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Myocardial infarction, an irreversible cardiac tissue damage, involves progressive

loss of cardiomyocytes due to p53-mediated apoptosis. Oxygenation is known to

promote cardiac survival through activation of NOS3 gene. We hypothesized a

dual role for p53, which, depending on oxygenation, can elicit apoptotic death

signals or NOS3-mediated survival signals in the infarct heart. p53 exhibited a

differential DNA-binding, namely, BAX-p53RE in the infarct heart or NOS3-p53RE

in the oxygenated heart, which was regulated by oxygen-induced, post-

translational modification of p53. In the infarct heart, p53was heavily acetylated

at Lys118 residue, which was exclusively reversed in the oxygenated heart,

apparently regulated by oxygen-dependent expression of TIP60. The inhibition of

Lys118 acetylation promoted the generation of NOS3-promoting prosurvival form

of p53. Thus, oxygenation switches p53-DNA interaction by regulating p53 core-

domain acetylation, promoting a prosurvival transcription activity of p53.

Understanding this novel oxygen-p53 survival pathway will open new avenues in

cardioprotection molecular therapy.
INTRODUCTION

Cardiovascular diseases claim more lives than any other disease
in the world. Of all forms of cardiovascular diseases, myocardial
infarction (MI) accounts for more than 40% of deaths. MI is
largely attributed to the permanent loss of cardiomyocytes due to
necrotic and apoptotic process of cell death (Kajstura et al, 1996;
Yaoita et al, 2000). Studies using animal models of MI indicate
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that myocyte death due to necrosis is an early event that begins
with prolonged ischemia, further exacerbated with the onset
of reperfusion, and may last up to 24 h (Eefting et al, 2004;
Oerlemans et al, 2012). On the other hand, apoptotic cell death is
largely initiated during reperfusion and continues to occur in
the MI heart for longer duration (Gottlieb et al, 1994; Zhao
et al, 2000). If left untreated, MI will continue to undergo
progressive loss of viable cardiomyocytes due to p53‐mediated
apoptosis, extensive remodelling and deterioration of cardiac
function which eventually may lead to congestive heart failure.
Thus, there is an increasing need to develop clinically applicable
therapies to inhibit the progression of cardiac damage and/or
cardiac tissue regeneration in MI patients (Bolli et al, 2011;
Laflamme &Murry, 2011). Administration of oxygen cycling to a
rat model of MI has been shown to protect cardiomyocytes from
ischemia/reflow‐induced death and is believed to function
through upregulation of NOS3 expression (Cabigas et al, 2006).
Recently, we observed that daily administration of oxygen
(oxygen‐cycling; OxCy; 90min/day for 4 weeks) to rats
with experimentally‐induced MI resulted in a significant
reduction of infarction and improvement of cardiac function
is is an open access article under
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(Khan et al, 2012). The oxygen‐cycling also improved engraft-
ment of mesenchymal stem cells (MSC) transplanted in the
infarcted myocardium. It was further observed that endothelial
nitric oxide synthase (eNOS or NOS3) was overexpressed both in
the oxygenated and stem cell‐treated hearts (Khan et al, 2012).
p53 is an established apoptotic effector in infarct heart (Bialik
et al, 1997; Crow et al, 2004). p53 and NOS3 have been shown to
have clinical correlation (Alvarado‐Vasquez et al, 2007). p53
transcriptionally regulates other members of NOS family as well
(Chen et al, 2003). However, if p53 and NOS3 have a relation at
the transcriptional level then p53 might have a dual role in the
enforcement of ‘death’ or ‘survival’ in the infarct heart. p53
regulates nexus of many cellular pathways, it integrates
abnormal signals and in response, induces arrest, apoptosis or
DNA‐repair in a context‐dependent manner (Ko & Prives, 1996;
Levine et al, 2006). However, whether p53 might have a role in
cell‐survival (Gogna et al, 2012a; Madan et al, 2011;
Vousden, 2006) and thus possesses the ability to support
cardiac survival in oxygenated infarct myocardium is not
established. The hypothesis is supported by the evidence that
p53 positively regulates the expression of genes whose products
are directly involved in evoking anti‐apoptotic effects in cancer
cells (Janicke et al, 2008). This list of genes includes glutathione
peroxidase (Hussain et al, 2004; Tan et al, 1999; Yan &
Chen, 2006), manganese superoxide dismutase (Hussain
et al, 2004), aldehyde dehydrogenase 4 (Donald et al, 2001),
p53‐induced glycolysis and apoptosis regulator (TIGAR; Bensaad
et al, 2006; Madan et al, 2012), as well as PA26 and Hi95 that
encode two proteins of the sestrin family, namely sestrin 1,
sestrin 2 (Budanov et al, 2002; Masutani et al, 2005; Velasco‐
Miguel et al, 1999) and Slug (Wu et al, 2005). Another
transcription factor induced by p53 is Krüppel‐like factor 4
(Zhang et al, 2000), which induces cell‐cycle arrest at the G1/S
and G2/M transition (Rowland et al, 2005), thus participates in
the cell‐survival program. Similarly, Cop1 (constitutively
photomorphogenic 1) and Pirh2 (p53‐induced protein with a
Ring‐H2 domain) proteins (Dornan et al, 2004; Fuchs et al, 1998;
Leng et al, 2003), p53‐induced R2 homolog gene with a p53‐
binding sequence in intron 1 (Kimura et al, 2003; Monte et al,
2003; Tanaka et al, 2000; Utrera et al, 1998), hematopoietic zinc
finger (Braithwaite et al, 2006; Vousden, 2006), heparin‐binding
epidermal growth factor‐like growth factor (Fang et al, 2001),
discoidin domain receptor 1 (Ongusaha et al, 2003) and
cyclooxygenase 2 (Han et al, 2002) have been shown to be
involved in the p53‐mediated survival program of cancer cells.

In this study, we observed that the pro‐apoptotic p53 gene
was overexpressed in the oxygenated‐infarct hearts with
survival potential. We hypothesized that p53 senses oxygen‐
induced molecular changes and plays a dual role in generating
apoptotic signals in the infarct heart and NOS3‐mediated
survival signals in the oxygenated heart. We used a rat model
of MI induced by permanent ligation of left‐anterior‐descending
(LAD) coronary artery. Rats were exposed to oxygen‐cycling
90min/day for 4 weeks (Khan et al, 2012). Heart tissues
harvested from the infarct region were used for analysis. The
results showed that p53 exhibits a differential DNA binding,
switching from BAX‐p53RE in the infarct heart to NOS3‐p53RE
EMBO Mol Med (2013) 5, 1662–1683 �
in the oxygenated heart, apparently regulated by oxygen‐
dependent TIP60 acetylase expression and post‐translational
modification of p53 core domain at p53‐Lys118 residue. The study
establishes a new role of p53 in cardioprotection.
RESULTS

p53 is upregulated in both apoptotic MI hearts and surviving
oxygenated MI hearts
MI was induced in rats by an ischemia‐reperfusion protocol as
described previously (Khan et al, 2012). Briefly, following
thoracotomy, LAD coronary artery was occluded for 60min and
released subsequently to induce ischemia‐reflow injury. After
2 days of recovery period, the MI rats were exposed to periodic
administration of 90min of 100% O2 breathing, 5 days/week for
4 weeks (OxCy). Previously, we showed that treatment of MI
hearts with bone marrow‐derived MSC increased myocardial
oxygenation and further that combination treatment of stem
cells and OxCy resulted in a higher recovery of cardiac function
and cardiomyocyte survival when compared to untreated MI
hearts (Khan et al, 2009, 2012). Since p53 has been implicated in
cardiomyocyte apoptosis in MI hearts, we determined its role in
the oxygenated MI hearts. p53 mRNA and protein levels were
determined by RT‐PCR, qPCR, Western blotting, in vivo ELISA
and immunoprecipitation (IP) methods. The results showed that
p53 mRNA and protein expression levels were high in both
infarct (MI) and oxygenated (MIþOxCy) hearts, whereas
control (healthy) hearts did not show p53 gene/protein
activation (Fig 1A–E). Since nuclear localization of p53 is
critical for its transcriptional activity, we analysed subcellular
localization of p53 in the heart tissues by fractionation followed
by IP as described (Gogna et al, 2012a). The purity of the
fractions was verified using immunoprecipitation with PARP
and tubulin antibodies; PARP antibody stains only the nuclear
fraction and not the cytoplasmic fraction, while tubulin antibody
stains only the cytoplasmic fraction (Supporting Information
Fig S1). The IP data of heart tissue showed nuclear migration of
p53 in both MI and oxygenated hearts (Fig 1F). The stability of
p53 protein was determined in the infarct hearts by probing the
formation of p53‐Mdm2 complex. Co‐IP using both anti‐p53 and
anti‐Mdm2 antibodies showed absence of p53‐Mdm2 interaction
in bothMI and oxygenated hearts (Fig 1G), suggesting active p53
status in both cases. The transcriptional activity of p53 was
determined by analysing p53‐p300 transcriptional complex.
Co‐IP using both anti‐p53 and anti‐p300 antibodies showed that
p53 forms a protein‐protein complex with its co‐activator p300 in
the infarct and oxygenated hearts (Fig 1H). Overall, the results
indicated that p53 protein was active, stable and transcription-
ally potent in both untreated MI and oxygenated MI hearts
suggesting a possible mechanism of p53 participating in
antagonistic pathways of cardiomyocyte death or survival.

p53 transcriptionally regulates NOS3 promoter by binding at
NOS3‐response element
Since the p53 levels in the MI and oxygenated MI hearts showed
a positive correlation with NOS3 expression profiling (Khan
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1663



Figure 1. p53 is upregulated and

transcriptionally active in both infarct and

oxygenated hearts.

A. RT-PCR images show that p53 mRNA is

upregulated in bothMI andMIþOxCy hearts.

B. Real-time qPCR values, expressed relative

to internal control (IC), show significantly

higher levels of p53 mRNA in both MI and

MIþOxCy hearts when compared to con-

trol. Data represent mean� SD of five

independent measurements. �p¼4.3E�06;
#p¼1.5E�09.

C. Western-blot images show that p53 protein is

increased in both MI and MIþOxCy hearts.

D. In vivo ELISA results show significantly higher

levels of p53 in bothMI andMIþOxCy hearts

when compared to control. Data represent

mean� SD of five independent measure-

ments. �p¼2.0E�06; #p¼5.2E�09.

E. Immunoprecipitation (IP) data show in-

crease in p53 protein level in MI and

MIþOxCy hearts.

F. Subcellular localization data of p53, obtained

by IP of nuclear (NF) and cytoplasmic (CF)

fractions fromMI andMIþOxCy heart tissues,

show that p53 is present in the nuclear

fraction of both MI and MIþOxCy hearts.

G. Binding of p53 to its inhibitor Mdm2 was

analysed using co-IP with both anti-p53 and

anti-Mdm2 antibodies. The data show that

p53 is bound to Mdm2 only in the control

hearts, while the MI and MIþOxCy hearts

show no interaction of p53 with Mdm2.

H. p53 transcriptional activity was probed in

MI and MIþOxCy hearts by analysing the

binding of p53 to its transcriptional acti-

vator p300 using co-immunoprecipitation

with both anti-p53 and anti-Mdm2 anti-

bodies. The data show that p53 is bound to

p300 in both MI and MIþOxCy hearts.

Overall, the results established that p53 is

upregulated, nuclear, stabilized, and tran-

scriptionally potent in the infarct and

oxygenated hearts.
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et al, 2009, 2012), it was of interest to define the role of p53 in the
regulation of NOS3 and NOS3‐mediated cardioprotection. From
matrix matches determined by MatInspector (Genomatix), we
identified a NOS3 promoter region in the rat NOS3 gene
(chromosome 4: 6158847–6179441; reverse strand) as a 602‐bp
DNA sequence, upstream of þ1 transcription start site, in the
region 6174620–6175221. We further identified a putative p53
DNA‐binding site in the NOS3 promoter region (Fig 2A) using
bioinformatics analysis of MatInspector genomatix database
(matrix sim; score >0.9). The finding suggested that p53 might
be a potential NOS3 regulator. To establish this, we cloned the
602‐bp putative NOS3 promoter carrying the p53 response
element (p53RE) into a pGL3 basic vector to generate pNOS3p‐
luc1 (Supporting Information Fig S2). The pNOS3p‐luc1 was
transfected in L6 cells and treated with resveratrol, a known
activator of p53 and NOS3 (Kim et al, 2009). The results showed
that p53 increased the activity of NOS3 promoter by 12‐fold in
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
the resveratrol‐treated cells, when compared to untreated cells
(Fig 2B). p53 gene‐silencing using p53 siRNA reduced NOS3
promoter activity to 2‐fold, when compared to untreated cells.
Similarly, p53 also increased NOS3 promoter activity in H4TG
hepatoma cells (Supporting Information Fig S3). We further
observed that p53‐silencing in resveratrol‐treated L6 cells led to a
decrease in NOS3 mRNA and protein expressions (Supporting
Information Fig S4). The results established that the resveratrol‐
mediated NOS3 activation was due to the action of p53 on NOS3
promoter.

To further confirm the involvement of p53RE in NOS3
promoter, we cloned the�341 to�363 region of NOS3 promoter
carrying the p53RE into a pGL3 vector to generate the minimal
pNOS3p‐luc2 (Supporting Information Fig S5). This NOS3
minimal promoter was induced upon p53 transfection and
resveratrol treatment (Fig 2C). Pifithrin‐a, an inhibitor of p53
transcriptional activity, abolished NOS3 promoter activity
EMBO Mol Med (2013) 5, 1662–1683
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suggesting p53‐mediated transcriptional regulation of NOS3
gene. The p53RE sequence was mutated and cloned in PGL3
vector to generate a mutant minimal mmpNOS3p‐luc2 (Support-
ing Information Fig S5). Transfection of mmpNOS3p‐luc2
showed no increase in the NOS3 promoter activity (Fig 2C).
Analysis of p53‐binding to NOS3 promoter by EMSA using p53
protein extracted from untreated and resveratrol‐treated L6 cells
and NOS3‐p53RE sequence (23‐bp) confirmed direct binding
between NOS3‐p53RE and p53 (Fig 2D). To further define
the role of NOS3‐p53RE in p53‐mediated NOS3 induction,
we performed chromatin immunoprecipitation (ChIP) assays
in L6 cells treated with increasing doses of resveratrol.
Consistent with luciferase and EMSA results, we detected one
specific PCR product derived from NOS3‐p53RE (Fig 2E).
These results established that NOS3‐p53RE was responsible
for the p53‐mediated induction of NOS3 promoter activity and
that p53 transcriptionally induced NOS3 through promoter
binding. Since p53 appears to regulate NOS3 expression, we
analysed the co‐localization of p53 and NOS3 in the control, MI
and MIþOxCy hearts. The results (Supporting Information
Fig S6) showed co‐localization of p53 and NOS3 in the
oxygenated MI hearts.

p53 differentially binds at the BAX and NOS3 gene promoters
in the MI and oxygenated MI hearts
Since we established that NOS3 is a p53 transcriptional target,
we next sought to analyse the role of p53 in NOS3 upregulation
in the infarct heart. Previously we showed that oxygenation
significantly upregulated the expression of NOS3 in the infarct
heart (Khan et al, 2012). p53 was pro‐apoptotic in the infarct
heart and putatively functioned as a pro‐survival factor in the
oxygenated heart, suggesting that oxygenation might have
altered p53’s transcriptional activity. The transcriptional affinity
of p53 towards NOS3‐p53RE was analysed in the infarct and
oxygenated hearts. p53 protein purified from the infarct region
of hearts was used to study p53‐NOS3‐p53RE complex using
EMSA. The data showed that p53 from healthy and infarct
hearts did not bind to NOS3‐p53RE, whereas p53 from
oxygenated hearts showed binding to NOS3‐p53RE (Fig 3A).
p53 from stem cell‐transplanted hearts (Khan et al, 2012) were
used as control (lane 5). The data suggested that oxygenation
Figure 2. NOS3 is direct transcriptional target of p53.

A. A putative p53 binding site was identified in the NOS3 promoter using Genomat

602-bp NOS3 promoter.

B. pNOS3p-luc1 (NOS3 602-bp promoter luciferase construct) was transfected in

was used to activate p53 protein (Western blot). p53 gene-activation induces

silencing using p53 siRNA reverses this effect. Data represent mean� SD of s

transcriptionally regulates NOS3 promoter.

C. pNOS3p-luc2, the NOS3-p53RE (�363 to �341) cloned in luciferase vector w

Results show that p53 induces a 16-fold increase in the NOS3-p53RE lucifer

using p53 siRNA and pifithrin-a abolishes the increase in luciferase activity. D

The results show that p53 regulates NOS3 promoter via NOS3-p53RE. The m

sequence of NOS3-p53RE was transfected in resveratrol-treated L6 cells. N

NOS3-p53RE.

D. Interaction of p53 with NOS3-p53RE is confirmed using EMSA, results show p

E. Chromatin immunoprecipitation (ChIP) was conducted in resveratrol-treated L6

in NOS3-p53RE binding with increasing dose of resveratrol. Scrambled prime

� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
transcriptionally modulated p53 to bind to NOS3 promoter.
To analyse the specificity and affinity of p53 from oxygenated
heart towards NOS3 promoter, NOS3 promoter DNA (602 bp)
was incubated with the nuclear extract from oxygenated
MI heart. The bound protein was washed using increasing
concentrations of potassium chloride to obtain a single band,
which was eluted and confirmed to be p53 protein (Fig 3B). The
results suggested that oxygenation induced high transcriptional
affinity of p53 towards NOS3 promoter. The differential
NOS3 promoter binding ability of p53 from healthy, MI and
oxygenated MI hearts was further confirmed in vivo using
ChIP data (Fig 3C), which showed that p53 from healthy and
infarct hearts was unable to bind to NOS3‐p53RE in the heart.
On the other hand, oxygenation induced p53 binding to
NOS3‐p53RE. The results established that oxygenation
modulated p53 transcriptional activity and recruited p53 at
NOS3‐RE in the infarct heart. Since the MI hearts undergo
apoptosis via p53 and its downstream effector protein BAX
(Ripa et al, 2006), we analysed if BAX was activated in these
hearts. ChIP was conducted to study the binding of p53 at its RE
on the BAX promoter as described previously (Kaeser &
Iggo, 2002). The results showed significant binding of p53 at
the BAX promoter in the MI hearts and this binding was
abolished upon oxygenation (Supporting Information Fig S7).
BAX mRNA and protein expressions, analysed by RT‐PCR
and Western blotting, were significantly upregulated in MI
hearts and the BAX expression was abolished upon oxygenation
of the MI hearts (Supporting Information Figs S8 and S9). This
data suggested that if p53 would have to make a choice
between the death and survival modes of its activity then
oxygenation must revoke the p53‐dependent activation of
apoptotic genes (bax), in addition to p53‐dependent NOS3
upregulation. p53 extracted from infarct and oxygenated hearts
was used to conduct EMSA to determine the differential binding
potential of p53 to NOS3‐p53‐RE and BAX‐p53‐RE as described
previously (Chou et al, 2011). The results showed that
p53 purified from infarct heart, and not from the oxygenated
MI heart, was bound to BAX‐p53‐RE (Fig 3D). On the
contrary, p53 from infarct heart showed no binding to NOS3‐
p53RE, but p53 from oxygenated MI heart showed high
affinity for NOS3‐p53RE (Fig 3D). This EMSA data showed
ix, MatInspector module. NOS3-p53RE lies between�363 and�341 bp on the

L6 cells and the effect of p53 on luciferase activity was measured. Resveratrol

a 14-fold increase in pNOS3p-luc1 luciferase activity (red bar). p53 gene-

ix independent measurements. �p¼2.0E�12. The results show that p53

as transfected in L6 cells in presence of resveratrol to activate p53 protein.

ase activity (red bar). p53 gene-silencing and p53 transcriptional inhibition

ata represent mean� SD of six independent measurements. �p¼8.0E�12.

mpNOS3p-luc2 construct (mmp-mutant minimal promoter) with mutated

o increase in the luciferase activity is observed, showing the specificity of

resence of shift and super-shift, p215’RE is used as a positive control.

cells to confirm in vivo binding of p53 to NOS3-p53RE. p53 shows an increase

rs for PCR were used as negative control.
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Figure 3. p53 protein from MI and MIþOxCy

hearts show differential binding to NOS3‐

p53RE.

A. The binding affinity of p53 protein isolated

from control (healthy), MI and MIþOxCy

hearts towards NOS3-p53RE was analysed

using EMSA. p53 proteins isolated from

control and MI hearts show no binding to

p53RE in NOS3 promoter, while p53 pro-

teins isolated from MIþOxCy hearts show

high affinity towards NOS3-p53RE.

B. Binding affinity of p53 from MIþOxCy was

measured using promoter-binding assay.

Nuclear extract (NE) of MIþOxCy was

incubated with biotin-labelled NOS3-p53RE

and the extract was washed using increasing

concentration of KCl. Washing of the nuclear

extract and biotin-labelled DNA complex

with 3M KCl shows a single band in silver

staining. The single protein band was eluted

from the gel and stained with p53 antibody

using Western blotting. The data show that

p53 from MIþOxCy hearts have high

affinity and specificity for NOS3-p53RE.

C. ChIP assay was performed to confirm

differential binding of p53 to NOS3-p53RE

in MI and oxygenated hearts. The data show

that p53 does not bind to NOS3-p53RE in

healthy and infarcted hearts. On the other

hand, oxygenation induces p53 binding to

the NOS3-p53RE. Scrambled primers were

used as negative control and input was used

as a positive loading control.

D. Binding of p53 protein isolated from control,

MI and MIþOxCy hearts with NOS3-p53RE

and BAX-p53RE was analysed using EMSA.

p53 isolated from healthy and MI hearts

show no binding to NOS3-p53RE whereas

p53 isolated from MIþOxCy hearts show

very high binding towards NOS3-p53RE. On

other hand, p53 isolated from MI hearts

show high binding to p53RE in BAX promoter

and p53 binding to the BAX-p53RE drops

substantially in MIþOxCy treated hearts.

E. ChIP assay in these tissues shows similar

results where p53 from MI binds to BAX-

p53RE and not to NOS3-p53RE. On the other

hand, oxygenation induces shift of p53

binding from BAX to NOS3 promoter.
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that, from infarction to oxygenation, p53 transcriptional
activity changed from increasing affinity towards NOS3 and
decreasing affinity towards BAX gene promoter. The EMSA
results were further confirmed in vivo using ChIP assay, which
showed that p53 from infarct heart was unable to bind to
NOS3 promoter and was only bound to BAX promoters. In the
EMBO Mol Med (2013) 5, 1662–1683 �
oxygenated hearts, p53 showed increased affinity to bind to
NOS3 promoter instead of BAX promoter (Fig 3E). Overall, the
results seem to suggest that the oxygenation‐dependent
modulation of p53 transcriptional activity switches p53 from
BAX‐mediated death effector to NOS3‐mediated survival
effector.
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1667
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Oxygen‐induced lack of p53‐Lys118 acetylation induces
p53‐NOS3RE interaction and cardiac survival
Since oxygenation was established to modulate p53 transcrip-
tional activity, the mechanism of this effect on p53 DNA‐binding
ability was determined. Post‐translational modifications across
the length of p53 help determine p53 transcriptional activity (Xu
et al, 2003). p53 phosphorylation/acetylation play crucial role
in p53 half‐life (Kubbutat et al, 1997; Lu, 2010), nuclear
localization (Kruse & Gu, 2009; Liang & Clarke, 2001), protein
structure (Chehab et al, 1999; Wieczorek et al, 1996) and
transcriptional activity (Brooks & Gu, 2003; Lee et al, 2006). On
the basis of our understanding on the role of p53 post‐
translational modifications in p53 transcriptional activity, we
hypothesized that differential p53 post‐translational modifica-
tion patterns might govern differential p53 DNA‐binding ability
in healthy, infarct and oxygenated hearts. Oxygenation might
have altered post‐translational modification pattern of p53
which existed in infarct heart. We analysed all serine, threonine
and lysine motifs of rat p53 that are known to be phosphorylated
and acetylated. Healthy, infarct and oxygenated hearts showed
qualitative as well as quantitative differential modifications at
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Ser6, Ser9, Ser15, Ser20, Thr18, Lys118, Lys373 and Lys379 residues
of p53 (Fig 4A). Control (healthy) hearts showed minimal
modifications of p53 at Ser6, Ser9, Ser15 and Lys379 residues. The
results of the IP analysis were repeated using a quantitative in vivo
ELISA technique as described previously (Gogna et al, 2012b) and
shown in Supporting Information Fig S10. p53 in the infarct
hearts was phosphorylated and acetylated across all the residues,
possibly deciding p53 transcriptional ability toward binding
to BAX promoter. Interestingly, oxygenation revoked p53
acetylation at Lys118 residue, suggesting that inhibition of
Lys118 acetylation might act as oxygenation‐induced switch,
which regulates p53 transcriptional activity and thus p53’s
ability to activate either pro‐death BAX promoter or the pro‐
survival NOS3 promoter. To confirm the role of Lys118

acetylation in p53’s decision to bind to BAX or NOS3 promoter,
we incubated p53 extracted from infarct and oxygenated hearts
with biotin‐labelled NOS3‐RE and BAX‐RE. The bound protein
was eluted and analysed for the post‐translational modifications
existing on the p53 bound to BAX‐RE and NOS3‐RE using IPP.
The results showed a small fraction of p53 purified from infarct
heart was bound to p53‐NOS3‐RE and that fraction of p53 was
Figure 4. Differential acetylation of p53 at Lys118 residue induces

differential binding towards BAX andNOS3 promoters inMI andMIþOxCy

hearts.

A. Status of rat p53 post-translational modifications was analysed by

immunoprecipitation of p53 with phosphorylation- and acetylation-

specific antibodies. Results show that p53 is phosphorylated and

acetylated minimally at Ser6, Ser9 and Ser15, and Lys379 in control (healthy)

heart. p53 shows very high phosphorylation and acetylation at Ser6, Ser9,

Ser15 and Ser20, Thr18 and Lys118, Lys373, and Lys379 residues in the infarct

heart. MIþOxCy heart does not show any post-translational modification

of p53 from MI heart other than inducing a decrease in acetylation of

Lys118 residue.

B. The role of p53-Lys118 acetylation in the decision of p53 to bind to BAX-

p53RE or NOS3-p53RE status was confirmed by incubating the p53

proteins isolated from MI and MIþOxCy hearts with both BAX-p53RE and

NOS-p53RE. The bound fraction of p53 was eluted and probed for p53

posttranslational modifications. Results show that p53 from MI heart is

mostly bound to BAX-p53RE and this fraction of p53 is acetylated at Lys118

residue. However, a small fraction of p53 from MI heart is also bound to

BAX-p53RE but this fraction is not acetylated at Lys118 residue. Similarly

p53 from MIþOxCy heart is mostly bound to NOS3-p53RE and this

fraction is not acetylated at Lys118. A small fraction of p53 is found bound

to BAX-p53RE and this fraction is acetylated at Lys118 residue. The data

suggest the importance of Lys118 acetylation in deciding the choice of p53

to bind to either BAX or NOS3 promoter, or in other words, to induce death

or survival of cardiomyocytes in the infarct hearts.

C. The effect of oxygenation upon the transcriptional activity of p53 in

upregulating its downstream apoptotic genes were analysed. The

activation of 15 apoptotic genes carrying p53 response element was

analysed in the healthy, MI and MIþOxCy hearts. The gene-array data

show that the p53 downstream genes involved in apoptosis are activated

only in the MI hearts. Upon oxygenation, the p53-mediated activation of

these genes is significantly inhibited. These genes show minimal

expression in the healthy hearts (control).

D. The expression of 24 anti-apoptotic genes, which might play crucial role in

cardiac survival, is observed in the healthy, MI and MIþOxCy hearts. The

results show that these genes areminimally expressed in the Infarct hearts

(MI). However, upon oxygenation of the MI hearts there is a significant

increase in the expression of these genes.

EMBO Mol Med (2013) 5, 1662–1683
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not acetylated at Lys118 residue (Fig 4B). This data confirmed
that infarction induced apoptosis and BAX activation through
Lys118 acetylation, and if Lys118 acetylation was removed then
the same p53 has affinity for NOS3 promoter. Thus, conversion
of p53 transcriptional activity and p53 effector response from
death to survival in rat heart was dependent on Lys118

acetylation. Similarly, the p53 purified from oxygenated MI
heart was incubated with BAX‐p53‐RE and NOS3‐p53‐RE and
bound p53was analysed for the post‐translational modifications.
The data further established that a small fraction of cellular p53
was bound to the BAX promoter and that fraction was acetylated
at Lys118 residue. More than 90% of p53 was bound to the
NOS3‐p53‐RE and that fraction was not acetylated at Lys118

residue. Next, we used PCR gene‐array to determine the
expression of 15 genes with p53‐RE acting downstream of the
transcription factor and involved in apoptosis. The results showed
that p53 activated these genes only in the MI hearts and these
genes were abolished upon oxygenation, suggesting towards an
anti‐apoptotic/survival pathway (Fig 4C). Next we determined
the activation of 24 genes involved in the anti‐apoptotic pathway.
The gene‐array analysis showed that these anti‐apoptotic gens
were switched off in the MI hearts and they were activated upon
oxygenation of these hearts, suggesting towards the existence
of a survival pathway in these hearts (Fig 4D).

To establish the role of p53‐Lys118 mutation in the oxygen/
p53‐initiated survival pathway, we used H9c2 cardiomyocytes
and created p53�/� knockdown H9c2 cells and then used the
H9c2 p53�/� cells to create H9c2 p53‐Lys118(Mut) cells by stable
transfection of p53 cDNA with Lys118‐Ala118 point mutation
(Gogna et al, 2012b). Western‐blot analysis confirmed the
knockout of p53 in H9c2 p53�/� cells (Fig 5A). The analysis
further established that H9c2 p53‐Lys118(Mut) cells showed
expression of p53 protein and H9c2 p53�/� cells transiently
transfected with p53 Wt cDNA also expressed the p53 protein
(Fig 5A). These H9c2 cells were cultured under serum‐deprived
(SD) conditions for 72 h (Zheng et al, 2010) to mimic the
apoptotic conditions in the MI hearts. Following serum
deprivation, these cells were oxygenated at 60% O2 for 24 h
to mimic MIþOxCy condition. The status of p53‐Lys118

acetylation was analysed in these modified cardiomyocytes
Figure 5. Oxygenation inhibits acetylation of p53‐Lys118 residue and increase

A. p53 knockout and p53Lys118–Ala118 mutant H9c2 cells were created as described

p53 in H9c2 cells (lane 2), while addition of p53Lys118–Ala118 cDNA or p53 Wt

B. The H9c2, H9c2 p53�/� and H9c2 p53-Lys118(Mut) cells were cultured under

analysed in the SD and oxygenated (Oxy) cells by Western blot (WB) and imm

C. The survival potential of H9c2, H9c2 p53�/�, H9c2 p53-Lys118(Mut) and H9c2

treatments. Data representmean� SD of eight independent measurements. �p¼
The results show that oxygenation restored the SD-induced cell death.

D. Results of luciferase assay showing the activation of p53-NOS3-RE and p53-BA

NOS3-RE activation. Data represent mean� SD of eight independent measure

E. ChIP assay showing the binding of p53 to its respective NOS3 and BAX RE in H9c2

to NOS3 upon oxygenation. No binding to either NOS3-RE or BAX-RE is observ

binding of p53 to the BAX-RE but upon oxygenation p53 binds to the NOS3-RE

BAX-RE andmutation in this site induces p53 binding to the NOS3-RE. Similar re

and the Western-blot assay.

F. Expression of p53 downstream genes involved in apoptosis in H9c2 cells. The d

p53-Lys118 (Mut) cells do not activate these genes under any condition.

� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
using IP. The results showed that SD in H9c2 cells induced
acetylation of p53‐Lys118 residue and oxygenation (SDþOxy)
abolished this acetylation (Fig 5B). Acetylation of p53‐Lys118

residue was not observed in H9c2 p53�/� and H9c2 p53‐
Lys118(Mut) cells. The effect of SD and SDþOxy treatments on
the survival of these modified cardiomyocytes was studied using
Annexin‐V staining. The results (Fig 5C) showed that upon SD
treatment H9c2 p53�/� and H9c2 p53‐Lys118(Mut) cells showed
higher survival than H9c2 (Wt) cells, suggesting that lack of p53
acetylation at Lys118 residue induced survival in the SD‐treated
cells. We next determined the transcriptional activity of p53 at
the BAX‐RE and NOS3‐RE in these cells. SD treatment activated
BAX‐p53‐RE and SDþOxy treatment activated NOS3‐p53‐RE
(Fig 5D). In H9c2 p53�/� cells, no activation of either BAX‐p53‐
RE or NOS3‐p53‐RE was observed. In H9c2 p53‐Lys118(Mut)
cells, only the NOS3‐p53‐RE was activated upon SDþOxy
treatment, but the BAX‐p53‐RE was not activated suggesting the
importance of p53‐Lys118 acetylation in the activation of
apoptotic BAX. H9c2 p53�/� cells transiently transfected with
WT‐p53 cDNA were used as control. To relate the gene
activation with the direct binding of p53 to its BAX‐RE or the
NOS3‐RE, ChIP assay was conducted in H9c2 cells. The results
showed that p53 was bound to BAX‐RE in SD‐treated cells and
this binding was abolished upon oxygenation (Fig 5E). Similarly,
p53was bound to NOS3‐RE in SDþOxy treated cells. No binding
to either BAX‐RE or the NOS3‐RE was observed in the H9c2
p53�/� cells. In H9c2 p53‐Lys118(Mut) cells, p53 was bound to
only NOS3‐RE and its binding with BAX‐RE was abolished even
in the SD‐treated cells. ThemRNA and protein expression of BAX
and NO3 in these cardiomyocytes also showed similar pattern of
gene expression, where in the H9c2 p53‐Lys118(Mut) cells only
NOS3 gene was activated and BAX was not upregulated even
upon SD treatment. Further, the activation of 15 p53 target
apoptotic genes was analysed in these modified cardiomyocytes
and results showed that only H9c2 cells upon SD treatment
activated the apoptotic genes (Fig 5F). Neither the H9c2 p53�/�

cells or the H9c2 p53‐Lys118(Mut) cells showed any activation of
the apoptotic genes upon SD or SDþOxy treatment.

Similar set of experiments were carried out using rat neonatal
cardiomyocytes (RNC). p53 siRNA was used to abolish p53
s survival of cardiomyocytes.

previously (Gogna et al, 2012c). Western-blot analysis shows the knockout of

cDNA to the H9c2 cells show the expression of p53 (lanes 3,4).

serum-deprived (SD) conditions to mimic MI. p53-Lys118 acetylation was

unoprecipitation (IP) using p53-Lys118 antibody.

p53�/� þp53 Wt-cDNA cells was determined in the control, SD and SDþOxy

6.6E�14 versus respective SD group; #p¼0.0014 versus respective SD group.

X-RE in H9c2 cells. Oxygenation of SD cells switches from p53-BAX-RE to p53-

ments.

cells. The data show that p53 binds to BAX-RE in SD cells and shifts its binding

ed in H9c2 p53�/� cells. In H9c2 p53-Lys118(Mut) cells, SD does not induce

. The data suggest that p53-Lys118 acetylation is crucial for binding of p53 to

sults of NOS3 and BAXmRNA and protein upregulation are observed in RT-PCR

ata show that SD results in the activation of these genes, whereas p53�/� and

EMBO Mol Med (2013) 5, 1662–1683
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expression in RNC cells and further these cells were used to
generate RNC p53‐Lys118(Mut) cells upon stable transfection
with p53 cDNA carrying Lys118‐Ala118 point mutation (Gogna
et al, 2012b). Western‐blot analysis confirmed successful
abolition of p53 expression in RNCs (Fig 6A; lane 2). However,
both RNC p53‐Lys118(Mut) cells and RNC p53�/� cells
transiently transfected with p53 Wt cDNA, showed expression
of p53 protein (Fig 6A; lanes 3 and 4). The cells were cultured
under SD conditions for 72 h (Zheng et al, 2010) in order to
mimic the apoptotic conditions as in MI hearts and further
oxygenated at 60% O2 for 24 h to mimic MIþOxCy conditions.
Immunoprecipitation using p53‐Lys118 acetylation antibody
showed acetylation at p53 Lys118 residue in RNC cells subjected
SD while the expression was abrogated upon oxygenation
(SDþOxy; Fig 6B; lanes 2 and 3). Acetylation of p53‐Lys118

residue was absent in RNC p53�/� and RNC p53‐Lys118(Mut)
cells (Fig 6B; lanes 4–9). Effect of SD and SDþOxy treatments on
cell survival was determined in RNC, RNC p53�/� and RNC p53‐
Lys118(Mut) cells using Annexin V staining. SD‐treated RNC
p53�/� and RNC p53‐Lys118(Mut) cells showed higher survival
compared to RNC (Wt) cells (Fig 6C), suggesting the importance
of deacetylation of p53 at Lys118 residue in cell survival. The
transcriptional activity of p53 at the BAX‐RE and NOS3‐RE was
determined in the RNC, RNC p53�/� and RNC p53‐Lys118(Mut)
cells using luciferase activity. The results showed activation of
BAX‐p53‐RE and NOS3‐p53‐RE upon SD and SDþOxy treat-
ment, respectively, in RNC cells (Fig 6D). Neither BAX‐p53‐RE
nor NOS3‐p53‐RE was activated in RNC p53�/� cells. In RNC
p53‐Lys118(Mut) cells, SD treatment showed no activation of
BAX‐p53‐RE upon SD treatment but showed activation of NOS3‐
p53‐RE upon SDþOxy treatment, suggesting the importance of
p53‐Lys118 acetylation in the activation of apoptotic BAX. RNC
p53�/� cells transiently transfected with WT‐p53 cDNA were
used as control. In order to correlate the gene activation with the
direct binding of p53 to its BAX‐RE or the NOS3‐RE, ChIP assay
was conducted in RNC, RNC p53�/� and RNC p53‐Lys118(Mut)
cells. The assay showed binding of p53 to BAX‐RE and NOS3‐RE
in RNC cells subjected to SD and SDþOxy treatments,
Figure 6. Oxygenation inhibits acetylation of p53‐Lys118 residue and increase

A. Western-blot results show the abolition of p53 expression in RNC cells (lane 2),

show the expression of p53 (lanes 3 and 4). Control cells show expression of

B. Immunoprecipitation results show acetylation of p53 at Lys118 residue in RNC

upon oxygenation (lane 3). Acetylation at p53 Lys118 is absent in control, RNC p

(lanes 4–9).

C. Cell survival analysis of control, SD and SDþOxy-treated RNC, RNCþp53 siRN

cDNA cells show an increase in the SD-treated RNCþ p53 siRNA and RNCþ p

the crucial role of deacetylation of p53 Lys118 in cell survival. Data represent me

SD group; #p¼9.3E�08 versus respective SD group.

D. Luciferase assay shows activation of BAX-p53-RE and NOS3-p53-RE in SD and

siRNA cells. Oxygenation caused a switch of BAX activation to NOS3 activation

measurements.

E. ChIP assay shows the binding of p53 to its respective NOS3 and BAX RE in RN

observed in RNC p53�/� cells (lanes 7 and 8). However, p53 binds to NOS3-RE i

the importance of p53 Lys118 acetylation in activation of either BAX-RE or NOS3-

were observed at mRNA and protein level using RT-PCR and Western-blot tec

F. Expression of p53 downstream genes in RNC, RNC p53�/� and RNC p53-Lys118

RNC p53�/� and RNC p53-Lys118(Mut) cells show no involvement in apoptoti

� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
respectively (Fig 6E). On the other hand, p53 showed no
binding to either BAX‐RE or the NOS3‐RE in RNC p53�/� cells.
RNC p53‐Lys118(Mut) cells showed p53 bound only to NOS3‐RE
upon SDþOxy treatment. Western‐blot and RT‐PCR analyses
showed upregulation of BAX and NOS genes upon SD and
SDþOxy treatment, respectively, in RNC cells. In RNC p53‐
Lys118(Mut) cells only NOS3 gene was upregulated upon
SDþOxy treatment while BAX expression was not upregulated
even upon SD treatment. In addition, SA Biosciences Apoptosis
kit was used to study the activation of 15 p53 target apoptotic
genes in the RNC, RNC p53�/� and RNC p53‐Lys118(Mut) cells.
The data showed that RNC cells alone activated the apoptotic
genes upon SD treatment (Fig 6F). However, neither the RNC
p53�/� cells nor RNC p53‐Lys118(Mut) cells showed any
activation of the apoptotic genes upon SD or SDþOxy
treatment.

Oxygen inhibits p53‐Lys118 acetylation by negatively
regulating TIP60 acetylase in infarct hearts
We studied the mechanism through which oxygenation of the
cardiomyocytes and the infarct heart results in the suppression
of p53‐Lys118 acetylation. We had previously established a set of
10 p53 acetylases, which are involved in the acetylation of p53 at
its various known residues (Gogna et al, 2012c). In vivo ELISA
was conducted in H9c2, H9c2 p53�/� and H9c2 p53‐Lys118(Mut)
cells to check the expression‐status of MOZ, TIF2, AIB1, p300,
MOF, RIP160, CBP, TIP60, PCAF and BRPF1 acetylases. The
results showed that these acetylases were activated upon SD
treatment (Fig 7A). Oxygenation of these SD‐treated cells did not
result in their inhibition. However, TIP60 showed significant
regression upon oxygenation. Same set of experiment was
repeated with RNC, RNC p53�/� and RNC p53‐Lys118(Mut) cells
and consistent results were obtained (Fig 7B). Expression of
these acetylases was also determined in Control, MI and
MIþOxCy heart tissues. In vivo ELISA results showed that,
amongst all other acetylases, only TIP60 expression was
significantly reduced in the MIþOxy heart (Fig 7C). Western‐
blot analysis of TIP60 was conducted to establish its role in the
s survival of rat neonatal cardiomyocyte (RNC) cells.

while addition of p53Lys118-Ala118 cDNA and p53 Wt cDNA to RNC p53�/� cells

p53 (lane 1).

cells under SD conditions (lane 2). However, this expression is abolished

53�/� and RNC p53-Lys118(Mut) cells under both SD and SDþOxy conditions

A, RNCþ p53 siRNAþ p53-Lys118(Mut) cDNA and RNCþ p53 siRNAþWt p53

53 siRNAþ p53-Lys118(Mut) cDNA cells compared to RNC cells, exhibiting

an� SD of eight independent measurements. �p¼2.6E�14 versus respective

SDþOxy-treated RNC cells. Neither BAX nor NOS3 is activated in RNCþ p53

in RNC p53-Lys118(Mut) cells. Data represent mean� SD of eight independent

C cells (lanes 4 and 5). However, no binding of p53 to BAX-RE or NOS3-RE is

n SDþOxy-treated RNC p53-Lys118(Mut) cells (lane 11). These results suggest

RE and regulation of apoptotic or survival pathway respectively. Similar results

hniques in RNC, RNC p53�/� and RNC p53-Lys118(Mut) cells.

(Mut) cells. SD-treated RNC cells show activation of apoptotic genes whereas

c gene activation.
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Figure 7. Oxygenation inhibits TIP60 expression in MI heart.

A. Expression of p53-interating acetylases in the control, serum-deprived (SD), and oxygenated (SDþOxy) H9c2, H9c2 p53�/�, H9c2 p53-Lys118(Mut) cells, as

determined by in vivo ELISA.

B. Expression of p53-interating acetylases in the control, serum-deprived (SD), and oxygenated (SDþOxy) RNC, RNC p53-/-, RNC p53-Lys118(Mut) cells. The results

show that the expression of TIP60, a p53-interacting acetylase, is inhibited upon oxygenation in these cells.

C. Inhibition of TIP60 expression is also observed in the MIþOxCy heart tissues. Data represent mean� SD of eight independent measurements in all groups.
�p¼6.2E�12 versus respective MI group.
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oxygen‐mediated un‐acetylation of p53‐Lys118 residue. The
results showed that SD treatment in the H9c2 cells increased
the expression of TIP60 protein and oxygenation decreased its
expression (Fig 8A). Similarly, in cardiac tissue the MI hearts
showed a high expression of TIP60 and the TIP60 expressionwas
decreased in the MIþOxCy hearts (Fig 8B). The binding
between p53 and its acetylase TIP60 was analysed using co‐
immunoprecipitation. The results showed that TIP60 interacted
with p53 in the MI hearts and this interaction was abolished
upon oxygenation of these hearts (Fig 8C). The role of TIP60 in
the survival of SD and SDþOxy‐treated cardiomyocytes was
studied via Annexin‐V staining. The results showed that
silencing TIP60 gene using TIP60 siRNA resulted in an increase
in the survival of SD‐treated H9c2 cells (Fig 8D). Exogenous
addition of TIP60 cDNA resulted in a significant increase in these
cardiomyocyte death and even SDþOxy treatment could not
prevent cells from apoptosis. The addition of TIP60 siRNA or
TIP60 cDNA in H9c2 p53�/� and H9c2 p53‐Lys118(Mut) cells had
no effect in the regulation of apoptosis in these cardiomyocytes.
ChIP analysis on the BAX‐RE and the NOS3‐RE showed that
TIP60 siRNA induced binding of p53 to NOS3‐RE even in the SD‐
treated cells (Fig 8E; lanes 7 and 8). In H9c2 cells with exogenous
addition of TIP60 cDNA, p53 was observed to bind to BAX‐RE in
both SD and SDþOxy‐treated cells (Fig 8E; lanes 10 and 11).
Western‐blot analysis of p53‐Lys118 acetylation, NOS3 and BAX
showed that TIP60 siRNA abolished p53‐Lys118 acetylation,
increased the synthesis of NOS3 protein, and inhibited BAX
synthesis in both SD and SDþOxy‐treated H9c2 cells (Fig 8F;
lanes 4–6). Similarly, in H9c2 cells, where TIP60 cDNA was
ectopically expressed, the p53‐Lys118 acetylation was observed
along with lack of NOS3 synthesis and abundant BAX synthesis
(Fig 8F; lanes 7–9). PCR gene‐array analysis showed that the
addition of TIP60 cDNA resulted in the activation of these p53‐
regulated apoptotic genes in both SD and SDþOxy treatments.
In H9c2 cells expressing the TIP60 siRNA, the expression of these
apoptotic genes was inhibited even in the SD treatment.

Mechanism of oxygen‐mediated deacetylation of TIP60 and
activation of NOS3 based cardioprotective survival pathway
was further confirmed in RNC, RNC p53�/� and RNC p53‐
Lys118(Mut) cells. Western blot showed higher level of TIP60
expression in RNCs subjected to SDwhen compared to SDþOxy
treatment (Fig 9A). Similar results were obtained in MI and
MIþOxCy cardiac tissues (Fig 9B). Co‐immunoprecipitation
analysis showed increased TIP60 interaction with p53 in the MI
tissue contrary to oxygenated MI tissue (Fig 9C). The effect of
TIP60 on the survival of SD and SDþOxy‐treated RNC, RNC
p53�/� and RNC p53‐Lys118(Mut) cells was determined using
Annexin‐V staining. TIP60 siRNA transfection resulted in an
increase in the survival RNC cells (Fig 9D). Conversely, TIP60
cDNA resulted in a decrease in cell survival. However, neither
TIP60 siRNA or TIP60 cDNA transfection affected the cell
survival in RNC p53�/� and RNC p53‐Lys118(Mut) cells. ChIP
assay showed that p53 was bound to NOS‐RE in SD‐treated RNC
cells transfected with TIP60 siRNA (Fig 9E; lanes 7 and 8).
However, p53 was bound to BAX‐RE in both SD and SDþOxy‐
treated RNC cells exogeneously transfected with TIP60
cDNA, (Fig 9E; lanes 10 and 11). Western‐blot studies were
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
conducted to study the expression of p53‐Lys118 acetylation,
NOS3 and BAX proteins in SD and SDþOxy‐treated RNC cells
upon TIP60 siRNA and TIP60 cDNA transfection. Ectopical
expression of TIP60 cDNA resulted in increased expression
of acetylated p53 at Lys118 residue, decreased NOS3 and
increased BAX expression upon SD and SDþOxy treatment
(Fig 9F; lanes 5,6,8,9). Consistent with the above results,
an increase in NOS3 expression was observed in SD‐treated
RNC cells transfected with TIP60 siRNA (Fig 9F; lanes 5 and 6).
Gene‐array analysis was used to study the effect of TIP60 in
the regulation of p53 downstream apoptotic genes in both SD
and SDþOxy‐treated RNC cells. SD and SDþOxy‐treated RNC
cells showed activation of apoptotic genes upon transfection
with TIP60 cDNA, however, this effect was reversed in SD
and SDþOxy‐treated cells upon transfection with TIP60 siRNA
(Fig 9G). This data suggested that oxygen inhibits TIP60
expression in the infarct myocardium, which result in the lack
of acetylation of p53 protein at the Lys118 residue, which is
responsible for the activation of NOS3‐based cardioprotective/
survival pathway.
DISCUSSION

The present study, for the first time, establishes a new
prosurvival role of p53 for cardioprotection. p53 inhibits
apoptosis and protects infarct myocardium under conditions
of enhanced oxygenation in the MI heart. In oxygenated infarct
heart, p53 is post‐translationally modified to support the
transcription of NOS3 gene for cardioprotection. Post‐condition-
ing of infarct heart with oxygen suppresses p53’s role as an
apoptotic effector and switches to promoter of cell survival. The
switching of p53’s action is evident from a reversal of its affinity
for BAX‐p53‐RE to NOS3‐p53‐RE, through a molecular switch,
which involves regulation of p53 acetylation at Lys118 residue in
the infarct heart. Our results further suggest that oxygenation of
the infarct heart inhibits the expression of TIP60 acetylase and
abolishes its interaction with p53 and Lys118 acetylation. Lack of
acetylation at p53‐Lys118 residue results in the activation of
NOS3 promoter, while suppressing the activation of apoptotic
genes including BAX. In MI hearts, where TIP60 is overex-
pressed, p53 is acetylated at the Lys118 residue and binds to the
BAX promoter and induces upregulation of BAX protein. Both
the p53‐knockout cardiomyocytes and cardiomyocytes carrying
the p53‐Lys118 (Mut) protein showed inhibition of TIP60 and
suppression of the p53‐Lys118 acetylation upon oxygenation.

It is well‐established that p53 is activated in cancer cells upon
receiving cellular/genotoxic stress and meticulously orches-
trates to choose its downstream effector responses such as cell‐
cycle arrest, senescence, apoptosis and DNA repair. For evoking
these effector responses, p53 carefully and differentially selects
its target genes, which determine the eventual result of p53
activation (Gogna et al, 2012a; Ryan, 2012). In the present study,
we have presented evidence that the ability of p53 to
differentially choose its target sites in the chromatin not only
occurs in cancer cells but is also a possible phenomenon in the
cardiac system. In this manuscript, we are proposing a novel
EMBO Mol Med (2013) 5, 1662–1683
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Figure 8. TIP60 regulates p53‐mediated activation of BAX or NOS3 gene in H9c2, H9c2 p53�/� and H9c2 p53‐Lys118 (Mut) cells.

A. TIP60 protein expression in H9c2 cells under control, SD, and SDþOxy conditions. SD induces TIP60 expression, which is inhibited by oxygenation.

B. TIP60 expression in MI hearts is inhibited by oxygenation.

C. Co-immunoprecipitation of p53 with TIP60 shows that TIP60 binds to p53 only in MI hearts and this interaction is abolished upon oxygenation. Input and SD-

treated H9c2 cells with TIP60 gene-silencing were used as controls.

D. Effect of TIP60 on the survival of SD H9c2 cells. Silencing of TIP60 using TIP60 siRNA in H9c2, H9c2 p53�/� and H9c2 p53-Lys118(Mut) cells increases the

survival of SD cells. Addition of TIP60 using cDNA results decreases the survival of SD cells. Data represent mean� SD of four independent measurements.

E. Effect of TIP60 on the binding of p53 to BAX-RE and NOS3-RE was analysed using ChIP in H9c2 cells. Results show that TIP60 gene-silencing results in binding

of p53 to NOS3-RE in both SD and SDþOxy cells. Similarly, exogenous addition of TIP60 cDNA results in binding of p53 to BAX-RE in both SD and SDþOxy cells.

F. Effect of TIP60 siRNA and TIP60 cDNA addition on p53-Lys118 acetylation, NOS3 and BAX protein expression was determined using Western blot. Data show

that TIP60 siRNA abolishes p53-Lys118 acetylation, increases the expression of NOS3 protein and decreases BAX expression in H9c2 cells. Similarly, TIP60 cDNA

increases p53-Lys118 acetylation, decreases the expression of NOS3 protein and increased BAX expression in H9c2 cells.

G. Expression of p53 downstream genes was determined in the SD and SDþOxy group of H9c2 cells in presence and absence of TIP60 siRNA and TIP60 cDNA.

Data show that TIP60 cDNA increases the expression of these genes and TIP60 siRNA decreases their expression in both SD and SDþOxy groups.
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downstream effector response of p53 that leads to cell‐survival of
cardiomyocytes in the infarct heart.We have presented evidence
that p53 chooses between the apoptotic and survival pathways
depending on the status of its Lys118 acetylation.

In human, acetylation of p53‐Lys120 residue, which lies within
the p53 DNA‐binding domain, is catalysed by the acetyl‐
transferase TIP60/KAT5 (Tang et al, 2006). Acetylation of this
site is indispensable for p53‐dependent apoptosis but p53‐Lys120

mutants are able to induce p53‐mediated transcription and cell‐
cycle arrest (Sykes et al, 2006; Tang et al, 2006). The Lys120‐
acetylated p53 specifically accumulates at proapoptotic target
genes such as BAX and PUMA, whereas a non‐acetylated mutant
is defective for transcription of these proapoptotic targets.
Furthermore, point mutations at Lys120 occur in human cancer,
including one that converts lysine to arginine. These mutants
result in the lack of p53 apoptosis response (Petitjean
et al, 2007). A variety of de‐acetylases or HDACs (histone de‐
acetylases) or KDACs (lysine de‐acetylases) are known to induce
de‐acetylation of p53 at a variety of lysine residues at the p53
C‐terminus (Yang & Seto, 2008). Lysine residues within the
C terminus of p53 can be de‐acetylated by either HDAC1 or
SIRT1, which affects p53 stability (Barlev et al, 2001; Ito
et al, 2002), cofactor recruitment (Gu & Roeder, 1997) and
DNA binding (Khan et al, 2008). However, the regulation of the
acetylation and de‐acetylation pathway of the p53 core
domain Lys120 residue is not known (Sykes et al, 2006;
Tang et al, 2006). It is interesting to note that the single
modification at the Lys120 residue determines the apoptotic or
survival fate of cancer cells.

In the infarct myocardium p53 exists as an apoptotic
transcription factor, activates BAX and is heavily phosphorylated
and acetylated at its known residues. Interestingly, upon
oxygenation of the infarct heart, p53 switches to a prosurvival
mode, activates NOS3 and is un‐acetylated at the Lys118 residue.
Mechanistically we found that oxygenation inhibits the expres-
sion of TIP60 acetylase enzyme. We have shown that the
oxygen‐induced inhibition of TIP60 in the rat infarct myocardi-
um and rat cardiomyocytes results in un‐acetylation or lack of
Figure 9. TIP60 regulates p53‐mediated activation of BAX or NOS3 gene in R

A. Western-blot analysis was conducted to study the expression of TIP60 in control

this expression is significantly inhibited by oxygenation (lane 3).

B. Western blots of TIP60 expression in MI and MIþOxy-treated cardiac tissue.

expression is significantly reduced in MIþOxy-treated cardiac tissue (lane 3)

C. Co-immunoprecipitation study was conducted to study p53 and TIP60 interac

TIP60 in SD-treated cells (lane 4); however, this oxygenation significantly inhib

controls for the study.

D. The role of TIP60 in cell survival was studied in RNC cells using flow cytometry. T

cells while TIP60 cDNA results in a decrease in cell-survival fraction. Converse

p53�/� and RNC p53-Lys118(Mut) cells. Data represent mean� SD of four ind

E. CHIP assay was conducted to study the role of TIP60 in p53 binding to BAX-RE or

with TIP60 siRNA results in p53 binding to NOS-RE in both SD and SDþOxy-trea

BAX-RE in both SDF and SDþOxy-treated cells.

F. Effect of TIP60 siRNA and TIP60 cDNA addition on p53-Lys118 acetylation, NOS3

Transfection with TIP60 siRNA led to abolition of p53-Lys118 acetylation, incre

transfection with TIP60 cDNA led to increased p53-Lys118 acetylation, decrea

G. Gene array was studied to study the role of TIP60 in activation of p53 downstrea

in the activations of apoptotic genes in SD and SDþOxy-treated cells when c
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acetylation of p53 at the Lys118 residue. The oxygen‐dependent
regulation of TIP60 appears to serve as a molecular mechanism
throughwhich oxygen can regulate the transcriptional activity of
p53. Although how oxygen can regulate TIP60 expression is
unknown at this time, our results suggest that TIP60 expression
is repressed, resulting in the lack of p53Lys118 acetylation and
lack of p53‐dependent apoptosis and initiation of p53‐prosur-
vival pathway in cardiac tissue exposed to high oxygen
concentrations. On the contrary, hypoxia in the myocardium
promotes TIP60 expression resulting in hyper‐acetylation at the
p53Lys118 residue, which induces p53‐dependent apoptosis in
the infarct heart. We have presented a predictive model
suggesting possible molecular mechanism which might allow
oxygen to regulate p53 transcriptional ability (Fig 10). Alter-
ations in TIP60 levels act as a switch for p53 to sense changes in
oxygen levels and initiate the apoptotic or prosurvival pathways
by regulation of p53Lys118 acetylation. The lack of p53Lys118

acetylation evoked by oxygenation of infarct myocardium affects
the ability of p53 to bind to BAX promoter and instead p53 binds
to NOS3 promoter and activates a p53‐induced NOS3‐dependent
survival program in the infarct myocardium.

Previously, it was shown that p53‐Lys120 acetylation is
induced in response to DNA damage in cancer cells (Mellert
et al, 2007; Tang et al, 2006). We have shown that conditions of
serum deprivation and MI also activate TIP60‐dependent p53‐
Lys118 acetylation. In cancer cells mutation of this lysine residue
to an arginine abolished p53‐mediated apoptosis but not cell‐
growth arrest (Tang et al, 2006). Conceptually, it was shown that
this lysine site was responsible for the apoptotic effector
response; however, mutation of this site did not kill the
transcriptional activity of p53 protein but only altered it to
another effector response of cell‐cycle arrest. Our results show
that p53‐Lys118 mutated to Arg118 in the H9c2 cell and RNC
does not inhibit the transcriptional activity of p53 but only
targets its ability to activate its downstream apoptotic genes. Not
only the mutation abolished p53‐BAX‐RE interaction but also it
helped activation of p53‐NOS3‐RE in the oxygenated infarct
hearts. This data suggest that the p53‐Lys118 acetylation‐
NC, RNC p53�/� and RNC p53‐Lys118(Mut) cells.

, SD and SDþOxy-treated cells. SD induces TIP60 expression (lane 2); however,

Results show increased TIP60 expression in MI tissue (lane 2); however, this

.

tion in MI and MIþOxy-treated RNC cells. Results show p53 interaction with

its this interaction (lane 5) in RNC cells. Input and TIP60 siRNA were used as

ransfection with TIP60 siRNA results in increase in cell-survival fraction in RNC

ly, neither TIP60 siRNA nor TIP60 cDNA has any effect on cell survival in RNC

ependent measurements.

NOS3-RE in SD and SDþOxy-treated RNC cells. Results show that transfection

ted cells. However, exogenous addition of TIP60 cDNA result in p53 binding to

and BAX protein expression was studied in SD and SDþOxy-treated RNC cells.

ased NOS3 expression and decreased BAX expression in RNC cells. Contrarily,

sed NOS3 expression and increased BAX expression in RNC cells.

m genes in SD and SDþOxy treated cells. Transfectionwith TIP60 cDNA results

ompared to TIP60 siRNA-transfected SD and SDþOxy-treated groups.
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dependent death or survival pathway in infarct and oxygenated
hearts is conceptually similar to the observations of the p53‐
dependent apoptosis and its role in the survival of cancer cells.
However, the mechanism through which oxygen regulates
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the expression of TIP60 protein is still unknown and requires
further research. Based on the findings of the resent study,
we have proposed a model to explain the molecular switch,
which regulates the decision of p53 to activate BAX or NOS3
promoter (Fig 11). It is intriguing how oxygenation can bring
about the changes in p53 protein allowing it to function as a pro‐
survival factor in the infarct myocardium. However, one must
consider that p53 has inherent ability to choose between
various pathways according to the cellular microenvironment it
exists in. The decision of p53 choosing between death and
survival and its role in cardioprotection in oxygenated infarct
myocardium is a new chapter in p53 myriad. The physiological
relevance of this mechanism is explained in as graphical
representation (Fig 12). In future, cardioprotection and
cardiac tissue regeneration might be achieved by generating
p53‐prosurvival form through inhibition of p53 core‐domain
post‐translational modifications.

The present study provides a novel mechanistic insight and
therapeutic strategy to target the infarction‐induced myocyte
apoptosis in the heart. The results have important biomedical
and physiological relevance in the treatment of MI. Oxygen
therapy is expected to improve the oxygenation of the ischemic
myocardium, reduce infarct size, and consequently morbidity
and mortality. Although the use of supplemental oxygen in the
treatment of acute MI has been in practice for over 100 years,
there is no conclusive data on its beneficial effect (Beasley
et al, 2007; Wijesinghe et al, 2009). Controversies continue to
emerge regarding the applicability and efficacy of oxygen
therapy for MI patients (Kones, 2011). One‐time administration
of hyperoxygenation, intended as a pre‐conditioning treatment
before induction of myocardial injury, has been shown to be
beneficial (Cabigas et al, 2006; Yogaratnam et al, 2008, 2010).
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Figure 12. Schematic illustration of the model explaining the

physiological relevance of the research work.
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However, these studies lacked the clinical relevance for treating
post‐MI patients. On the other hand, clinical protocols routinely
use inhalation of high‐flow oxygen in the first 24 h after acuteMI.
These clinical studies provided conflicting results, even
detrimental effects, largely attributed to vasoconstrictive effect
of oxygen (Kones, 2011; Wijesinghe et al, 2009). Our study
provides a post‐MI approach with daily cycles of brief periods of
oxygenation, which is more practical and clinically relevant.
Furthermore, the present study also provides the underlying
molecular mechanism by which periodic administration of
supplemental oxygenation results in pro‐survival responses in
the infarct heart.
MATERIALS AND METHODS

Cell culture
L6, H4TG and H9c2 cells were obtained from ATCC (USA) and

were cultured as monolayers in DMEM medium supplemented with

10% (v/v) heat‐inactivated foetal bovine serum and antibiotics, and

incubated at 37°C in a humidified atmosphere of 95% air and 5% CO2.

The RNC cells were procured from Lonza Walkersville, Maryland

(#R‐CM‐561). The cells were cultured according to the supplier’s

protocol. The H9c2 p53�/� cells were synthesized by knocking out p53

gene from H9c2 cells as described previously (Le Floch et al, 2011). The

H9c2 p53‐Lys118(Mut) cells were synthesized from H9c2 p53�/� cells

by stable transfection with the p53 cDNA coding for p53‐Lys118 to

Arg118 mutation as described previously (Gogna et al, 2012a).

Chemicals; Resveratrol and pifithrin‐alpha were purchased from Sigma

(Saint Louis, MO, USA). Antibodies; Anti‐p53, anti‐actin, anti‐GAPDH,

anti‐mdm2, anti‐p300, anti‐NOS3, anti‐phospho‐p53Ser6, anti‐

phospho‐p53Ser9, anti‐phospho‐p53Ser15, anti‐phospho‐p53Ser20,

anti‐phospho‐p53Thr15, anti‐acetylated‐p53Lys120, anti‐acetylated‐

p53Lys373, anti‐acetylated‐p53Lys379, anti‐BAX, anti‐MOZ, anti‐TIF2,

anti‐AIB1, anti‐p300, anti‐MOF, anti‐RIP160, anti‐CBP, anti‐TIP60,

anti‐PCAF and anti‐BRPF1 antibodies were purchased from Abcam.

Anti‐acetylated‐p53Lys120 was purchased from Bethyl Laboratories

(USA).

Reporter construction and luciferase assay
A fragment spanning from �423 to �273 relative to the transcription

start site of rat NOS3 genomic sequence (Accession no. GXP_1414475)
EMBO Mol Med (2013) 5, 1662–1683 �
was synthesized with KPN1 and HindIII sites (Sigma–Aldrich). This

fragment was inserted into the KPNI and HindIII sites of pGL3‐basic

vector (Promega, Madison, WI, USA) to generate a NOS3 luciferase

reporter (pGL3‐NOS3). To generate pGL3‐mtNOS3 plasmid, the p53

NOS3 binding site was mutated and the mutant DNA fragments were

inserted into the pGL‐3 vector. These recombinant plasmids were

confirmed by DNA sequencing. Rat L6 cells were co‐transfected with a

luciferase reporter. The activity of reporters was evaluated with dual‐

Glo luciferase assay system (Promega). The levels of firefly luciferase

activity were normalized to pRL‐TK luciferase activity. The promoter

region is as described here: (‐423) TGAGCACTGG GCACATGGAC

AGTGGGTGGT AGCTCCACCA GACCCCGCCT CCTCCCCAGC AAGCCCCATG

CCAGCATGTC CTCTAGAGCT GATGGTCAAA ACCTCATCTC TTTTTTTCCT

ACAACCTCGG CCGGTCCTCC TCGGACCTAG (‐273). TIP60 siRNA and

cDNA were purchased from Origene.

Electrophoretic mobility shift assay
The p53 EMSA was performed as described (Hainaut & Milner, 1993).

Fifty nanograms of purified protein was mixed with 9ml of binding

buffer (HEPES pH 7.6 20mM, NaCl 10mM, MgCl2 1.5mM, EDTA

0.2mM, glycerol 20%, NP‐40 0.1%, DTT 1mM and PMSF 0.5mM),

0.6ml DTT, 2ml salmon sperm, 1ml BSA) and biotin‐labelled probe. In

order to increase the p53‐specific DNA binding and to improve

detection of the p53‐specific band, 1ml of the anti‐p53 antibody 421

was added to each sample. The samples were then incubated for

30min at room temperature and loaded on a 4% acrylamide gel. For

super‐shift experiments, 1ml of the anti‐p53 antibody 1801

(Oncogene Research Products, Cambridge, MA, USA) was added before

incubation.

Luciferase assay
Cells were plated in 35‐mm petri dishes the day before transfection so

that they reached 60–80% confluence upon transfection. Reporter

plasmids (1.0–1.5mg/well) were transfected with fugene transfection

reagent (Qiagen) as per the manufacturer’s instructions. After desired

incubation period, the cells were washed in cold PBS three times and

lysed with 200ml of the lysis buffer by a freeze–thaw cycle, and lysates

were collected by centrifugation at 14,000 rpm for 2min in a bench‐

top centrifuge. Twenty microlitre of supernatant was used for the assay

of luciferase activity using a kit (Promega) as per the manufacturer’s

instruction.

Chromatin immunoprecipitation
The ChIP experiments were performed as described previously (Gogna

et al, 2012a,c). Formaldehyde was added at a final concentration of 1%

directly to cell culture media. Fixation proceeded at 22°C for 10min

and was stopped by the addition of glycine to a final concentration of

0.125M. The cells were collected by centrifugation and rinsed in cold

phosphate‐buffered saline. The cell pellets were re‐suspended in

swelling buffer (10mMpotassium acetate, 15mMmagnesiumacetate,

0.1M Tris; pH 7.6, 0.5mM phenylmethylsulfonyl fluoride, and 100ng

of leupeptin and aprotinin/ml), incubated on ice for 20min, and

then dounce‐homogenized. The nuclei were collected by micro‐

centrifugation and then resuspended in sonication buffer (1% sodium

dodecyl sulfate, 10mM EDTA, 50mM Tris–HCl; pH 8.1, 0.5mM

phenylmethylsulfonyl fluoride, and 100 ng of leupeptin and

aprotinin/ml) and incubated on ice for 10min. Prior to sonication,
2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. 1679



The paper explained

PROBLEM:

Myocardial infarction (MI) is a major form of cardiovascular

disease and is the leading cause of death in patients. Myocardial

infarction-related deaths are predicted to increase to 14% of all

deaths globally in 2030. Typically in myocardial infarction,

occlusion of coronary arteries by atherosclerosis results in

decreased blood flow (ischemia) and oxygen deprivation in the

myocardium and promotes apoptotic death of cardiomyocytes

and impaired cardiac function. p53, the guardian of genome and

regulatory master switch of cell death and proliferation, is active

in ischemic and infarct hearts. p53-dependent apoptosis is a

major player in the death of cardiomyocytes leading to left-

ventricle (LV) remodelling and congestive heart failure. There is a

great need to develop therapeutic interventions, which will

reduce the p53-mediated cardiomyocyte apoptosis in MI

patients. Recently, we established that supplemental oxygen

therapy, administered in the form of brief cycles of hyper-

oxygenation, improved cardiac function by limiting cardio-

myocyte apoptosis. We have also reported recently that cellular

oxygen plays a crucial role in the regulation of p53-post

translational modifications, p53-DNA interactions in the chro-

matin and p53-dependent transcription. In the present study, we

studied the underlying molecular mechanism by which periodic

administration of supplemental oxygenation results in alter-

ations of p53-DNA interactions and p53 transcriptional ability

and activation of a pro-survival p53 response in the infarct heart.

RESULTS:

Oxygen therapy of infarct hearts resulted in increased survival of

cardiomyocytes, inhibition of p53-dependent apoptosis, and

high expression of NOS3 gene via p53-dependnet transcription

and improved cardiac function. The oxygenation of infarct hearts

abolished the initiation of p53-dependent pro-apoptotic re-

sponse and instead regulated p53 to initiate a pro-survival

response in the infarct heart. The increased oxygen in the infarct

heart modulated the post-translational profile and transcrip-

tional activity of p53, in order to generate a pro-survival p53

type. Oxygenation led to a significant reduction in the cellular

expression of TIP60, a p53 acetylase. Decrease in TIP60

expression in oxygenated infarct heart resulted in a p53 form

which was phosphorylated and acetylated at other critical

domains, except acetylation of p53-Lys118 residue. The results

showed that acetylation of p53-Lys118 residue acts as a

molecular switch in determining the ability of p53 to function as

an apoptotic or an anti-apoptotic protein. The p53-Lys118

acetylated form showed high affinity for p53 binding site at the

BAX promoter and activated a pro-apoptotic program in the

infarct heart and cardiomyocytes. On the other hand, the oxygen

therapy-induced p53-Lys118 non-acetylated form in infarct

heart showed a high affinity towards the p53 binding site in the

NOS3 promoter and initiated a p53-dependent pro-survival

response.

IMPACT:

This research work provides a novel mechanistic insight

(pathway) and therapeutic strategy to target the infarction-

induced apoptosis in the myocardium. Further, the decision

between p53-dependent apoptosis or the p53-dependent pro-

survival response in the infarct myocardium lies between the

acetylated and non-acetylated p53-Lys118 forms. Thus, molec-

ular strategies which will be designed to de-acetylate p53 at

Lys118 residue will provide therapeutic benefits to patients

suffering frommyocardial infarction. As advance of basic science

knowledge, the research work shows the importance cellular

oxygenation in the regulation of post-translationalmodifications

and DNA-protein interactions. In addition, the research work

shows the ability of p53 to function as a cardioprotective protein

by initiating a NOS3-dependnet pro-survival response in the

oxygen-treated infarct myocardium.
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0.1 g of glass beads (212‐ to 300‐mm diameter; Sigma) was added to

each sample. The samples were sonicated on ice with an ultrasonics

sonicator at setting 10 for six 20‐s pulses to an average length of

approximately 1,000 bp and then micro‐centrifuged. The chromatin

solution was pre‐cleared with the addition of Staphylococcus aureus.

Prior to the first wash, 20% of the supernatant from the reaction with

no primary antibody for each time point was saved as total input

chromatin and was processed with the eluted immunoprecipitates

beginning at the cross‐link reversal step. Cross‐links were reversed by

the addition of NaCl to a final concentration of 200mM, and RNA was

removed by the addition of 10mg of RNase A per sample followed by

incubation at 65°C for 4–5h. The samples were then precipitated at

20°C overnight by the addition of 2.5 volumes of ethanol and then

pelleted by micro‐centrifugation. The samples were re‐suspended in

100ml of Tris–EDTA; pH 7.5, 25ml of 5� proteinase K buffer (1.25%
� 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.
sodium dodecyl sulfate, 50mM Tris; pH 7.5, and 25mM EDTA), and

1.5ml of proteinase K (Boehringer Mannheim) and incubated at 45°C

for 2 h. Samples were extracted with phenol–chloroform–isoamyl

alcohol (25:24:1) followed by extraction with chloroform–isoamyl

alcohol and then precipitated with 1/10 volume of 3MNaOAc (pH 5.3),

5mg of glycogen, and 2.5 volumes of ethanol. The pellets were collected

by micro‐centrifugation, resuspended in 30ml of water, and analysed

by PCR.

Putative transcription‐factor‐binding‐site (TFBS) analysis on
NOS3 promoter
TFBSs specific to p53 were analysed in NOS3 promoter sequence

(�900/þ150bp) using MatInspector (Genomatix, Munich, Germany)

with MatBase matrix library 8.0. MatInspector can be used online at

http://www.genomatix.de/en/index.html and details regarding the
EMBO Mol Med (2013) 5, 1662–1683
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weight matrices used to identify potential TFBSs have been described

previously (Cartharius et al, 2005). The p53 binding site was identified

between �340 and �363 base pairs from the transcription start site.

This binding site had homology score of 0.92 for consensus p53 DNA

binding site.

Gene array
The RT2 Profiler PCR Array kit PAHS‐027z and PAHS‐012z were used to

profile the expression of key genes involved in programmed cell death

as described previously (Gogna et al, 2012a).

Statistical analysis
Data were expressed as mean� SD (standard deviation). Differences

between two groups were tested using unpaired Student’s t‐test using

SigmaStat software. A p‐value of <0.05 was considered as statistically

significant.
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