act as tumor suppressors to inhibit RAS/RAF/
ERK and P13K/AKT signaling pathways.

Ras/Raf/ERK signaling pathway is other important 
transduction cascade transmitting EGFR signaling, responsible 
for cancer development, maintenance, progression and thus, 
poorer prognosis and TKIs resistance (Bridgeman et  al., 2016; 
Mandal et  al., 2016). The methylation of glutaminyl peptide 
cyclotransferase (QPCT) gene had been reported to associate 
with sunitinib resistance through Ras/Raf/ERK signaling pathway 
(Zhao et al., 2019). The QPCT gene encodes glutaminyl cyclase 
(QC), an enzyme that is involved in the posttranslational 
modification by converting the N-terminal glutaminyl and 
glutamyl into pyroglutamate through cyclization, making the 
protein more resistant to protease degradation, more hydrophobic, 
and more prone to aggregation and neurotoxicity (Khan et  al., 
2016; Vijayan and Zhang, 2019). Hypomethylated QPCT gene 
increased the expression of QC, the process promoted by the 
NF-κB signaling (p65; Kehlen et al., 2013), leading to upregulation 
of HRAS and activation of the Ras/Raf/ERK signaling pathway 
(Herrero et  al., 2016; Michael et  al., 2016; Zhao et  al., 2019). 
Zhai et  al. (2017) had observed that lncRNA-SARCC could 
regulate androgen receptor (AR) to increase miR-143-3p 
expression and inhibit its downstream signals, including AKT, 
MMP-13, K-RAS, and P-ERK. The expression of lncRNA-SARCC 
was upregulated in RCC cells treated with sunitinib, which 
was associated with decreased resistance to sunitinib.
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Modulation of Epithelial-to-Mesenchymal 
Transition
Epithelial-to-mesenchymal transition is a biologic process that 
epithelial cells lose their cell–cell basement membrane contacts 
and their structural polarity to become spindle-shaped and 
morphologically similar to mesenchymal cell (He and Magi-
Galluzzi, 2014). While potential mechanisms are not fully 
explicit, numerous studies indicate that EMT constitutes a 
relevant resistance mechanism to TKI treatment (Fang et  al., 
2019; Hwang et  al., 2019; Zhu et  al., 2019), and relates to the 
development of metastases in cancer (Bastid, 2012). Signal 
transduction affects EMT through the TGF-beta 1 (TGF-β1) 
in different mechanisms (Wendt et  al., 2009; Feldkoren et  al., 
2017; Fardi et  al., 2019). Schematically, TGF-β1 activates zinc 
finger E-box binding 1 (ZEB1) and ZEB2, which are responsible 
for a key transcriptional repressor of the cadherin 1 gene 
(CDH1). CDH1 encodes the cell-adhesion glycoprotein 
E-cadherin whose downregulation is a pivotal hallmark of EMT 
(Loh et  al., 2019). As an activator of EMT, the expression of 
ZEB2 is regulated by miR-141 (Berkers et  al., 2013). In detail, 
miR-141 downregulation induces EMT and hypoxia resistance 
through the upregulation of ZEB2 and suppression of E-cadherin, 
resulting in an unfavorable response to sunitinib resistance 
and poor prognosis (Berkers et  al., 2013; Fang et  al., 2013).

The overexpression of EZH2 is beneficial to EMT by repression 
of E-cadherin (Crea et  al., 2012; Liu et  al., 2016). Adelaiye-
Ogala et  al. (2017) reported that EZH2 expression was linked 
to sunitinib resistance in RCC through an adaptive kinome 
reprograming, such as increased global tyrosine and serine 
phosphorylation as well as increased phosphorylated FAK. 
SOX5, one of SOX family involving in the regulation of tumor 
progression, is thought to contribute to EMT in different types 
of cancer (Grimm et  al., 2019). Liu et  al. (2019) reported 
lncRNA-GAS5 was responsible to sorafenib resistance by 
functioning as ceRNA to repress miR-21, which controlled its 
downstream target SOX5.

The Wnt/β-catenin pathway acts as one of the signaling 
pathways controlling EMT through directly or indirectly targeting 
several key transcription factors regulating E-cadherin expression 
and/or the fate of other epithelial molecules (Valenta et  al., 
2012). SET and MYND domain-containing protein 2 (SMYD2), 
which acts as one of the SMYD-methyltransferase protein family 
and specifically methylates H3K4 through its SET domain 
(Abu-Farha et  al., 2008), is deemed to regulate the expression 
of miR-125b (Yan et  al., 2019). miR-125b bind directly to the 
3'-UTR of DKK3, a key regulatory factor in the Wnt/β-catenin 
pathway which acts as a tumor suppressor in RCC (Lu et  al., 
2017). Thus, the activation of SMYD2/miRNA-EMT pathway 
weakens the effect sunitinib treatment and accelerates the tumor 
growth (Yan et  al., 2019).

Activation of Bypass Pathways
Extra activation of bypass pathways driving angiogenesis is also 
one of the most important processes driving TKIs resistance. 
The activation of MET and AXL confers to the stimulation of 
their downstream signal cascades, including PI3K and RAS signaling 

pathway, resulting in sunitinib resistance (Huang and Fu, 2015; 
Zhou et  al., 2016). lncRNA Activated in RCC with Sunitinib 
Resistance (lncARSR) functions as a sponge and competes for 
binding of miR-34 and miR-449 to their transcripts, leading to 
the upregulation of AXL/MET and the activation of STAT3, AKT, 
and ERK signaling (Qu et  al., 2016). miR-32-5p can increase 
the efficacy of sunitinib by suppressing the testicular nuclear 
receptor 4 (TR4), which plays an important role in activation 
of HGF/MET signaling pathway (Wang et  al., 2018).

Inactivation of VHL leads to increased HIF-1α and HIF-2α. 
In renal carcinogenesis, HIF-1α functions more as a tumor 
suppressor than a tumor promoter, whereas HIF-2α is deemed 
to predominantly promote tumor growth and angiogenesis 
(Raval et  al., 2005). Specifically, HIF-1α inhibits interaction of 
MYC with its DNA-binding partners by displacing the SP1 
transcription factor from MYC, while HIF-2α could enhance 
MYC activity by forming a complex with MAX, and thus 
stabilizing the MYC-MAX and MYC-MAX-SP1 complexes 
(Keith et  al., 2011). HIF-2α/C-MYC axis relates to progression 
and TKIs resistance in RCC (Zhai et  al., 2016; Maroto et  al., 
2017). Beuselinck et  al. (2015) segregated specific groups of 
patients with ccRCC, who presented sunitinib resistance into 
four molecular tumor subtypes based on their mRNA expression 
data: ccrcc1 (c-myc-up), ccrcc2 (classical), ccrcc3 (normal-like), 
and ccrcc4 (c-myc-up and immune-up). ccrcc1/ccrcc4 subtypes 
posed a hypomethylation of MYC gene and a global 
hypermethylation level, with overexpression of MYC and down-
expression of corresponding genes, such as PRC2 and SUZ12. 
Obviously, those two subgroups of patients experienced poor 
response to sunitinib treatment and shorter progression-free 
survival (PFS). Verbiest et  al. (2018) reported the similar 
outcome in their study, which proved the resistance to pazopanib 
in ccrcc1/ccrcc4 subtypes.

In addition, lncRNA-SRLR overexpression is linked to 
sorafenib resistance through promotion of IL-6 transcription 
and activation of STAT3 (Xu et al., 2017). miR-942 is associated 
with sunitinib resistance by promoting the secretion of MMP9 
and VEGF (Prior et  al., 2014). miR-99a-3p, which targets 
ribonucleotide reductase regulatory subunit-M2 (RRM2), is 
downregulated in sunitinib-resistance RCC (Osako et al., 2019). 
Overexpression of breast cancer resistance protein BCRP/ABCG2, 
which is posttranscriptionally suppressed by miR-212-3p and 
miR-132-3p, is associated with superior response to sunitinib 
treatment in RCC patients (Reustle et  al., 2018).

Some of the previously described epigenetic alterations 
associated with TKIs resistance are represented in Figure  1.

CLINICAL IMPLICATIONS OF 
EPIGENETICS ANALYSIS IN RCC

Tyrosine kinase inhibitors treatment has been established as 
first-line therapy for mRCC for a decade with 70–80% of 
disease control rate. However, approximately 20–30% of patients 
does not respond to TKIs treatment and experience disease 
progression within ≤3  months (Porta et  al., 2012). Epigenetic 
alteration can act as a biomarker, which predicts the response 
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of patient to antiangiogenic therapy, thus reducing unnecessary 
toxicities and costs and maximizing clinical benefit. Clinical 
investigations of a number of epigenetic alterations on FFPE/
plasma samples and their correlation with response to TKIs 
therapies are listed in Table  1.

On the histone modification level, tissue low EZH2 expression 
was associated with increased overall survival (OS) in RCC 
treated with sunitinib (p  =  0.005; Adelaiye-Ogala et  al., 2017). 
On the DNA methylation level, tissue hypomethylation level 

in the CpG sites of QPCT promoter region showed a poor 
response to sunitinib therapy (p  <  0.05; Zhao et  al., 2019). 
Hypermethylation of cystatin 6 (CST6), ladinin 1 (LAD1) and 
neurofilament heavy (NEFH) were all linked to shortened PFS 
(p  =  0.009, p  =  0.011, and p  <  0.001, respectively) and OS 
(p  =  0.011, p  =  0.043, and p  =  0.028, respectively) for 
antiangiogenic therapy, including sunitinib, sorafenib, axitinib, 
and bevacizumab, among which methylation of CST6 could 
predicted first-line therapy between response (0) and therapy 

FIGURE 1 | Mechanisms of tyrosine kinase inhibitor (TKI) resistance mediated by epigenetic alterations in renal cell carcinoma (RCC): vascular endothelial growth 
factor (VEGF) and platelet-derived growth factor (PDGF) bind to a tyrosine kinase receptor and activate the downstream focal adhesion kinase (FAK), PI3K, and RAS 
pathways. Activated FAK, PI3K, and RAS phosphorylate their downstream signaling cascade, eventually leading to the translation and accumulation of hydroxylated 
hypoxia inducible factor 1 (HIF-1α) and HIF-2α. In RCC, TKIs exert their influence on antiangiogenesis through inhibition of tyrosine kinase receptor. Epithelial-
mesenchymal transition (EMT), activation of downstream signaling pathways and bypass pathways mediated by epigenetic alterations are responsible for the TKIs 
resistance. Long non-coding RNA (lncRNA)-SARCC increases miR-143-3p expression, thus inhibiting its downstream signals, including AKT, RAS, and ERK. 
miR-130 enhances HIF signaling by inhibition of PTEN. Hypermethylated QPCT reduces its protein level, leading to inhibition of RAS. EMT, a key transformation in 
TKIs resistance, is promoted by SOX5, zinc finger E-box binding 2 (ZEB2), and β-Catenin while inhibited by E-cadherin. lncRNA-GAS5 promotes EMT by competing 
with miR-21 which suppresses the expression of SOX5. miR-141 suppresses the expression of ZEB2 to inhibit its promotion of EMT. SET and MYND 
domain-containing protein 2 (SMYD2) leads to EMT by promoting the expression of miR-125b, which inhibits DDK3 and activates Wnt/β-catenin signaling pathway. 
The chromatin modifier enhancer of zeste homolog 2 (EZH2) can not only inhibit E-cadherin but also activate FAK signaling pathway to exert its influence on TKIs 
resistance. Except for VEGF receptor (VEGFR) and PDGF receptor (PDGFR), activation of MET, AXL, and IL-6 pathways can also lead to phosphorylation of 
downstream transduction cascades, such as PI3K, STAT3, and RAS. lncRNA Activated in RCC with Sunitinib Resistance (lncARSR) inhibits miR-34 and miR-449, 
and thus activates MET/AXL pathway. miR-32-5p inhibits MET pathway while lncRNA-SRLR activates interleukin-6 (IL-6)R pathway. RCC, renal cell carcinoma; 
VEGF, vascular endothelial growth factor; PDGF, platelet-derived growth factor; TKI, tyrosine kinase inhibitor; QPCT, the methylation of glutaminyl peptide 
cyclotransferase; AR, androgen receptor; EMT, epithelial-to-mesenchymal transition; EZH2, the chromatin modifier enhancer of zeste homolog 2; ZEB2, zinc finger 
E-box binding 2; SMYD2, SET and MYND domain-containing protein 2; GAS6, growth-arrest-specific protein 6; HGF, hepatocyte growth factor; IL-6, interleukin-6.
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failure (1) with an AUC of 0.88 and a sensitivity and specificity 
of 82 and 86%, respectively (Dubrowinskaja et  al., 2014; Peters 
et  al., 2014). Methylation level of VHL was found to 
be  significantly upregulated after sunitinib therapy (p  <  0.001; 
Stewart et  al., 2016), while there was no correlation between 
VHL methylation and response to pazopanib (Choueiri et  al., 
2013). Beuselinck et al. (2015) reported the patients with tissue 
MYC overexpression and global CpG hypermethylation received 
a shorter PFS and OS after sunitinib treatment (p  =  0.001 
and p = 0.0003, respectively). In contrast, tissue unmethylation 
SYNPO2, the gene that encoded myopodin, discriminated 
progressing patients after TKIs treatment (sunitinib, sorafenib, 
and pazopanib) from those free of disease, and remained as 
an independent predictive factor for progression, disease-specific 
survival, and OS (p = 0.009, p = 0.006, and p = 0.01, respectively; 
Pompas-Veganzones et  al., 2016).

On the ncRNA level, both miRNA and lncRNA showed 
their influences on the response to TKIs treatment. In their 
original study, Berkers et al. (2013) described the upregulation 
of miR-520  g, miR-155, and miR-526b and downregulation 
of miR-141, miR-376b in tissue were linked to the poor 
responders to sunitinib (p  =  0.036, p  =  0.04, p  =  0.0067, 
p  =  0.0098, and p  =  0.032, respectively). In an observational 
prospective study, blood samples from 38 patients and 287 
miRNAs were taken and evaluated before initiation of therapy 
and 14  days later in patients receiving sunitinib treatment 
for advanced RCC. Twenty eight miRNAs of the 287 were 
found to be  significant differences of expressions between 

the poor response and response groups, among which, 
downexpression of miR-424 was linked with prolonged response 
(p = 0.016; Gámez-Pozo et al., 2012). Other researchers (Prior 
et al., 2014) explored a putative role of miRNAs in influencing 
sunitinib resistance to RCC in tissue, identifying that tissue 
overexpressed miR-942 was associated with sunitinib resistance, 
reduced time to progression (TTP) and OS (p  =  0.0074, 
p  =  0.003, and p  =  0.0009, respectively), and predicted 
sunitinib efficacy with an AUC of 0.798 and a sensitivity 
and specificity of 92 and 50%, respectively. Lukamowicz-Rajska 
et  al. (2016) reported that tissue decreased miR-99b-5p was 
associated with TKIs non-responders (sunitinib, sorafenib, 
and pazopanib) with a shorter PFS (<3  months, p  <  0.0001). 
Similarly, Puente et  al. (2017) identified that the expression 
of miR-23b, miR-27b, and miR-628-5p in tumor tissue was 
upregulated in long-term responders to sunitinib (p  <  0.01, 
each), among which high level of miR-27b and miR-628-5p 
were associated with increased disease specific survival 
(p  =  0.012 and p  =  0.017, respectively). Nineteen miRNAs 
were explored to have different expressions in tissue, and 
lower level of miR-155 and miR-484 were associated with 
increased TTP in patients on sunitinib treatment (p  <  0.01 
and p  <  0.05, respectively; Merhautova et  al., 2015). Among 
40 miRNAs of 232 found to be  downregulated in sunitinib-
treated RCC specimens compared with those in normal kidney 
tissues, miR-101 showed the most dramatic downregulation 
(p  =  0.0013; Goto et  al., 2016). Increased miR-9-5p and 
decreased miR-489-3p were found in non-responder patients 

TABLE 1 | Epigenetic biomarkers in RCC patients treated with TKIs.

Classification Epigenetic 
alteration

Study population Sample source TKIs treatment Deregulation in 
TKI resistance

Reference

Histone EZH2 16 tissue sunitinib ↑ Adelaiye et al., 2015
DNA methylation QPCT 10 tissue sunitinib ↓ Zhao et al., 2019

SYNPO2 63 tissue Sunitinib, sorafenib, 
pazopanib

↓ Pompas-Veganzones et al., 2016

NEFH 18 tissue Sunitinib, sorafenib, 
axitinib, bevacizumab

↑ Dubrowinskaja et al., 2014

CST6, LAD1 18 tissue Sunitinib, sorafenib, 
axitinib, bevacizumab

↑ Peters et al., 2014

miRNA miR-376b-3p 47 tissue sunitinib ↓ Kovacova et al., 2019
miR-9-5p 60 tissue Sunitinib, pazopanib, 

sorafenib
↑ Ralla et al., 2018

miR-489-3p 60 tissue Sunitinib, pazopanib, 
sorafenib

↓ Ralla et al., 2018

miR-628-5p 123 tissue sunitinib ↓ Puente et al., 2017
miR-27b 123 tissue sunitinib ↓ Puente et al., 2017
miR-99b-5p 40 tissue Sunitinib, sorafenib, 

pazopanib
↓ Lukamowicz-Rajska et al., 2016

miR-101 94 tissue sunitinib ↓ Goto et al., 2016
miR-155, miR-484 79 tissue sunitinib ↑ Merhautova et al., 2015
miR-942 20 tissue sunitinib ↑ Prior et al., 2014
miR-141, miR-144, 
miR-376b

20 tissue sunitinib ↓ Berkers et al., 2013

miR-520 g, miR-155, 
miR-526b,

20 tissue sunitinib ↑ Berkers et al., 2013

miR-424, 38 Plasma sunitinib ↑ Gámez-Pozo et al., 2012
lncRNA lncRNA-GAS5 15 tissue sorafenib ↓ Liu et al., 2019

lncRNA-SRLR 96 tissue sorafenib ↑ Xu et al., 2017
lncARSR 84 Plasma, tissue sunitinib ↑ Qu et al., 2016
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of TKIs treatment, including sunitinib, sorafenib, and pazopanib 
compared to that in responder patients, and the AUC of 
miR-9-5p combined with clinicopathological variables to 
predict response(0)/non-response(1) to sunitinib treatment 
is 0.89 (Ralla et  al., 2018). miR-212-3p and miR-132-30 
were linked to shorter PFS of sunitinib therapy through 
interaction with BCRP/ABCG2 expression (Reustle et  al., 
2018). In a more recent study, high-throughput miRNA 
microarray performed on FFPE tumor specimens from 47 
patients treated with sunitinib, 158 miRNAs were identified 
to have different expressions in patient with good and poor 
response (p  <  0.05). Moreover, miR-376b was significantly 
upregulated in patients with a long-term response to sunitinib 
and could identify patients with long-term response with 
a sensitivity of 83% and specificity of 67% (p  =  0.0002, 
AUC  =  0.758; Kovacova et  al., 2019).

Regarding lncRNAs, relevant studies had disclosed their 
influences on TKIs therapy and prognosis. lncARSR was 
exposed in plasma and tissue separately by Qu et  al. (2016), 
and was deemed to act as a sponge to compete with miR-34 
and miR-449. High level of lncARSR in pre-surgery plasma 
was an independent prognostic factor for patients with 
sunitinib treatment, and was correlated with decreased PFS 
(p  =  0.02 and p  =  0.014, respectively). Intriguingly, low 
level of lncARSR in tissue exhibited a superior PFS after 
receiving sunitinib therapy (p = 0.028). A microarray analysis 
conducted by Xu et  al. (2017) revealed the similar outcome 
in lncRNA-SRLR. Briefly, high tissue lncRNA-SRLR was 
associated with poor response to sorafenib, and patients 
with low lncRNA-SRLR expression had a more significant 
improvement in PFS after receiving sorafenib treatment 
(p  =  0.0198 and p  =  0.0086, respectively). lncRNA-GAS5 
was also found to be  downregulated in RCC patients with 
sorafenib resistance (p  <  0.01; Liu et  al., 2019).

Overall, these studies demonstrate that epigenetic alterations 
could be  promising predictive biomarkers for TKIs response, 
as they function as important roles involved in mediating 
resistance through regulating important mechanisms. However, 
most of these studies are involved in a small number of 
patients, which limits their reliability. Moreover, there is no 
accepted criterion on how long a PFS of good response should 

last, so each study divides patients into good responders and 
poor responders based on its own standard. The different 
criteria limit the application of those epigenetic biomarkers 
in clinical setting.

EPIGENETIC ALTERATIONS AS 
THERAPEUTIC TARGETS

Besides the predictive value, epigenetic alterations have potential 
to become targets themselves for drug development, in order 
to overcome the TKIs resistance in RCC. Preclinical studies 
on RCC cell lines demonstrate that reversions of epigenetic 
alterations are effective strategies to re-sensitize resistant clones 
to TKIs treatment, including demethylation, restoration of miRNA 
function, and inhibition of HDAC. Therefore, implementing 
epigenetics-based therapeutic strategies in patients is the next 
step, and relevant clinical trials are under way. Generally, there 
are two classes of epigenetics-based drugs in clinical trials: 
broad reprogrammers, which have a broad effect, and targeted 
therapies, which focus on specific miRNA expression or histone 
modifications (Jones et  al., 2016). The formers are represented 
by the DNMT inhibitors (DNMTi) and the HDAC inhibitors 
(HDACi), and the latters are represented by EZH2 inhibitors 
(Jones et  al., 2016; Joosten et  al., 2018). The outcomes of 
current clinical trials concerning combination of epigenetics-
based therapy with TKIs are listed in Table  2. So far, HDACi 
and EZH2 inhibitors are the most promising agents to reverse 
the TKI resistance with a vast of clinical studies completed 
or ongoing. Combination of HDACi and antiangiogenic agents 
is the most common trial to reverse the acquired resistance 
and re-sensitize tumors to antiangiogenic therapy. A phase 
I study evaluated the safety, tolerability, and preliminary efficacy 
of HDACi vorinostat plus sorafenib in patients with RCC and 
non-small cell lung cancer (NSCLC) and showed poor tolerance 
and no confirmed responses (Dasari et  al., 2013). Other study 
focused on the combination vorinostat with pazopanib in 
advanced solid tumors including RCC, and identified that the 
treatment achieved stable disease for at least 6  months or 
partial response (PR; SD ≥ 6 months/PR) in 19% of all patients 
(n  =  78), median PFS of 2.2  months, and median OS of 

TABLE 2 | Epigenetic drugs plus TKIs in treatment of RCC.

Drug Combination agent Tumor type Trial phase Result Reference

Vorinostat Sorafenib RCC, NSCLC I Poorly tolerated, 1 unconfirmed PR and five of eight 
patients had durable minor responses (11–26%) in 
RCC subset

Dasari et al., 2013

Vorinostat Pazopanib Solid tumors including 
RCC

I Stable disease at least 6 months or PR 
(SD ≥ 6 months/PR), median PFS of 3.5 months and 
median OS of 12.7 months

Fu et al., 2015

Vorinostat Bevacizumab ccRCC I/II 6 OR (18%), including 1 CR and 5 PR. 5.7 months of 
median PFS and 13.9 months of OS

Pili et al., 2017

Abexinostat Pazopanib Solid tumor including 
RCC

I 27% of objective response rate, average 10.5 months 
of response duration in RCC subset

Aggarwal et al., 2017

RCC, renal cell carcinoma; NSCLC, non-small cell lung cancer; ccRCC, clear cell renal cell carcinoma; PR, partial response; CR, complete response; OS, overall survival;  
PFS, progression-free survival; SD, stable disease.
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8.9 months (Fu et al., 2015). Furthermore, patients with detected 
hotspot TP53 mutations had a superior rate of SD ≥ 6 months/
PR, median PFS, and OS compared with those with undetected 
hotspot TP53 mutations (45 vs. 16%, 3.5 vs. 2.0  months, and 
12.7 vs. 7.4 months, respectively). In a phase I study, combination 
HDACi abexinostat with pazopanib in patient of RCC with 
tumor progression after received an average 2.5 lines of prior 
therapy and 1.6 lines of prior VEGF-targeting treatment received 
27% of objective response rate and average 10.5  months of 
response duration (Aggarwal et  al., 2017). Three patients with 
prior refractory disease to pazopanib monotherapy received 
durable minor or PR  >  12  months treated with pazopanib 
plus abexinostat. Other clinical trial explored the effect of 
combination of HDACi with monoclonal antibody bevacizumab 
in advanced RCC. In a multicenter, single-arm phase I/II 
clinical trial, 33 patients with metastatic or unresectable ccRCC 
achieved 5.7 months of median PFS and 13.9 months of median 
OS, among which six patients achieved OR, including 1 CR 
and 5 PR (Pili et  al., 2017). Regarding DNMTi, decitabine 
was the only agent tested by phase I  trial and combination 
it with high-dose IL-2 achieved stable disease in three patients 
(Gollob et  al., 2006). As the pharmacological defects of this 
DNMTi, such as short half-life and sensitivity to inactivation 
by cytidine deaminase, limit their clinical application, the 
second-generation DNMTi guadecitabine has been developed, 
which has shown promise in early preclinical models and 
clinical trial in patients with acute myeloid leukemia and 
myelodysplastic syndromes (Joosten et  al., 2018).

The H3K27 histone N-methyltransferase EZH2 is a pusher 
of EMT leading to TKIs resistance, and its inhibitors may 
contribute to re-sensitize tumor to antiangiogenic treatment, 
which has been proven in preclinical test in RCC lines 
(Wagener et  al., 2008; Adelaiye et  al., 2015). The result of 
phase I trial that 64 patients including 21 with B-cell non-Hodgkin 
lymphoma and 43 with advanced solid tumors received EZH2 
inhibitor tazemetostat showed the agent had a favorable safety 
profile and antitumor activity (Italiano et  al., 2018).

Moreover, miRNAs also have the potential to become a 
target to reverse the TKIs resistance in RCC. Preclinical studies 
on RCC lines clearly demonstrated that both restoration of 
the tumor-suppressor miRNA function (by miRNA mimics) 
and inhibition of the oncogenic miRNAs (by antagomiRs) 
could re-sensitize resistance clones to TKIs. However, 
implementing miRNA-based therapies in clinic constitutes a 
significant challenge for clinicians and has not yet been realized. 
The main concerns fasten on the relative instability of miRNAs 
in body fluids and specific delivery of these miRNAs to tumor 
sites (Christopher et  al., 2016; Leonetti et  al., 2019). Recently, 
exosomes have been identified to function as carriers of 
miRNAs to deliver them from cell to extracellular milieu, 
which may become the sally port for miRNA-based therapy 
(Mathiyalagan and Sahoo, 2017; Rahbarghazi et  al., 2019).

In addition, as epigenetic memory defines the ability of 
cells to retain and transmit their special gene expression status 
to the daughter cells, one differentiated somatic cell could 
become pluripotent and subsequently be  reprogrammed into 
a different somatic cell through loss of its epigenetic memories 

responsible for its differentiated state. This process could serve 
as the basis for stem cell therapeutics by replacing one’s affected 
cells with his/her own cells, which may become the potential 
target of new agents (Thiagalingam, 2020).

Although agents targeting the epigenome could be  a 
promising therapy strategy for TKIs resistance in mRCC 
because of the widespread epigenetic deregulation in this 
tumor type, there are several problems of those agents limiting 
their clinical application. For example, clinical activity of a 
drug is not only related to the original rationale but also 
attribute to the off-target effects. Studies about patients treated 
with epigenetic agents such as DNMTi revealed acute genome-
wide demethylation (Yang et  al., 2006), which may not only 
restore abnormally silenced expression but also activate normally 
silenced expression, leading to adverse off-targets effects. The 
individual responses of epigenetic agents are variable in 
different tumor types. So far, hypomethylating drugs are 
generally more effective in myeloid malignancy than in RCC. 
Furthermore, the majority of patients have been treated with 
DNMTi or HDACi for a shortened period of time, the long-
term effects of those agents are not explicit for us. In addition, 
combination treatment might bring more severe and dose-
limiting toxicities than monotherapy. As a result, additional 
trials are urged to future elaborate the interaction of those 
agents with mechanism of TKIs resistance and to assess their 
use in RCC patients.

CONCLUSION

Although the advent of TKIs therapy indeed provides concrete 
hope for patients with advenced RCC, a part of patients 
with intrinsic or acquired resistance to TKIs benefit a little 
from the therapy and experience tumor progression after 
treatment. Epigenetic alterations are involved in the mechanisms 
underlying this event and could act as excellent biomakers 
to predict the response of patients to TKIs treatment. However, 
no epigenetic biomarker is currently applied in clinical setting 
regardless of numerous epigenetic biomarkers reported. Low 
efficiency and high cost of them may be  the cause of this 
event. Therefore, for the purpose of translation them into 
clinical practice, more high-quality epigenetic biomarker studies 
are needed. In view, the criteria of TKIs resistance are 
ambiguous, uniform defination of TKIs resistance is urgent 
affair. Assay, statistical methods, and study designs also need 
be  standardized to optimize their practice. In addition, 
epigenetics-based therapies are in full swing, which hold great 
promise and may optimize the management of patients with 
advanced RCC.
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