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Abstract: Silica nanoparticles display many unique physicochemical properties that make them
desirable for use in a wide variety of consumer products and composite materials. Accurately measuring
the size of these nanoparticles is important for achieving the desired nanoscale functionality of the
final product and for regulatory compliances. This study covers the validation of a centrifugal liquid
sedimentation method for accurate measurement of the Stokes diameter of silica particles with a
near-spherical shape and dimensions in the nanometer and sub-nanometer scale range. The validated
method provided unbiased results in the range of 50 nm to 200 nm, with a lower limit of detection of
≤20 nm. The relative standard uncertainties for precision, quantified in terms of repeatability and
day-to-day variation, ranged from 0.2% to 1.0% and from <0.1% to 0.5%, respectively. The standard
uncertainty for trueness was assessed at 4.6%. Within its working range, the method was found
robust with respect to the type of cuvette, light factor, operator, and for defining the meniscus of the
sample suspension. Finally, a relative expanded measurement uncertainty of 10% confirmed the
satisfactory performance of the method.

Keywords: centrifugal liquid sedimentation; measurement uncertainty; method validation; nanoparticles;
particle size analysis; reference materials; silica

1. Introduction

Nanoparticles and nanomaterials in general are at the leading edge of the rapidly developing
field of nanotechnology. The small particle size confers them unique physical and chemical properties
compared to their bulk counterparts. As a result, nanoparticles have become ubiquitous in our daily
lives [1–3].

Along with the increased use of nanoparticles, concerns emerge about occupational exposure and
potential adverse health effects [4,5]. In safeguarding public health and the environment in the European
Union (EU), horizontal and vertical legislation has been put in place [6–8]. This legislation is based on
the European Commission’s Recommendation (2011/696/EU) on the definition of nanomaterial [9].
Although the definition is overarching in nature, a practical implementation requires validated
measurement procedures for particle size analysis, which should include the use of fit-for-purpose
certified reference materials.

Over the last decade, significant efforts have been made to develop and validate methods for
accurate sizing of monodisperse and near-spherical nanoparticles. These methods include popular
techniques such as electron microscopy [10–12], dynamic light scattering [13–15], disc-type centrifugal
liquid sedimentation [13–17], and particle tracking analysis [18–21]. Method validation is important to
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demonstrate that a method is working as expected and therefore it is a key step during the process of
standardization. Thanks to previous intra- and interlaboratory validation studies, different particle size
analysis methods have been successfully standardized by, for instance, the Technical Committees (TC)
on Particle Characterization (TC 24) and Nanotechnologies (TC 229) of the International Organization
for Standardization (ISO) [22–25]. Standardized methods are important as they ensure reliability of
results and provide benchmarks for comparing measurement results across space and time.

A technique that has gained wide acceptance for measuring the size of nano- and microparticles
is centrifugal liquid sedimentation (CLS) or analytical centrifugation [25]. The technique owes its
popularity to its high resolution and precision with which particles that differ in size and/or density can
be separated from one another. The CLS technique has been commercialized in two distinctly different
instrumental designs [26]. The variant implemented most commonly makes use of an optically clear
and hollow disc partly filled with a sucrose-based fluid that exhibits a radial density (and viscosity)
gradient. A small volume (~few microliters) of a sample suspension is injected at the center of the
disc. Because all particles start their sedimentation from the same radial position, the disc-type CLS
technique is referred to as the line-start incremental method. The combination of a high angular
speed (up to 24,000 rev/min or 27,400 g) and a density gradient allows accurate measurement of
the size of silica nanoparticles with diameters as small as 20 nm [13]. The second instrument setup
employs a classical rotor system in which individual sample cells are placed and rotated at a relatively
low speed (up to 4000 rev/min or 2300 g). As the particles are initially uniformly distributed in the
sample suspension, the cuvette-type CLS technique is also known as the homogeneous incremental
method. Despite the two different instrument setups, both systems apply the measurement principle
of Stokes’ law

xSt =

√
18η ln (M/S)
(ρp − ρl)ω2tp

(1)

where xSt is the Stokes diameter of the particle settled and detected after time tp, η is the dynamic
viscosity of the liquid, M and S are respectively the measurement position and the initial position of
the meniscus in the liquid (in case of cuvette-type CLS) or the radius of rotation at the inner liquid
surface of the density gradient (in case of disc-type CLS), ρp and ρl are the respective densities of the
particles and liquid, ω is the rotational or angular speed of the rotor or the disc.

Besides the difference in design and measurement setup, the cuvette-type CLS instrument differs
essentially from the disc-type instrument in that its sedimentation time scale does not require calibration
with reference particles of known size and effective density. Calibrating the sedimentation time scale of
disc-type CLS instruments is common practice as it is the most user-friendly approach to cope efficiently
and quantitatively with the combined effect of several input quantities (i.e., η, ρl, S) which continuously
change throughout a measurement sequence, due to the injection of test samples and calibrant samples.
However, calibration poses risks when calibrants are not well characterized [27,28]. Other advantages
that makes the cuvette-type CLS method (further referred to as cuvette-CLS) standing out compared
to the disc-CLS method is the absence of a density gradient which makes it possible to analyze the
particles in their original state and dispersant.

Another technique that is part of the CLS family, and which should be mentioned for the sake
of completeness, is analytical ultracentrifugation (AUC). This technique has similarities with the
previously described cuvette-CLS in that it also uses sample cuvettes and operates in the homogeneous
incremental mode. The main strength of AUC is that it can operate at a much higher relative
centrifugal field (up to 60,000 g) which makes the technique even suitable to analyze the size,
shape, and interactions of macromolecules [29] and to distinguish between particle monomers,
dimers, and small agglomerates [30]. Particle size analysis by means of AUC is, however, much less
implemented in routine laboratories as this type of centrifuge comes at a much higher cost than
cuvette-CLS instruments.

In the field of particle size analysis, measurements are traditionally performed using the popular
dynamic light scattering (DLS) technique or electron microscopy. While DLS is a user-friendly
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technique, it is a low-resolution method that often cannot separate particles of significantly different
sizes [31]. On the other hand, electron microscopy allows single particle observation allowing to
discriminate between different particle populations. However, electron microscopes are expensive
instruments which are often labor intensive in operation and require highly skilled operators. Also,
the success of a reliable quantitative assessment, especially for polydisperse samples, depends on
well-prepared specimens and validated image analysis strategies [32].

This paper presents the results of an in-house conducted validation study of a user-friendly,
cost-efficient, and high-resolution cuvette-CLS method developed for particle size analysis of
monodisperse and bimodal samples of near-spherical silica particles with diameters in the range of
20 nm to 200 nm. The design and conduct of the validation study followed guidelines recommended
by EURACHEM [33] while measurement uncertainties were estimated according to ISO/IEC Guide
98-3 [34]. The uncertainty budget allows to compare the performance of the validated cuvette-CLS
method with other previously validated methods [12–14,19,31]. The validated method will be used by
the European Commission’s Joint Research Centre (EC-JRC) during the production of future colloidal
silica CRMs. In addition, the present study can be considered as a practical guide for others who are in
need of validating measurement methods.

2. Materials and Methods

2.1. Reference Materials

The water-based colloidal silica CRMs and (non-certified) RMs used in this study are presented
in Table 1. Materials coded as ‘ERM’ and ‘NS’ were supplied by the JRC (Geel, Belgium) and the
htt Group (Munich, Germany), respectively. With the exception of ERM-FD102, which has a particle
size distribution (PSD) consisting of two distinct peaks, all materials are monodisperse. The assigned
modal particle diameter values include related expanded uncertainties corresponding to a confidence
level of about 95%. For the ‘NS’-type materials, the particle size values are area-equivalent diameters
determined by transmission electron microscopy. The size values assigned to the ‘ERM’-type materials
are Stokes diameters determined by disc- and cuvette-CLS. Both RMs and CRMs are stable and
homogeneous with respect to their assigned property values. Furthermore, CRMs represent a higher
metrological reference standard as their assigned property/certified values are characterized using
metrologically valid procedures which make them reliable estimates of the true values [35]. As a result,
CRMs can be used for assessing the trueness (i.e., performance parameter for bias or systematic error)
of a method, while RMs may be used only for relative assessments such as precision testing. All CRMs
were analyzed as-received while the RMs were diluted using purified water (18.2 MΩ cm at 25 ◦C)
prior to analysis.

Table 1. Colloidal silica (certified) reference materials used during method development and validation,
and their relevant properties.

Code Reference Particle
Diameter (nm)

Mass Fraction in
Test Sample (g/kg) Density (g/cm3) Metrological Status

NS-0020A 19.8 ± 0.5 3.6 1.9 RM
ERM-FD100 20.1 ± 1.3 10 2.3 CRM
ERM-FD304 33.0 ± 3.0 2.5 2.3 CRM
NS-0050A 49.7 ± 1.2 1.8 1.9 RM

ERM-FD101b 87 ± 8 2.5 2.0 CRM
NS-0100A 99.1 ± 2.4 1.3 1.9 RM

ERM-FD305 1 135 1.5 2.0 RM
ERM-FD306 1 135 0.1, 0.15, 1.5, 10 2.0 RM

NS-0150A 146 ± 4 1.3 1.9 RM
NS-0200A 206 ± 5 1.1 1.9 RM

ERM-FD102 23.9 ± 2.0 and 88 ± 7 8.8 2.0 CRM
1 Certified reference material for zeta potential measurements, particle size value is an indication only.
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Bimodal samples were prepared by mixing two monodisperse materials thereby covering the
particle size range of 50 nm to 200 nm in diameter (Table 2). Three milliliters of each monodisperse
suspension (with or without dilution, as required per material) were mixed together.

Table 2. Specifications of in-house prepared bimodal colloidal silica samples

Nominal Particle
Diameters (nm)

Monodisperse Silica (C)RMs Total Mass Fraction in
Test Sample (g/kg)

Nominal Mass Fraction (g/kg)

Fraction 1 Fraction 2 Fraction 1 Fraction 2

135 + 200 ERM-FD305 NS-0200A 1.3 1.5 1.1
100 + 200 NS-0100A NS-0200A 1.2 1.3 1.1
100 + 135 NS-0100A ERM-FD305 1.4 1.3 1.5
80 + 135 ERM-FD101b ERM-FD305 2.0 2.5 1.5
80 + 100 ERM-FD101b NS-0100A 1.9 2.5 1.3
50 + 100 NS-0050A NS-0100A 2.6 3.9 1.3
50 + 80 NS-0050A ERM-FD101b 3.2 3.9 2.5

2.2. Instrumentation

Cuvette-CLS measurements were performed with a LUMiSizer 650 cuvette-type analytical
photocentrifuge (LUM GmbH, Berlin, Germany). The instrument is equipped with a twelve-place
rotor, mounted on a vertical shaft and driven by a variable speed motor that can be operated at
200 rev/min up to 4000 rev/min. The sample cuvettes are placed horizontally into the channels of
the rotor. The optical system consists of a blue LED source (470 nm wavelength) and a turbidity
CCD-line sensor with 2048 elements that detects the intensity of the light transmitted by the sample
suspension as a function of time and position across the entire length of the cuvette. The detector
has an extinction working range of 0.1–4.0 (expressed as light factor). Furthermore, the instrument
is equipped with a Pt 100 temperature sensor and a controller that allows setting and maintaining a
stable temperature (±1 ◦C) in the range of 4 ◦C to 40 ◦C. The samples were analyzed in polycarbonate
rectangular cuvettes with 2 mm or 10 mm optical path lengths. The former were filled with 0.4 mL of
suspension, the latter with 1.5 mL. The settings applied for data acquisition are given in the section
discussing the method development part. Data processing and analysis was performed in the ‘constant
position’ mode using the SEPViewTM 6.0 instrument software. The constant position mode used a set
of three measurement positions of 1.0 mm width applied along the length of the cuvette part containing
the sample suspension [36]. Particle size distributions were calculated for each measurement zone
and averaged as to obtain a robust light extinction-weighted PSD representative for the entire sample.
The representation and calculation of the PSDs’ characteristic parameters was in accordance to ISO
9276-1 and ISO 9276-2 [37,38]. The characteristic parameters were estimated from lognormal functions
fitted to linearly spaced PSDs. Detailed information about data acquisition and data processing
procedures used by the SEPViewTM 6.0 software are explained elsewhere [39].

2.3. Method Development and Optimization

A preliminary investigation was conducted to establish a suitable method for size analysis of
near-spherical silica particles with external dimensions in the range of 20 nm to 200 nm and mass
fractions in the range of 0.1 g/kg to 10 g/kg. Because of the relatively broad size range, this study mainly
focused on optimizing those method parameters that can influence the efficiency of particle detection
and analysis. The parameters examined were: type of cuvette, particle mass fraction and dilution,
data acquisition time, light factor (LF), defining the measurement positions and sample meniscus and
subtraction of the background signal.

Experiments were conducted such that only a single parameter was varied at a time while
keeping the other variables constant. One-way analysis of variance (ANOVA) was used to evaluate the
differences between group means.
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An extensive discussion of the results obtained during the method development study is available
as Supplementary Materials. An overview of the parameters, and their optimized levels, is shown in
Table 3.

Table 3. Cuvette-CLS settings and conditions applied for method validation

Method Parameters Parameter Levels

Type of sample Colloidal silica
Type of dispersant Aqueous solution

Dispersant viscosity 0.8927 mPa s
Temperature 25 ◦C ± 1 ◦C
Particle size 1 50 nm to 200 nm
Particle shape Equiaxial

Effective particle density 1.9 g/cm3 to 2.3 g/cm3

Particle mass fraction 0.1 g/kg to 2.5 g/kg
Type of PSD Mono- and bimodal

Type of signal weighting Light extinction
Light factor (LF) 0.25 to 1.0
Angular speed 4000 rev/min
Type of cuvette 2 mm and 10 mm polycarbonate

Light source LED 470 nm

Data acquisition programme

1 cycle at 15 s interval
47 cycles at 5 s interval

110 cycles at 25 s interval
340 cycles at 150 s interval

Analysis mode Constant position
Background subtraction Transmission profile of supernatant
Measurement positions (123.0 ± 0.5) mm, (125.0 ± 0.5) mm and (127.0 ± 0.5) mm

1 Harmonic mean, mode and median diameter of a lognormal function fitted to the light extinction-weighted particle
size distribution.

2.4. Method Validation

The method performance parameters evaluated were robustness, limit of detection, limit of
quantification, working range, selectivity, repeatability, intermediate precision, or day-to-day variation,
and trueness. Other common parameters such as calibration and linearity, and stability of samples,
were considered not relevant due to the nature and measurement principle of the cuvette-CLS
method. The design of the validation study followed guidelines recommended by EURACHEM [33].
The performance of the validated method was assessed against predefined criteria. These criteria were
established based on results from validation studies conducted previously on other particle size analysis
methods such as dynamic light scattering, disc-type CLS, PTA, and TEM [12–14,19]. The method is
considered fit-for-purpose if the predefined criteria are met. The validation parameters, the type of
experiments, and the predefined performance criteria are summarized in Table A1 of Appendix A.

With the exception of NS-0020A and ERM-FD306, the RMs and CRMs listed in Table 1
were systematically analyzed applying the cuvette-CLS optimized method (Table 3). For each
material, a total of 20 measurements (independent replicates) were conducted under repeatability and
intermediate precision conditions according to a nested experimental design that equally distributed
the 20 measurements over five days. One-way ANOVA was used to separate the variances within and
between groups. The relative standard deviations for repeatability (intra-day) and for intermediate
precision (inter-day) were calculated according to

RSDr = 100·

√
MSW
ym

(2)

RSDip = 100·

√
MSB−MSW

nr

ym
(3)
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where, RSDr and RSDip are the relative standard deviations for repeatability and intermediate precision,
MSW and MSB are the mean squares within and between groups (i.e., days), nr is the number of
measurement replicates (four) per day, and ym is the arithmetic average calculated from the 20
replicate results.

If MSB < MSW, then Equation (3) loses its validity due to the negative number under the square
root. In such a situation, an alternative approach was applied to calculate the relative variability
between measurement days, RSD∗ip [40]

RSD∗ip = 100·

√
MSB−MSW

nr
+ MSWe−(

MSB
MSW )

nr

ym
(4)

Measurement uncertainties were estimated using a combination of bottom-up and top-down
approaches [33], including standard uncertainties (at a confidence level of about 68%) for the precision
and trueness components of the validated method.

The RSDs, which provide a quantitative expression of the repeatability and intermediate precision
of the method, were considered as reliable estimates for the relative standard uncertainties for
repeatability (ur) and intermediate precision (uip). On that basis, the relative standard uncertainty for
precision (uprec) was estimated following Equation (5), in which RSDip may be replaced by RSD∗ip,
if applicable. The standard uncertainty for precision is estimated from results of four sample replicates
analyzed under repeatability conditions (i.e., on a single measurement day, nd = 1)

uprec =

√
RSD2

r

nr
+

RSD2
ip

nd
(5)

The trueness of the cuvette-CLS method was quantitatively assessed in terms of experimental
bias (∆bias), which is the absolute difference between the certified value of a CRM, or an accepted
reference value, and the average calculated from the modal particle size values of the replicate
measurement results.

Applying the procedure recommended by accredited CRM producers [41], the experimental bias
is considered significant on a confidence level of 95% if ∆bias > 2 × ut

ut =
√

u2
meas + u2

CRM (6)

where ut is the relative standard uncertainty for trueness, umeas is the relative standard uncertainty
associated to the mean of the modal particle size experimental results obtained for the CRM, and uCRM

is the relative standard uncertainty of the certified value. The latter is normally available from the
CRM certificate.

In principle, the determination of trueness is established by analyzing CRMs. However, for
diameters of >100 nm, suitable colloidal silica CRMs are not available. To evaluate the performance
of the cuvette-CLS method in the upper particle size range, results obtained on the (non-certified)
‘NS’-type RMs were compared with their assigned reference values. Agreement within 9% (relative
difference, RD) was considered acceptable.

The relative standard uncertainties of the measurement results obtained on the CRMs correspond
to the expression of measurement precision and are estimated as indicated in Equation (5), with that
difference that nd = 5 as these results were obtained over five days.

The expanded measurement uncertainties (U) for Stokes diameters (mode, median, harmonic mean)
were obtained by combining the relative standard uncertainties of the precision and trueness using the
usual root-mean-square manner, and following the procedures described in ISO/IEC Guide 98-3 [34].
The estimated expanded uncertainties are valid for the average of four replicate results all obtained
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under repeatability conditions on one day. A coverage factor, k = 2, was used to express the uncertainties
on an approximate 95% confidence interval.

U = k·
√

u2
prec + u2

t (7)

Whether particles can be effectively detected and measured depends on a combination of
instrumental parameters and material/sample properties. By fixing the key instrumental parameters
such as the angular velocity (i.e., 4000 rev/min) and the wavelength of the incident light beam
(i.e., 470 nm), the limit of detection (LOD) and limit of quantification (LOQ) could be derived from the
experimental results and from pre-defined limits related to statistical significance and RSDr (Appendix A).

To investigate the cuvette-CLS’s selectivity in terms of the capability to distinguish between
particles that differ in size (within the given working range), different bimodal mixtures of monodisperse
silica CRMs/RMs were prepared (Table 2) and analyzed in quadruplicate under repeatability conditions.
Also, the bimodal silica CRM, ERM-FD102, was analyzed in this study.

To allow a quantitative assessment, the resolution (Rs) was expressed using Equation (8) [42]

Rs = 1.18·
Xc2 −Xc1

W0.5,1 + W0.5,2
(8)

where, Xc1 and Xc2 correspond to the local maxima of peak 1 and peak 2 present in the PSD, W0.5,1 and
W0.5,2 are the peak widths measured at half-height, the value of 1.18 is a constant factor which adjusts
for the difference in width and the half-height of Gaussian peaks.

The Rs value is a relative measure of how well two neighboring peaks are separated. An Rs value
of ≥1.5 indicates a baseline resolved separation. As the instrument software did not allow calculating
the width at half-height values, the PSD data were exported and manually fitted with amplitude-based
Gaussian functions using the software Origin 2019b (OriginLab Corp., Northampton, MA, USA).
It must be noted that particle size distributions are usually best described by lognormal fits, as they
represent well the tails. However, for narrow and symmetric peaks, Gaussian fits can provide equally
accurate peak characteristic data.

Robustness refers to the method’s suitability and capacity to obtain similar results when perturbed
by deliberate and small variations in procedural parameters (temperature, setting of the sample
meniscus, light factor). The influence of these parameters was examined during the development stage
of the method by analyzing ERM-FD305 under repeatability conditions. During the method validation
process, the robustness of the optimized method was further checked against different operators.
For each of the selected silica materials, two out of the five measurement days were conducted by the
second analyst.

3. Results

3.1. Precision

The repeatability and intermediate precision were assessed using the results of the monodisperse
silica CRMs and RMs analyzed according to a nested experimental design (four replicates per day
and five measurement days). Table 4 gives an overview of the mean results of the modal, median,
and harmonic mean diameters, the relative standard deviations for repeatability and intermediate
precision, and the associated combined relative standard uncertainties for precision.
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Table 4. Results for repeatability and intermediate precision

Material
Mean Measured Diameter (nm) RSDr

(%)
RSDip

(%)
uprec
(%)Median Harmonic Mean Mode

NS-0020A 17.0 17.0 17.0 2.0 ND NA
ERM-FD100 16.3 16.3 16.3 2.8 0.1 1 1.4
ERM-FD304 28.3 27.8 27.4 4.9 0.9 2.6
NS-0050A 45.6 45.6 45.6 0.8 0.3 0.5

ERM-FD101b 82.9 82.9 82.9 0.2 <0.1 1 0.1
NS-0100A 95.1 95.1 95.1 0.4 0.4 0.5

ERM-FD305 142.1 140.0 137.8 0.5 0.3 0.4
NS-0150A 136.8 136.7 136.8 0.5 0.2 0.3
NS-0200A 191.7 191.3 191.0 1.0 0.5 0.7

1 Calculated as RSDip
*; ND, not determined; NA, not applicable.

3.2. Trueness, LOD, LOQ, Working Range

The trueness of the method was assessed by evaluating the significance of the bias calculated
from the certified modal Stokes diameter values and the mean values of the modal particle diameter
experimental results. The results of the trueness evaluation and of the comparative analysis of
non-certified RMs are summarized in Table 5. These results were also employed to establish the LOD,
LOQ, and working range (in terms of particle size).

Table 5. Results of the trueness assessment

(C)RM ∆m (nm) umeas (nm) uCRM (nm) ut (nm) RD (%) Significant Bias 1?

ERM-FD100 3.8 0.2 0.7 0.7 19 Yes
ERM-FD304 5.6 0.7 1.5 1.7 17 Yes
NS-0050A 4.1 NA NA NA 8 No

ERM-FD101b 4.1 0.1 4.0 4.0 5 No
NS-0100A 4.0 NA NA NA 4 No
NS-0150A 9.2 NA NA NA 6 No
NS-0200A 15.0 NA NA NA 7 No

1 Confidence level of approximately 95%. NA, not applicable.

3.3. Robustness

The robustness of the method was mainly assessed during the method development phase
by examining the central tendency measures (mode, harmonic mean, median) of the light
extinction-weighted PSDs obtained for selected silica (C)RMs, while varying slightly selected method
parameters. The results of the robustness study are shown along with the examined parameters and
their levels in Table 6. A more detailed overview is given in the Supplementary Materials.

3.4. Selectivity

The capability of the cuvette-CLS method to distinguish quantitatively between two populations
of silica particles that differ in size, was investigated by analyzing different bimodal mixtures of
monodisperse silica CRMs/RMs (Table 2) and the bimodal silica CRM (ERM-FD102). An overview
of the particle size results of the peaks’ local maxima, their ratio and RS values, is given in Table 7.
Representative examples of the PSDs with overlaid Gaussian fits are depicted in Figure 1.
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Table 6. Results of robustness testing

Parameter Level Mode (nm) Harmonic Mean (nm) Median (nm)

ERM-FD305

Temperature (◦C)
24 139.9 142.7 145.5

25 (default) 139.6 142.3 144.9
26 138.6 141.3 1 143.8 1

Light factor
0.25 139.1 141.2 143.9

0.7 (default) 139.6 142.3 144.9
1.0 139.4 141.7 144.2

Meniscus
First profile 138.6 140.8 143.1

Middle profile 138.7 140.9 143.2
Last profile (default) 138.6 140.8 143.1

ERM-FD101b

Operator Operator 1 82.9 82.9 82.9
Operator 2 83.0 83.0 83.0

ERM-FD102

Operator Operator 1 89.2 89.0 89.8
Operator 2 86.9 89.7 90.4

NS-0100A

Operator Operator 1 94.8 1 94.8 1 94.8 1

Operator 2 95.5 1 95.5 1 95.5 1

1 Significant at 95% confidence level.

Table 7. Stokes diameters of local maxima (mean ± standard deviation) and resolution values of
bimodal peaks of light extinction-weighted PSDs of bimodal colloidal silica samples

Sample Peak 1 (nm) Peak 2 (nm) Ratio Rs

ERM-FD305 + NS-0200A 133 ± 4 196 ± 1 1.5 4.8
NS-0100A + NS-0200A 101 ± 2 195 ± 2 1.9 7.5

NS-0100A + ERM-FD305 103 ± 2 131 ± 5 1.3 4.1
ERM-FD101b + ERM-FD305 88.6 ± 0.4 132 ± 2 1.5 4.6

ERM-FD101b + NS0100A <LOQ <LOQ NA NA
NS-0050A + NS-0100A 46.4 ± 0.2 94.4 ± 0.2 2.0 5.9

NS-0050A + ERM-FD101b 51 ± 1 83.4 ± 0.5 1.6 9.5
ERM-FD102 88 ± 4 < LOQ NA NA

NA, not applicable.

3.5. Measurement Uncertainty

A graphical representation of the uncertainty budget of the validated method is depicted in
Figure 2. The uncertainties are averages which account for the three types of central tendencies in the
range of 50 nm to 200 nm.



Materials 2020, 13, 3806 10 of 20

Materials 2020, 13, x FOR PEER REVIEW 10 of 20 

 

 
Figure 1. Representative examples of light intensity-weighted PSDs of bimodal colloidal silica 
mixtures obtained by cuvette-CLS, red curves are Gaussian fits. 

3.5. Measurement Uncertainty 

A graphical representation of the uncertainty budget of the validated method is depicted in 
Figure 2. The uncertainties are averages which account for the three types of central tendencies in the 
range of 50 nm to 200 nm. 

Figure 1. Representative examples of light intensity-weighted PSDs of bimodal colloidal silica mixtures
obtained by cuvette-CLS, red curves are Gaussian fits.



Materials 2020, 13, 3806 11 of 20
Materials 2020, 13, x FOR PEER REVIEW 11 of 20 

 

 
Figure 2. Relative average standard and expanded measurement uncertainties (%) estimated for 
particle size results from the validated cuvette-CLS method. 

4. Discussion 

4.1. Method Development and Optimization 

Prior to the validation study, a suitable cuvette-CLS method for measuring the size of silica 
particles with diameters in the range of 20 nm to 200 nm was developed by conducting a series of 
experiments with varying method conditions. A brief summary of the method development study is 
given in the following paragraphs. A more detailed discussion is available as Supplementary 
Materials. 

Tests with two types of measurement cuvettes (i.e., 2 mm and 10 mm optical path length) gave 
similar particle size results for ERM-FD305 (Table S1). The use of cuvettes with different optical path 
lengths increases the versatility of the method to analyze samples of different optical turbidity. 

For highly concentrated samples, i.e., when the level of the first data profile is significantly below 
30% of transmission (Figure S1), dilution with a suitable diluent would be required to bring the initial 
transmission level within the recommended range of 30% to 60%. The results shown in Table S2 
demonstrate that the analyzed colloidal silica RMs can be safely diluted without compromising the 
integrity of the material. While it is good practice to always verify the possible effect of sample 
dilution, the ability to dilute samples can also be beneficial when the available amount of the original 
sample is too small for the available sample cuvettes. 

One of the most crucial parameters in analytical centrifugation is the measurement or data 
acquisition time. Acquisition times set too short will result in PSDs that are incomplete and biased. 
On the other hand, acquisition times set unnecessarily long reduce sample throughput. Using 
selected monodisperse silica RMs the different segments (i.e., number of cycles and time intervals) of 
the data acquisition program were optimized to ensure that silica particles with diameters in the 
range of 20 nm to 200 nm can be detected (Tables S3 and S4). The established program corresponds 
to a total acquisition time of 15 h. 

A general limitation of measurement equipment that apply the principle of light extinction is 
saturation of the photodetector. For the cuvette-CLS method, this may occur when samples have a 
highly translucent appearance and thus only a small fraction of the incident light is extinct by the 
sample suspension. To avoid saturation of the detector when analyzing such type of samples, the 
intensity of the incident light beam can be reduced by applying a lower value for the light factor. 
According to the instrument manufacturer, a default value of 0.7 is suitable for most types of colloidal 
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4. Discussion

4.1. Method Development and Optimization

Prior to the validation study, a suitable cuvette-CLS method for measuring the size of silica
particles with diameters in the range of 20 nm to 200 nm was developed by conducting a series of
experiments with varying method conditions. A brief summary of the method development study is
given in the following paragraphs. A more detailed discussion is available as Supplementary Materials.

Tests with two types of measurement cuvettes (i.e., 2 mm and 10 mm optical path length) gave
similar particle size results for ERM-FD305 (Table S1). The use of cuvettes with different optical path
lengths increases the versatility of the method to analyze samples of different optical turbidity.

For highly concentrated samples, i.e., when the level of the first data profile is significantly below
30% of transmission (Figure S1), dilution with a suitable diluent would be required to bring the initial
transmission level within the recommended range of 30% to 60%. The results shown in Table S2
demonstrate that the analyzed colloidal silica RMs can be safely diluted without compromising the
integrity of the material. While it is good practice to always verify the possible effect of sample dilution,
the ability to dilute samples can also be beneficial when the available amount of the original sample is
too small for the available sample cuvettes.

One of the most crucial parameters in analytical centrifugation is the measurement or data
acquisition time. Acquisition times set too short will result in PSDs that are incomplete and biased.
On the other hand, acquisition times set unnecessarily long reduce sample throughput. Using selected
monodisperse silica RMs the different segments (i.e., number of cycles and time intervals) of the data
acquisition program were optimized to ensure that silica particles with diameters in the range of
20 nm to 200 nm can be detected (Tables S3 and S4). The established program corresponds to a total
acquisition time of 15 h.

A general limitation of measurement equipment that apply the principle of light extinction is
saturation of the photodetector. For the cuvette-CLS method, this may occur when samples have a
highly translucent appearance and thus only a small fraction of the incident light is extinct by the sample
suspension. To avoid saturation of the detector when analyzing such type of samples, the intensity
of the incident light beam can be reduced by applying a lower value for the light factor. According
to the instrument manufacturer, a default value of 0.7 is suitable for most types of colloidal systems.
Since silica nanoparticles are known to be weak scatterers of light, the effect of light factor values of 0.7
and 0.25 was studied (Table S5). For the tested silica RMs, it was found that the reduced light factor
value has no significant impact on the main central tendency values of the PSDs. For ERM-FD305,
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which is slightly turbid, the possible impact of a light factor value of 1.0 was additionally tested. Also
for this material, no significant effect on the calculated particle size could be demonstrated.

When the centrifugation program has completed, the acquired data is converted to light
extinction-weighted PSDs. To do so, the sedimentation data recorded in the light transmission
profiles is analyzed at three default measurement zones distributed over the lower part of the sample
cuvette, i.e., at a distance of (123.0 ± 0.5) mm, (125.0 ± 0.5) mm and (127.0 ± 0.5) mm from the center of
revolution. To investigate the effect of the measurement position, PSDs were calculated by selecting
measurement zones in the range of 110 mm to 127 mm. The results in Table S7 show a systematic
increase of the calculated particle size with the distance from the center of rotation. The difference in
particle size calculated for the two extreme positions is about 3%. To flatten the effect of the positive
trend, it was decided to use the average of the three default measurement zones (as recommended by
the instrument manufacturer).

The start of the sedimentation process is given by the sample meniscus (Figure S1). Defining the
meniscus can be subject to variation as the local minima of the different transmission profiles do not
always exactly overlap. To evaluate the effect of the meniscus setting, PSDs were calculated using
the first, middle, and last transmission profiles, respectively. It was found that the profile used for
the meniscus setting does not significantly affect the central tendency values of the PSDs (Table S6).
Nevertheless, to eliminate the precision component of the meniscus setting process it was decided that
the meniscus will be defined from the last acquired transmission profile.

Finally, the method development study also showed that the time-independent background signal
can be subtracted by using either the last acquired transmission profile or using the profiles obtained
for a blank sample (Table S8).

4.2. Precision

As the validated method is intended for single-laboratory use, the precision profile of the
method was characterized in terms of repeatability (within-day variation) and intermediate precision
(day-to-day variation). The between-laboratory precision, or reproducibility, was beyond the scope of
the present study.

From the results listed in Table 4, it can be concluded that silica nanoparticles smaller than 50 nm
in nominal diameter compromise the repeatability of the method, as for those particles the RSDr values
greatly exceeded the 1.5% repeatability limit. For diameters in the range of 50 nm to 200 nm, the method
performed satisfactorily. The between-day variation was below 1% and showed to be independent from
the measured particle size. For the particle size range of 50 nm to 200 nm, the overall relative standard
uncertainty for precision, uprec, varied between 0.1% and 0.7%. Analyzing more than four replicates is
advantageous as it reduces the repeatability uncertainty. However, since repeatability and intermediate
precision contribute equally to uprec, the latter will not improve significantly (cf. Equation (5)).

4.3. Trueness

The trueness of the method was assessed by analyzing the certified reference materials ERM-FD100,
ERM-FD304, and ERM-FD101b. As seen from the results in Table 5, significant biases were obtained
for ERM-FD100 and ERM-FD304 indicating that the method is unable to accurately measure the
Stokes diameter of 30 nm silica nanoparticles, and smaller. These results complement the previous
results of the precision evaluation where significantly higher RSDr values were obtained for the same
CRMs. On the other hand, the bias for ERM-FD101b was found not significant. To fully understand
and assess the trueness of the method across its entire working range, additional experiments on
colloidal silica CRMs with particle sizes of 100 nm and more would be needed. As such CRMs are
currently not available, the results obtained on the non-certified RMs, NS-0050A, NS-0100A, NS-0150A,
and NS-0200A, were used to determine the measurement performance of the method in the upper
particle size range. To judge whether these measurement results were sufficiently close to the assigned
reference values of the RMs, a relative difference (RD) of maximum 9% was considered as acceptable.
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This acceptance criterion was established based on the 9.2% relative expanded uncertainty of the
certified value of ERM-FD101b. Since the RMs embody particle size values that were assigned by
transmission electron microscopy, no metrologically sound conclusions can be made on trueness from
the obtained Stokes diameters measured by cuvette-CLS. Nevertheless, as these silica particles are
highly monodisperse and do not swell in a liquid environment, a meaningful comparison can be
justified, even for different measurands.

As demonstrated by the results in Table 5, the RD values were within the acceptance limit, showing
that the cuvette-CLS method yields accurate results in the particle size range of 50 nm to 200 nm and in
the particle mass fraction range of 0.1 g/kg to 2.5 g/kg.

4.4. Limit of Detection and Limit of Quantification

For chemical methods, the lower limits of detection and quantification are the smallest analyte
concentrations that can be detected and measured, respectively. They are often quantified as 3-times
and 10-times the standard deviation calculated from results obtained by measuring blank samples [33].
For physical methods that measure the size of particles in suspension, such as the described cuvette-CLS
method, measuring blank samples is not relevant as the background signal of a particle-free sample
cannot be meaningfully related to the method’s particle size measurement performance. In addition,
the limits of detection and quantification do not solely depend on the target measurand (i.e., particle size
measured as equivalent diameter), but they also depend on the mass fraction of the particles.
For instance, at a given mass fraction, the detection/measurement of small nanoparticles can be more
challenging than for larger particles of a similar composition. However, at sufficiently high mass
fractions the small nanoparticles may become easier to detect/measure while the larger particles can
become undetectable/unmeasurable at very low mass fractions. For the cuvette-CLS method, which has
been developed and validated for a relatively broad particle size range, it is thus not straightforward
to experimentally determine separate limits of detection and quantification for particle mass fraction.
Instead, based on the dilution experiments conducted during the method development phase (Table S2)
and the particle mass fractions of the colloidal silica RM test samples successfully analyzed during the
validation study (Table 1), a particle mass fraction of 0.1 g/kg to 2.5 g/kg can be regarded as a ‘safe
range’ (for silica). When transferring the validated method to ‘unknown’ colloidal silica materials,
one should nevertheless carefully verify whether the mass fraction of the given sample (with nominal
diameters in the range of 50 nm to 200 nm) is suitable. A simple and fast way to do so is by ensuring
that the transmission signal of the first acquired data profile is in the range of 30% to 60% (Figure
S2) and that the relative standard deviation of the particle size results is ≤1.5% (acceptance criterion
for repeatability).

For the cuvette-CLS method, the particle size results from the repeatability and trueness studies
were used to estimate the lower limit of detection (LLODd), the lower limit of quantification (LLOQd),
and the upper limit of quantification (ULOQd). The subscript ‘d’ denotes that the limit values are
defined as Stokes diameters.

As can be seen from the RSDr results (Table 4), the repeatability of the method is satisfactory in the
range of 50 nm to 200 nm, as the RSDr values for those particles are ≤1.5%. For the same particle size
range, it was found that the experimental result agreed with either the certified value or the assigned
non-certified values within a relative difference of 9%. Based on both types of evaluations, the LLOQd

and ULOQd are set at nominally 50 nm and 200 nm, respectively. For silica nanoparticles smaller than
50 nm in diameter, the repeatability significantly deteriorates. However, their RSDr values are still
≤5.0%, and therefore they can still be detected reliably. As silica nanoparticles with diameters smaller
than 20 nm were not available to further test the limits experimentally, the LLODd is set conservatively
at nominally 20 nm.
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4.5. Linearity and Calibration

The measurement signal response of the cuvette-CLS method does not require calibration with
particle size CRMs. As a result, linearity, as known in the field of traditional chemical analysis,
is not applicable. There are, of course, a number of instrument parameters (e.g., temperature sensor,
rotor speed, alignment of the optical system) which need to be verified with properly calibrated
tools, but these parameters, which are checked on a regular basis with SI-traceably calibrated devices,
are assumed not to contribute significantly to measurement uncertainty.

4.6. Robustness

The robustness of the optimized method was examined by evaluating the influence of small
variations in selected method parameters. These parameters were related to the temperature, the LF
and the position of the sample meniscus. In general, the F-statistic in ANOVA did not flag significant
differences between group means indicating that the method is robust against the influence of minor
modifications in operational conditions. Despite that the analytical centrifuge is equipped with a
temperature controller and that results are automatically corrected for deviation from set temperature,
a systematic trend of decreasing calculated Stokes diameters was, nevertheless, noted for increasing
temperature. At 26 ◦C the trend resulted in harmonic mean and median particle diameter results
which were significantly lower than results obtained at 24 ◦C (−1.0%) and 25 ◦C (−0.7%). During a
previous study, it was concluded that a variation of about 1 ◦C affects the measured Stokes diameter
by approximately 2.5% [28]. This uncertainty, which in the present study is assumed to be fully
represented by the precision uncertainty, largely covers the experimental deviations. Therefore, the two
results that were identified as statistical outliers are technically acceptable.

Although, the validated method thus provides a solid approach allowing very little variation
in data acquisition (i.e., temperature and LF) and data analysis (i.e., setting of the meniscus), it was
nevertheless considered relevant to include a second analyst in the validation study as to include
potential variation from sample preparation into the uncertainty budget of the method. Between-sample
variation, which can be operator-dependent, may be introduced particularly during sub-sampling
and diluting of the as-received laboratory sample, as well as filling of the sample cuvettes. Only for
NS-0100A, one-way ANOVA flagged a statistically significant difference (p ≤ 0.05) between the group
means. Since all other method parameters were fixed, it is assumed that the difference was caused
mainly due to sample preparation. Compared to the silica CRMs (ERM-FD101b and ERM-FD102),
which were analyzed as-received, the highly concentrated NS-0100A had to be diluted in purified
water. The ‘NS’-type RMs come in small bottles with ophthalmic dropper tip fitments and the dosing
of the generated droplets is less accurate than for weighing or pipetting. Nevertheless, as the deviating
group mean was only 1% above the grand average of the dataset of 20 replicate results, the data was
retained. Based on these results, it is concluded that the validated CLS method is also robust against
different analysts, provided they are appropriately trained.

4.7. Selectivity

The validated method cannot discriminate on particle composition. However, it is selective in terms
of its separation efficiency with respect to particle size (and particle density). The validated method
could accurately measure the local maxima of the different particle populations of all, except one,
prepared mixtures (Table 7 and Figure 1). For these samples, the peaks were baseline resolved
(Rs > 1.5) and the ratio between the diameters of the large and small particles ranged between 1.3
and 2.0. For the mixture prepared from NS-0100A and ERM-FD101b, with a ratio close to 1, the light
extinction-weighted PSDs were monomodal instead of bimodal. Although, these PSDs were very
narrow and their modes agreed statistically with the certified value of ERM-FD101b, the modal values
(i.e., 90 nm) determined for the mixture are significantly larger than those determined for the PSDs of
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ERM-FD101b alone (i.e., 83 nm). The single peak of the PSDs of the mixture is in fact a convolution of
the ERM-FD101b and NS-0100A populations.

From the results of the monodisperse materials, it was concluded that silica particles with nominal
diameters smaller than 50 nm could not be accurately measured. Therefore, the results obtained for the
bimodal CRM, ERM-FD102, could not be used in the evaluation of the peak resolution.

4.8. Measurement Uncertainty

The relative expanded measurement uncertainties (U) were estimated by combining the individual
relative standard uncertainties from repeatability (ur), intermediate precision (uip) and trueness (ut),
and by applying a coverage factor, k = 2 (Equation (7)). As evident from Figure 2, the relative average
expanded measurement uncertainty, which does neither change with particle size nor with measurand,
is dominated by the uncertainty contribution from trueness. Indeed, since the size of the silica
nanoparticles with nominal diameter <50 nm of CRMs ERM-FD100 and ERM-FD304 were beyond the
method’s working range, it was decided to use the uncertainty of the certified value of ERM-FD101b
as generic contribution in all trueness assessments. The relative standard uncertainties estimated for
repeatability and intermediate precision are negligible compared to the trueness uncertainty. The extent
of the latter is mainly due to relative standard uncertainty (4.6%) of the certified Stokes diameter.
This uncertainty may be considered large, but one should be aware that it consists of numerous
contributions which were carefully estimated during the production of ERM-FD101b [43]. In addition
to the traditional contributions related to the homogeneity, stability, and characterization of the CRM,
uCRM also covers uncertainty contributions from the effective density of silica nanoparticles and from
polyvinyl chloride (PVC) reference particles used by the majority of the laboratories for calibration of
the disc-CLS methods during the characterization study. For the latter, the uncertainties related to the
assigned values for particle size (~20%) and effective density (~26%) are significant contributors to
uCRM. Thus, indirectly, they do provide a conservative dimension to the uncertainties estimated in the
present validation study. Despite this overestimation, the relative expanded uncertainties of about 10%
(Figure 2) are of the same order of magnitude as the measurement uncertainties of size results of silica
(nano)particles measured with other techniques, such as particle tracking analysis (11%) [19], disc-CLS
(16%) [13], dynamic light scattering (6%) [13] and transmission electron microscopy (7%) [12].

5. Conclusions

In this work, a user-friendly cuvette-CLS method for the determination of modal, median and
harmonic mean values of light extinction-weighted PSDs of silica (nano)particles in aqueous dispersions
was developed and validated in-house. The methodology requires minimal sample preparation (as it
can measure as-received suspensions) and employs a robust measurement procedure that successfully
passed the validation process. The development and validation experiments were conducted on a
selection of CRMs and RMs and binary mixtures of the materials consisting of near-spherical silica
particles with diameters in the range of 20 nm to 200 nm and particle mass fractions in the range of
0.1 g/kg to 10 g/kg, according to a nested experimental design.

The results obtained on the monomodal CRMs and RMs demonstrated that the method is suitable
to determine the size of silica particles with nominal diameters in the range of 50 nm to 200 nm
within a relative expanded uncertainty of 10% at a confidence level of approximately 95% and with
particle mass fractions in the range of 0.1 g/kg to 2.5 g/kg. For this size range, the method yielded an
average repeatability and intermediate precision of 0.6% and 0.2%, respectively. Finer fractions until
20 nm could be detected but not quantified reliably. Due to the absence of suitable silica CRMs with
particle diameters >100 nm, the trueness of the method could only be assessed using a single CRM
ERM-FD101b. The relative standard uncertainty for trueness was estimated at 4.6%. Bimodal sample
mixtures with size ratios ≥1.3 were satisfactorily discriminated as well.

The comparison of the validated cuvette-CLS method with the more popular disc-CLS method
shows its advantages such as operational simplicity, elimination of calibration with reference particles,
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and high throughput as up to 12 samples can be analyzed simultaneously. The latter may compensate
for the long measurement time (i.e., 15 h), compared to other techniques such as DLS or disc-CLS.

The accuracy of particle size results from CLS techniques depends to a large extent on the accuracy
of the effective density of the particles. Both the cuvette- and disc-CLS methods have the potential
to simultaneously determine the size and effective density of particles by employing spin fluids of
different density [16,44,45]. The integration of a validated density method in the presented particle size
analysis method will further improve measurement accuracy by lowering the measurement uncertainty.

The results and measurement uncertainties described and discussed in the present contribution may
be used by other laboratories to help them in estimating the uncertainties of their cuvette-CLS results.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/17/3806/s1,
Figure S1: Light transmission profiles obtained for ERM-FD305 and using polycarbonate cuvettes of two different
optical path lengths: (a) 2 mm, (b) 10 mm; Figure S2: Transmission signals obtained for ERM-FD305, without
and after dilution with purified water: (a) 1.5 g/kg (without dilution), (b) 1.0 g/kg, (c) 0.5 g/kg; Table S1: Effect
of cuvette type on measured particle size of ERM-FD305; Table S2: Effect of dilution on measured particle size;
Table S3: Sedimentation times obtained for silica RMs of different particle sizes; Table S4: Data acquisition program
for silica particles (xSt = 20 nm to 200 nm); Table S5: Effect of light factor (LF) on measured particle size of
selected CRMs; Table S6: Effect of setting the meniscus based on the first and last transmission profiles; Table S7:
Effect of measurement position on calculated particle size results for ERM-FD305; Table S8: Effect of background
subtraction procedure (blank sample vs. last profile) on measured particle size of selected CRMs.
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Abbreviations

ANOVA analysis of variance
AUC analytical ultracentrifugation
CCD charge-coupled device
CLS centrifugal liquid sedimentation
CRM certified reference material
ISO International Organization for Standardization
k coverage factor
LF light factor
LLODd lower limit of detection, in terms of Stokes diameter
LLOQd lower limit of quantification, in terms of Stokes diameter
MSB mean squares between groups
MSW mean squares within groups
nr number of replicates within groups
PVC polyvinyl chloride
RD relative difference
RM reference material
Rs resolution factor
RSDr relative standard deviation for repeatability
RSDip relative standard deviation for intermediate precision
RSDip

* relative standard deviation for intermediate precision (if MSB < MSW)
TC Technical Committee
ULOQ upper limit of quantification
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uCRM uncertainty of certified value
uprec precision uncertainty
ut trueness uncertainty
W1/2,1 width of peak 1 at half-height
W1/2,2 width of peak 2 at half-height
Xc1 local maximum of peak 1
Xc2 local maximum of peak 2
ym arithmetic average calculated from replicate results
∆bias experimental bias

Appendix A

Table A1. Performance parameters and criteria considered during validation study.

Performance Parameter Experiment Performance Criterion

Robustness

Small deliberate changes applied
during data acquisition and data
analysis (method development)

and measurements conducted by
two analysts (method validation)

Results not significantly 1 different

Linearity and calibration NA NA

LLODd/LLOQd/ULOQd

Nested experiments on different
types of colloidal silica, mainly
varying with respect to particle

size (range of 20 nm to 200 nm in
diameter)

LLODd: Significant 1 difference
and/or relative standard deviation

for repeatability (RSDr) ≤ 5.0%
LLOQd: Not significantly 1

different and RSDr ≤ 1.5%
ULOQd: RSDr ≤ 1.5%

Working range

Particle size: Nested experiments
on different types of colloidal silica
RMs, mainly varying with respect
to particle size (range of 20 nm to

200 nm in diameter)
Particle mass fraction: Dilution

series of different silica RMs

Particle size: No significant 1 bias
and accurate within ≤ 1.5%

Particle mass fraction: One-way
ANOVA or t-test, no significant 1

differences

Selectivity Mixing of different monodisperse
colloidal silica RMs

Reliable measurement of particle
populations which differ in size by

a factor 4

Repeatability and intermediate
precision

Nested experiments (i.e., five days
with four replicates per day) on
different types of colloidal silica

RMs, mainly varying with respect
to particle size (range of 20 nm to

200 nm in diameter)

One-way ANOVA, RSDr ≤ 1.5%,
no significant 1 differences among

groups (days)

Trueness

Nested experiments (i.e., five days
with four replicates per day) on
different types of colloidal silica

CRMs, mainly varying with
respect to particle size (range of

20 nm to 80 nm in diameter)

No significant 1 bias

Measurement uncertainty Combination of top-down and
bottom-up approach U 1

≤ 15%

NA, not applicable; U, expanded uncertainty; 1 confidence level of 95%.
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