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Internet gamingdisorder (IGD) is characterized byhigh levels of craving for online gaming and related cues. Since
addiction-related cues can evoke increased activation in brain areas involved in motivational and reward pro-
cessing and may engender gaming behaviors or trigger relapse, ameliorating cue-induced craving may be a
promising target for interventions for IGD. This study compared neural activation between40 IGD and 19 healthy
control (HC) subjects during an Internet-gaming cue-reactivity task and found that IGD subjects showed stronger
activation in multiple brain areas, including the dorsal striatum, brainstem, substantia nigra, and anterior cingu-
late cortex, but lower activation in the posterior insula. Furthermore, twenty-three IGD subjects (CBI+ group)
participated in a craving behavioral intervention (CBI) group therapy, whereas the remaining 17 IGD subjects
(CBI− group) did not receive any intervention, and all IGD subjects were scanned during similar time intervals.
The CBI+ group showed decreased IGD severity and cue-induced craving, enhanced activation in the anterior
insula and decreased insular connectivitywith the lingual gyrus and precuneus after receiving CBI. These findings
suggest that CBI is effective in reducing craving and severity in IGD, and it may exert its effects by altering insula
activation and its connectivity with regions involved in visual processing and attention bias.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Internet gaming disorder (IGD) constitutes a serious mental health
issue worldwide, requiring additional investigation, as exemplified by
its inclusion in section 3 of theDiagnostic and StatisticalManual ofMen-
tal Disorders, 5th Edition (DSM-5) as a topic deserving more research
(American Psychiatric Association, 2013; Potenza, 2015). Craving is a
hallmark feature of addictive disorders (Courtney et al., 2016;
Engelmann et al., 2012), including IGD (Han et al., 2010a; Ko et al.,
2009a). Similar to addictive drugs (e.g., stimulants), gamingmay induce
dopamine release, particularly in mesocorticolimbic pathways (Han et
al., 2007; Kim et al., 2011; Koepp et al., 1998; Tian et al., 2014). Exposure
to gaming-related cues may increase the salience of gaming-related
cues and promote craving,which in turnmay promote thedevelopment
of IGD and exacerbate its symptoms (Ko et al., 2009a, 2013a). Consider-
ing the rewarding andmotivational attributions of cue-induced craving,
. This is an open access article under
it has been hypothesized to be a promising target for interventions for
IGD (Dong and Potenza, 2014; King and Delfabbro, 2014).

Cue-reactivity tasks represent valid and reliable measures to evaluate
craving (Wilson et al., 2004) and provide important insight into motiva-
tional and reward dysfunctions in addictions (Courtney et al., 2016). Sev-
eral studies have used cue-reactivity tasks to examine cue-induced
craving in IGD and have shown that gaming pictures activate brain re-
gions responsible for reward and motivational processing, such as the
striatum and insula, in IGD subjects (IGDs) compared with healthy con-
trol subjects (HCs) (Han et al., 2010a; Ko et al., 2009a, 2013b). These find-
ings are largely consistent with observations in substance dependence
and pathological gambling (Engelmann et al., 2012; Goudriaan et al.,
2013) and suggest there may be shared neural substrates between IGD
and other addictions (Kuss and Griffiths, 2012). Moreover, although di-
rect evidence in the field of IGD is still lacking, studies in substances-use
disorders link craving with efficacies of interventions, with responsive-
ness being a strong predictor of relapse, even years after completing inter-
ventions (Courtney et al., 2016; Killen et al., 1992). Thesefindings suggest
that ameliorating cue-induced craving andaltering responsivity of theun-
derlying neural substrates may achieve promising treatment outcomes.
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Cue-reactivity tasks provide a reliable way to investigate the neural
mechanisms by which interventions may operate; however, to the
best of our knowledge, only two studies have examined how interven-
tions exert effects on cue-induced brain activation in IGD. Specifically,
one study showed that 6-weeks of treatmentwith bupropion decreased
cue-induced craving and activation in the left superior frontal gyrus in
IGDs (Han et al., 2010a), whereas another study found that family ther-
apy increased family cohesion and decreased gaming-cue-induced
brain activation in frontal and occipital regions (Han et al., 2012).
However, no existing fMRI study has investigated how an integrated be-
havioral intervention specifically targeting craving operates on neural
levels. Behavioral rather than pharmacological interventions predomi-
nate in IGD studies, although this field is still nascent andmore evidence
is needed (King and Delfabbro, 2014;Winkler et al., 2013; Young, 2011,
2013). Furthermore, behavioral interventions integrating multiple
strategies (e.g., mindfulness, cognitive remediation) may reduce crav-
ing more efficiently than any of these strategies alone (Potenza et al.,
2011; Young, 2011). For this reason, studies that evaluate neural effects
of an integrated behavioral intervention targeting craving are necessary
in the field of IGD since they may promote improved understanding of
underlying mechanisms of IGD and provide insight into possible ways
to enhance treatment efficacy.

In the current study, the main aim was to examine the effects of a
craving behavioral intervention (CBI), which was developed to reduce
craving for gaming, on cue-induced craving and neural activation in re-
gions involved in reward andmotivational processing. Furthermore, we
aimed to investigate the functional connectivity of the regions altered
by CBI with other regions to explore the neural networks through
which CBI may operate. Based on previous findings, we hypothesized
that, compared with HCs, IGDs would exhibit stronger brain activation
in reward-related areas (e.g., ventral striatum, dorsal striatum, insula,
anterior cingulate cortex, posterior cingulate cortex, substantia nigra)
that have been implicated in cue-induced craving (Engelmann et al.,
2012; Jasinska et al., 2014; Meng et al., 2014). We also hypothesized
that CBI may exert its effects by decreasing brain activation in regions
involved in reward processing and enhancingbrain activation in regions
involved in cognitive control (e.g., dorsolateral prefrontal cortex)
(Konova et al., 2013; Yalachkov et al., 2010).

2. Materials and methods

2.1. Ethics statement

This study compliedwith theDeclaration of Helsinki. All participants
provided written informed consent and were financially compensated
for their time. The protocol was approved by the Institutional Review
Board of the State Key Laboratory of Cognitive Neuroscience and Learn-
ing, Beijing Normal University.

2.2. Participants

This studywas part of a larger study of developing and evaluating an
effective psychobehavioral intervention for IGD. Participants were re-
cruited by means of online advertisements and word of mouth and
were selected through an online questionnaire and in-person semi-
structured screening. A total of 44 IGDs and 22 HCs participated in the
fMRI cue-reactivity task based on their willingness and suitability for
fMRI, and all participants were right-handed males. Because 4 IGDs
and 3 HCs were excluded due to excessive head motion; thus, data
from 40 IGDs and 19 HCs were included in final analyses.

Participants were selected according to their weekly Internet gam-
ing time and scores on the Chen Internet addiction scale (CIAS; Chen
et al., 2003). The CIAS consists of 26 items on a 4-point Likert scale
(range: 26–104). Inclusion criteria for IGDs were the same as in previ-
ous studies (Liu et al., 2016; Yao et al., 2015; Zhang et al., 2016a,
2016b) and included: 1) a score of 67 or higher on the Chen Internet
Addiction Scale (CIAS) (Chen et al., 2003; Ko et al., 2009b); 2) engage-
ment in Internet gaming for over 14 h per week for a minimum of one
year; and, 3) reporting of one of the most popular Internet games as
their primary online activity (Cross Fire: 4, Defense of the Ancient ver-
sion 1: 11, Defense of the Ancient version 2: 2, League of Legends: 21,
World of Warcraft: 2).

The inclusion criteria for HCs were: 1) a score of 60 or lower on the
CIAS; and 2) never or occasional engagement (b2 h per week) in Inter-
net gaming. Ko et al. (2009b) suggest CIAS scores of 63 or lower identify
HCs. We used a more conservative CIAS threshold (60 or lower) and a
time limit for weekly gaming to ensure that HCs were free from IGD
(Yao et al., 2015; Zhang et al., 2016a, 2016b).

Participants who reported current or history of use of illegal sub-
stances and any gambling experience (including online gambling)
were excluded given the illegality of gambling in China. Additional ex-
clusion criteria were assessed through a semi-structured personal inter-
view, consistent with previous studies in IGD (Yao et al., 2015; Zhang et
al., 2016a). Exclusion criteria included: (1) any self-reported history of
any psychiatric or neurological illness; and, (2) current use of any psy-
chotropic medication.

Twenty-three IGDs (CBI+ group) were willing to participate in a 6-
week group CBI andwere scanned before and after the CBI. The remain-
ing 17 IGDs (CBI− group) did not receive any intervention and were
scanned twice, with similar intervals between scans as for the CBI+
group.

2.3. Craving behavioral intervention (CBI)

The integrated CBI was developed on the basis of behavioral inter-
vention theories (Dong and Potenza, 2014), the craving framework of
boundary conditions (McCarthy et al., 2010), and the fulfillment of psy-
chological needs for Internet use (Suler, 1999). Since craving may im-
pact significantly the development and maintenance of IGD, methods
that help subjects to cope and reduce craving may improve therapeutic
outcomes and prevent relapse (Brand et al., 2014; Dong and Potenza,
2014). CBI was conducted weekly with 8 to 9 IGD subjects in each
group. The topic for each session was: 1) perceiving subjective craving;
2) recognizing and testing irrational beliefs regarding craving; 3) de-
tecting craving and relieving craving-related negative emotions; 4)
training in coping with cravings and altering participants' fulfillment
of psychological needs; 5) learning timemanagement and skills training
for coping with craving; 6) reviewing, practicing, and implementing
skills. In addition, mindfulness training was included in each session.

2.4. Questionnaires

Current status of depression and anxiety was assessed using the
Beck Depression Inventory (Beck et al., 1961) and the Beck Anxiety
Inventory (Beck et al., 1988), respectively. Cigarette and alcohol use
was recorded, and the Fagerstrom Test for Nicotine Dependence
(Fagerstrom, 1978) and alcohol consumption questions from the Alco-
hol Use Disorders Identification Test (Bush et al., 1998) were used to as-
sess nicotine dependence and hazardous alcohol use, respectively.

2.5. fMRI cue-reactivity task

The block-design cue-reactivity task was adopted from previous
studies (Han et al., 2010a, 2010b). Participants were asked to passively
watch three kinds of videos and rate their craving immediately after
each video clip using 7-point visual analog scales. Six 30-second gaming
video clips (G)were screen shots selected fromofficialwebsites or gam-
ing forums by 10 additional Internet gaming players (2 players for each
of 5 following popular Internet games: Cross Fire, Defense of the Ancient
version 1, Defense of the Ancient version 2, League of Legends, World of
Warcraft) who did not participate subsequently in the fMRI and inter-
vention study. The type of the gaming clips was individualized for
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IGDs' primary game and randomly assigned to HCs who did not play In-
ternet games.

Matched control video (C) clips were selected from an unpopular
online game which was not known to or played by any participants in
the study. These clips were further obscured (as shown in Fig. 1) so
that participants were unable to recognize the contents and details of
these clips. We performed such manipulations to control for the possi-
ble effects of movement and color in gaming clips. In addition, six 30-
second white-cross/black-background (Fixation, F) images were used
as baseline. The order of the clips was fixed: G-F-C G-C-F C-F-G C-G-F
F-C-G F-G-C. Each clip was followed by a 4-second rating screen. This
task was presented by E-Prime 2.0 and lasted for 620 s. The graphical
design of the task is shown in Fig. 1.

2.6. Imaging acquisition and preprocessing

Data were acquired using a 3.0 T SIEMENS Trio scanner in the Imag-
ing Center for Brain Research, Beijing Normal University. A gradient-
echo echo-planar imaging (EPI) sequence was obtained (TR =
2000ms; TE=25ms; flip angle=90°;matrix=64× 64; resolution=
3 × 3 mm2; slices = 41). The slices were tilted 30° clockwise from the
AC-PC plane to obtain better signals in frontal regions. A T1-weighted
sagittal scan was acquired for anatomical reference with EPI data
(TR = 2530 ms, TE = 3.39 ms, TI = 1100 ms, FA = 7°, FOV =
256 × 256 mm2, voxel size = 1 × 1 × 1.3 mm3, slice = 144).

Imaging data were pre-processed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8). Functional data were realigned,
coregistered with the structural images, segmented for normalization
to the standardMNI space, and smoothedwith a 5-mmGaussian kernel
at full width at half maximum (FWHM). Subjects with head motion
N3 mm or 3° were excluded from further analysis (4 IGDs and 3 HCs
were excluded).

2.7. Behavioral data analysis

Behavioral data were analyzed using SPSS version 20.0. Differences
in baseline demographic, Internet-gaming characteristics (CIAS scores,
durations of weekly gaming), and cue-induced craving between IGDs
and HCs were analyzed using independent t-tests. Effects of CBI on
cue-induced craving and Internet-gaming characteristicswere analyzed
using analyses of variance (ANOVAs) with repeated measures with
Fig. 1. Schematic illustration of 2 blocks of the
group (CBI+ and CBI−) as a between-subject factor and session (base-
line and second tests) as a within-subject factor. The significance level
was P b 0.05.

2.8. fMRI data analysis

Imaging data were analyzed using SPM8. Three regressors were dis-
tinguished: gaming and control videos and craving ratings. Regressors
were constructed by convolving the onsets of these stimuli with a ca-
nonical hemodynamic response function. Six realignment parameters
were also included as regressors of no interest. A high-pass filter
(128 Hz) was applied to remove low-frequency signal drift. In the
first-level fixed-effects analysis, a contrast image of gaming N control
videos was built to examine cue-induced brain activation. To compare
cue-induced activation between IGDs and HCs at baseline, contrast im-
ages were entered into a second-level random-effects analysis using a
two-sample t-test. To examine for a group (CBI+ and CBI−) by session
(baseline and second tests) interaction on cue-induce activation, con-
trast images were entered into a second-level random-effects analysis
using a flexible factorial design. To assess functional connectivity be-
tween regions associated with cue reactivity (gaming N control clips)
that changed between the two sessions, we conducted a psychophysio-
logical interaction (PPI) analysis in the CBI+and the CBI− groups using
a flexible factorial design. At the group level, whole-brain analysis was
performed to compare baseline cue-induced brain activation between
IGDs and HCs and was corrected by means of Gaussian Random Field
Theory (GRFT) with voxel-level P b 0.001 and cluster-level P b 0.05 to
result in a family-wise error rate of 5%. For exploratory purposes, the
group-by-session interaction on cue-induced activation and functional
connectivity were corrected by a more liberal criterion (voxel level
P b 0.005 and cluster-level P b 0.05). The results were visualized using
BrainNet Viewer (Xia et al., 2013) and DPABI (http://rfmri.org/dpabi).

3. Results

3.1. Demographics and Internet gaming characteristics analyses

As shown in Table 1, IGDs andHCs did not differ on age, education, or
use of alcohol and cigarettes. Consistentwith the inclusion criteria, IGDs
scored higher on the CIAS and reported higher craving for both gaming
fMRI Internet-gaming cue-reactivity task.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://www.fil.ion.ucl.ac.uk/spm/software/spm8
http://rfmri.org/dpabi


Table 1
Demographics and Internet gaming characteristics of IGDs and HCs at baseline.

IGDs
(n = 40)

HCs
(n = 19)

t/χ2 value P Effect sizea

Mean ± S.D. Mean ± S.D.

Age, years 21.95 ± 1.84 22.89 ± 2.23 −1.72 0.091 −0.47
Years of education 15.75 ± 1.90 16.58 ± 1.98 −1.54 0.13 −0.43
CIAS score 79.88 ± 8.67 42.11 ± 8.27 15.86 b0.001 4.42
Durations of weekly gaming, hours 27.26 ± 10.58 1.67 ± 0.58b 15.00 b0.001 8.98
Craving for gaming clips 5.36 ± 1.18 2.06 ± 1.57 8.99 b0.001 2.51
Craving for control clips 3.61 ± 1.36 1.75 ± 1.15 5.13 b0.001 1.43
Craving for fixation 3.75 ± 1.24 1.52 ± 0.61 9.24 b0.001 2.57
Craving differences (gaming – control) 1.75 ± 1.21 0.31 ± 0.59 6.14 b0.001 1.71
BAI score 5.35 ± 5.82 2.00 ± 3.18 2.85 0.006 0.79
BDI score 9.13 ± 5.35 2.79 ± 4.21 4.53 b0.001 1.26
Alcohol use 30/40 13/19 0.28 0.60 0.07
AUDIT-C score 3.20 ± 1.90c 2.23 ± 1.17d 1.70 0.10 0.56
Tobacco use 4/40 0/19 – – –
FTND score 3.25 ± 0.50e – – – –

IGDs = Internet gaming disorder subjects; HCs = healthy control subjects; S.D. = standard deviation; CIAS = Chen Internet addition scale; AUDIT-C = alcohol consumption questions
from the Alcohol Use Disorders Identification Test; FTND= Fagerstrom test for nicotine dependence; BAI = Beck Anxiety Inventory; BDI = Beck Depression Inventory.

a Cohen's d value for t-tests and Cramer's V value for χ2 test.
b n = 3.
c n = 30.
d n = 13.
e n = 4.
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and control clips and fixation compared with HCs. In addition, IGDs
showed higher levels of anxiety and depression.

3.2. Effects of CBI on behavioral measures

The CBI+ and CBI− groupswerematchedwell in age, education, and
anxiety and depression symptoms at baseline (Table 2). ANOVAswith re-
peated measures on CIAS scores, (main effect of session: F(1,38) = 77.83,
P b 0.001, partial η2 = 0.67; main effect of group: F(1,38) = 1.15, P =
0.29, partial η2=0.03; interaction effect: F(1,38)=22.65, P b 0.001, partial
η2 = 0.37), durations of weekly gaming (main effect of session: F(1,38) =
12.57, P = 0.001, partial η2 = 0.25; main effect of group: F(1,38) = 5.58,
P = 0.02, partial η2 = 0.13; interaction effect: F(1,38) = 4.34, P = 0.04,
partial η2 = 0.10), and gaming-related craving (main effect of session:
F(1,38) = 25.77, P b 0.001, partial η2 = 0.40; main effect of group:
F(1,38) = 4.40, P = 0.04, partial η2 = 0.10; interaction effect: F(1,38) =
5.73, P= 0.02, partial η2 = 0.13) showed similar results.

As shown in Table 2, single comparisons for session indicated that
the CBI+ and CBI− groups did not differ significantly on baseline
CIAS scores, durations of weekly gaming, and gaming-related craving,
but theCBI+group compared to theCBI− group showed significant re-
ductions on these measures at the second test. Moreover, single com-
parisons for group indicated that the CBI+ group showed significant
Table 2
Demographics and Internet gaming characteristics of CBI+ and CBI− groups.

CBI+
(n = 23)

CBI
(n

Mean ± S.D. Me

Age 21.91 ± 1.83 22.
Years of education 16.09 ± 1.86 15.
BAI score 3.78 ± 3.61 7.6
BDI score 8.83 ± 5.73 9.5
CIAS score: baseline 82.09 ± 8.75 76.
CIAS score: second test 60.26 ± 9.83 70.
Durations of weekly gaming, hours: baseline 27.20 ± 10.42 27.
Durations of weekly gaming, hours: second test 11.36 ± 8.07 23.
Craving for gaming clips: baseline 5.30 ± 1.21 5.4
Craving for gaming clips: second test 3.42 ± 1.50 4.7

CBI+ = subjects with Internet gaming disorder who received craving behavioral intervention
intervention; S.D. = standard deviation; CIAS = Chen Internet addition scale; BAI = Beck Anx
reductions on CIAS scores (t(22) = 9.49, P b 0.001, d = 2.34), durations
ofweekly gaming (t(22)=6.88, P b 0.001, d=1.69), and gaming-related
craving (t(22) = 5.21, P b 0.001, d = 1.38), but the CBI− group only
showed significant reduction on CIAS scores with a smaller effect size
(t(16) = 3.16, P b 0.001, d = 0.84) at the second test compared with
baseline (Fig. 3).

3.3. fMRI results

First, we conducted a two-sample t-test between the two IGD sub-
groups (CBI+ and CBI−) at baseline. Since no significant differences
between the CBI+ and CBI− groups were identified, we combined
them into an IGD group for subsequent baseline analyses. When com-
paring gaming-cue-induced brain activation between IGDs and HCs at
baseline using a two-sample t-test, IGDs as compared with HCs showed
greater activation in multiple brain regions including the dorsal stria-
tum (caudate), brainstem, substantia nigra, anterior cingulate cortex,
and posterior cingulate cortex; lower activation was observed in a rela-
tively posterior portion of the right insula (Table 3 and Fig. 2). We fur-
ther conducted correlational analyses between the mean beta value of
these clusters and differences in craving intensities for gaming versus
control clips and found a significant positive association in the MTG
(r = 0.34, P = 0.035).
−
= 17)

t value P Cohen's d value

an ± S.D.

00 ± 1.90 t (38) = −0.15 0.89 −0.05
29 ± 1.93 t (38) = 1.31 0.20 0.43
3 ± 7.73 t (38) = −1.85 0.08 −0.60
6 ± 5.09 t (38) = −0.41 0.46 −0.13
88 ± 7.85 t (38) = 1.94 0.06 0.63
35 ± 7.80 t (38) = −3.49 0.001 −1.13
35 ± 11.13 t (38) = −0.05 0.96 −0.02
24 ± 17.51 t (38) = −2.88 0.007 −0.93
3 ± 1.17 t (38) = −0.33 0.74 −0.11
5 ± 1.44 t (38) = −2.82 0.008 −0.91

; CBI− = subjects with Internet gaming disorder who did not receive craving behavioral
iety Inventory; BDI = Beck Depression Inventory.



Table 3
fMRI analysis results.

Brain region Side BA Cluster size MNI coordinate Peak t/F values Effect sizea

X Y Z

Baseline: IGDs N HCs Brainstem/caudate L 62 −6 −15 −9 4.57 1.21
Brainstem/SN R/L 92 0 −24 −24 5.01 1.33
Precuneus/PCC/ACC R/L 7/24/31 1478 3 −57 45 6.84 1.81
MFG/ACC R 9/10 104 6 51 33 4.96 1.31
IPL/MTG L 40 649 −48 −60 15 5.68 1.50
IPL/STG R 39/40 740 51 −30 45 5.95 1.58
IFG R 9/44 188 57 9 21 5.72 1.52
IFG L 9/44 147 −54 9 33 4.81 1.27
MFG R 6/8/9 924 24 30 42 7.04 1.86
MFG/SFG L 6/8/9 855 −24 6 63 6.97 1.85
MTG R 21 138 63 −3 −18 4.31 1.14
Cerebellum posterior lobe L 131 −48 −48 −15 4.94 1.31

Baseline: HCs N IGDs Insula R 13 50 36 −18 21 4.94 1.31
Group and session interaction Insula R 13 29 42 3 −6 14.97 0.28
PPI: R insula seed, group and session interaction Lingual gyrus L 18/30 215 −6 −72 3 21.95 0.40

Precuneus/lingual gyrus R 18/31 170 15 −60 18 17.22 0.31

PGRFT b 0.05 for whole-brain analysis.
IGDs= Internet gaming disorder subjects; HCs = healthy control subjects; PPI = psychophysiological interaction; BA= Brodmann area; MNI =Montreal Neurological Institute; SN=
substantia nigra; PCC= posterior cingulate cortex; ACC= anterior cingulate cortex; IPL= inferior parietal lobule;MTG=middle temporal gyrus; STG= superior temporal gyrus; IFG=

inferior frontal gyrus; MFG= middle frontal gyrus.
a Cohen's d value for t-tests and partial η2 value for F tests.
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In the assessment of effects of CBI on cue-induced brain activation, a
significant interaction between group (CBI+ and CBI−) and session
(baseline and second tests)was observed in a relatively anterior portion
of the right insula. Single-group comparisons indicated that the CBI+
group showed a significant enhancement in the activation of the right
anterior insula (t(22) = −2.20, P = 0.04, d = −0.47), whereas for the
CBI− group, the opposite pattern was observed (t(16) = 3.01, P =
0.008, d = 1.08) (Fig. 3). Additionally, we conducted a correlational
analysis to examine the association between changes in the intensities
of craving for gaming clips and changes in activation of the anterior
insula in the CBI+ group; however, no significant relationship was ob-
served (r = −0.10, P = 0.66).
Fig. 2.Whole-brain group comparison between IGDs and HCs in gaming-cue-induced brain ac
whereas the 2D activation maps are overlaid on a T1 image using DPABI.
We further conducted a PPI analysis with the right insula as a seed
region (identified in the previous analysis) to assess its functional
connectivity with other brain regions that that were identified in
the contrast of gaming versus control clips. We found a significant
interaction between group and session implicating the bilateral lin-
gual gyrus and right precuneus. Single-group comparisons indicated
that the CBI+ group showed deceased functional connectivity of the
right insula and these two clusters (t(22) = 3.89, P=0.001, d=0.66,
and t(22) = 3.05, P = 0.006, d = 0.57), whereas the CBI− group
showed the opposite pattern (t(16) = −3.24, P = 0.005,
d = −0.90, and t(16) = −2.83, P = 0.01, d = −0.87) (Table 2 and
Fig. 3).
tivation. The 3D activation map is overlaid on an inflated surface using BrainNet Viewer,



Fig. 3. Panel A: CIAS scores, durations ofweekly gaming, and craving for gaming clips across groups and sessions. Panel B: Internet-gaming cue-induced activation in the right anterior insula across groups and sessions. Panel C: Functional connectivity
(gaming versus control clips) between the right anterior insula and left lingual gyrus (right) and right precuneus/lingual gyrus (left) across groups and sessions. CIAS = Chen Internet addition scale; R = right; L = left.
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4. Discussion

To the best of our knowledge, this study is the first evaluating effects
of CBI on gaming cue-induced brain activation in IGD. We found that,
compared with HCs, IGDs exhibited generally higher gaming-cue-in-
duced brain activation inmultiple brain regions including reward-relat-
ed areas, with the exception of lower activation in the posterior insula.
Additionally, the CBI+ group showed a significantly increased activa-
tion in the right anterior insula after completing CBI, whereas the
CBI− group showed the opposite pattern. Moreover, the CBI+ group,
as compared with the CBI− group, showed reduced functional connec-
tivity between the right anterior insula and the bilateral lingural gyrus
and right precuneus. These results suggest that CBI may exert its effects
through altering the anterior insula activity and its connectivity with
brain regions previously implicated in visual processing and spatial
attention.

Consistentwith our hypothesis, IGDs in this study exhibited stronger
gaming-cue-induced craving and brain activation in critical regions lo-
cated in the mesocorticolimbic (e.g., anterior cingulate cortex) and
nigrostriatal (e.g., caudate, substantia nigra) pathways in comparison
with HCs. The mesocorticolimbic and nigrostriatal pathways are two
major sources of dopaminergic release and contribute to the reinforcing
effects of addiction-related cues (Jasinska et al., 2014; Koob andVolkow,
2010; Robinson and Berridge, 1993). Additionally, IGDs showed greater
activation of the parietal cortex (e.g., precuneus) that has been implicat-
ed in attentional bias and episodic memory retrieval (Cavanna and
Trimble, 2006). Together, these findings both largely replicate results
of previous studies in IGD (Han et al., 2010a; Ko et al., 2009a; Liu et
al., 2016) and other addictions (Engelmann et al., 2012; Goudriaan et
al., 2013; Jasinska et al., 2014) and suggest that IGDs may be hypersen-
sitive to gaming-related cues which may elicit greater neural activation
in brain regions involved in reward and attention.

Inconsistent with our original hypothesis, IGDs exhibited
hypoactivation of the right posterior insula comparedwithHCs. Howev-
er, this finding largely parallels the results of previous studies of IGD
using gaming screenshots as gaming-related cues and general Internet
use screenshots unrelated to gaming (e.g., screenshot of online chat-
ting) as control cues (Liu et al., 2016). This finding also resonates with
those from a meta-analysis of cue-induced brain activation in obesity
(Brooks et al., 2013). In addition, a negative association between self-re-
ported craving and cortical thickness of the right insula has been report-
ed in smokers (Morales et al., 2014). However, seemingly contradictory
evidence exists and indicates that cue-induced activation in the insula is
stronger in addicted individuals relative to HCs (Ko et al., 2009a; Luijten
et al., 2011). Themixed resultsmay relate to differences inmethodology
(e.g., different control stimuli) or differences in the status of the studied
individuals (e.g., with respect to treatment-seeking). Moreover, as the
insula is amultimodal structure inwhich the anterior partmay bemain-
ly involved in salience detection and cognitive control, whereas the pos-
terior part may be predominately engaged in interoceptive and
exteroreceptive processing and integrating the information from both
processes (Cauda et al., 2011; Paulus and Stewart, 2014; Zhang et al.,
2016b), differences in findings across studies may relate to regions of
the insula implicated. Hypoactivation of the posterior insula found in
the present study may reflect hyposensitivity to satiety by merely
watching gaming clips (rather than playing games) in IGDs.

With regard to the effects of CBI, the CBI+ group, compared with the
CBI− group, showed enhanced neural activation in the right anterior
insula and decreased insular connectivity with the bilateral lingual
gyrus and right precuneus after receiving CBI. Since behavioral interven-
tions (e.g., mindfulness meditation, also a critical component of CBI)
were found to increase the gray-matter volume intensity of the right
anterior insula (Hölzel et al., 2008) and improve cognitive control perfor-
mance (Tang et al., 2015), it is possible that CBI may exert its effects by
impacting the activity of the anterior insula to enhance cognitive control
through a top-down mechanism. Furthermore, the lingual gyrus and
precuneus contribute importantly to visual and attentional processing
(Cavanna and Trimble, 2006; Hopfinger et al., 2000) and have been
found to be activated by visual addiction-related cues (Hanlon et al.,
2014). Decreased interactions between the right anterior insula and
these regions may be related to deceased salience detection and attribu-
tion of the visual stimuli (Naqvi et al., 2014; Paulus and Stewart, 2014),
although this possibility requires direct investigation. These findings
suggest that CBI may exert its effects to reduce gaming-cue-induced
craving not only through altering recruitment of specific brain regions
but also by reducing connectivity within specific neural circuits.

Our study showed that CBI effectively decreased cue-induced crav-
ing and IGD severity at a behavioral level. At a neural level, however,
it did not normalize abnormal cue-induced brain activation identified
from the baseline comparison, but rather targeted another region (the
anterior insula) that did not demonstrate differences at baseline in
IGDs and HCs, suggesting that CBI may mainly modulated brain regions
involved in relatively higher ordered cognitive function instead of di-
rectly altering those involved in reinforcement. Albeit speculative, our
findings suggest that the insula (and perhaps both its anterior and pos-
terior portions) may represent a critical target for intervention, and
targeting different parts of the insula may achieve different therapeutic
effects. However, it may be surprising that CBI showed no significant ef-
fects in other critical regionswithin the reward system(e.g., ventral stri-
atum), and we propose that future interventions combining CBI and
pharmacological interventions (Potenza et al., 2011), non-invasive pro-
cedures such as transcranialmagnetic stimulation (Hayashi et al., 2013),
or invasive procedures such as deep-brain stimulation (Luigjes et al.,
2012) that directly manipulate the ventral striatum or other regions
that may be involved in cue-reactivity may be explored in order to
achieve optimal outcomes.

Thefindings of the present study are largely consistentwith theoret-
ical models (Brand et al., 2014; Dong and Potenza, 2014; Ko et al., 2014)
that propose a central role for craving for gaming or related cues in the
maintenance of and recovery from IGD, and brain regions involved
in reward processing (e.g., striatum, PCC), executive control (e.g.,
DLPFC), or both processes (e.g., insula, ACC) interacting with each
other as well as the sensory cortex contributing to craving for gaming
in IGD (Brand et al., 2014; Dong and Potenza, 2014; Meng et al.,
2014), parallelingwith findings in other types of addiction or hypothet-
ically related conditions (e.g., obesity) (Brooks et al., 2013; Engelmann
et al., 2012; Hanlon et al., 2014; Jasinska et al., 2014). Furthermore,
these findings suggest that the insula and its functional connectivity
with visual and parietal cortices contribute importantly to gaming-
cue-induced craving and may serve as a potential intervention target,
consistent with therapeutic theories that psychological interventions
may improve top-down control over bottom-up processes that promote
craving (Konova et al., 2013; Potenza et al., 2011). Of note, our findings
may not be limited to IGD andmay generalize to other types of behavioral
addictions, such as problematic Internet pornography use, since these
constructs may share similar behavioral and neural mechanisms relating
to cue-induced craving (Brand et al., 2016). Future studies could investi-
gate directly whether intervention altering insula activity may decrease
cue-induced craving in IGD and possibly other behavioral addictions.

Our findings should be viewed in the light of some limitations. First,
the CBI+ and CBI− groups were not randomly assigned but based on
the willingness of the IGDs to participate in CBI, and the CBI− group
did not participate in an alternative activity. For this reason, we cannot
exclude possible confounding factors such as willingness to receive an
intervention or effects of different amounts of work across the groups,
and the current findings should be confirmed in studies employing ran-
domized placebo-controlled trials. Second, different familiarity for game
and control clips may influence participants' neural activity toward dif-
ferent kinds of stimuli, particularly for IGDs. Future studies may split
gaming-related stimuli from the same game into high and low craving
categories to deal with this issue. Third, the interval (4 s) between
gaming and control clips is relatively short. Although studies with



598 J.-T. Zhang et al. / NeuroImage: Clinical 12 (2016) 591–599
similar or shorter intervals exist when investigating IGD (Han et al.,
2010a; Ko et al., 2009a; Liu et al., 2016; Sun et al., 2012), and the 6 fix-
ation blocks used in this study could be regarded as 30-second intervals,
future studies are recommended using intervals with longer durations
to minimize possible contamination between conditions. Finally, the
present study only evaluated immediate effects of CBI. Considering
high relapse rates in IGD, long-term effects of interventions should be
examined and could provide significant informationwith respect to op-
timizing the efficacies of interventions (King and Delfabbro, 2014).

In summary, this study provides new insights into the neural effects of
CBI on cue-induced craving in IGD. These results suggest that IGDs exhib-
ited aberrant gaming-cue-induced activation in brain regions involved in
reward processing and higher-order cognitive functions, and CBI may
exert its effects by enhancing cognitive control and reducing the salience
of the gaming-related cues through altering the activity of the anterior
insula and its functional connectivity with brain region involved in visual
processing. Such findings advance our understanding of the underlying
mechanisms of CBI and may help refine interventions for IGD.
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