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ACUTE LYMPHOBLASTIC LEUKEMIA

PHF6 and JAK3 mutations cooperate to drive T-cell acute
lymphoblastic leukemia progression
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T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematologic disease caused by gene mutations in T-cell progenitors. As
an important epigenetic regulator, PHF6mutations frequently coexist with JAK3mutations in T-ALL patients. However, the role(s) of
PHF6 mutations in JAK3-driven leukemia remain unclear. Here, the cooperation between JAK3 activation and PHF6 inactivation is
examined in leukemia patients and in mice models. We found that the average survival time is shorter in patients with JAK/STAT
and PHF6 comutation than that in other patients, suggesting a potential role of PHF6 in leukemia progression. We subsequently
found that Phf6 deficiency promotes JAK3M511I-induced T-ALL progression in mice by inhibiting the Bai1-Mdm2-P53 signaling
pathway, which is independent of the JAK3/STAT5 signaling pathway. Furthermore, combination therapy with a JAK3 inhibitor
(tofacitinib) and a MDM2 inhibitor (idasanutlin) reduces the Phf6 KO and JAK3M511I leukemia burden in vivo. Taken together, our
study suggests that combined treatment with JAK3 and MDM2 inhibitors may potentially increase the drug benefit for T-ALL
patients with PHF6 and JAK3 comutation.
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INTRODUCTION
T-cell acute lymphoblastic leukemia (T-ALL) is one of the most
common hematologic malignancies, resulted from gene mutations
and genomic rearrangements in T-cell progenitors [1, 2]. The 5-year
survival rate of adult T-ALL patients is less than 50%, and the
mortality rate of relapsed adult T-ALL can be as high as 90% [3].
Recent studies have shown that T-ALL results from multistep
transformation processes that involve the accumulation of genetic
defects, including activating mutations of NOTCH1 or JAK-STAT,
super-enhancer generating mutations of TAL1, deep deletion of cell
cycle-related genes (such as CDKN2, RB1, and CDKN1B), and
inactivating mutations of WT1, LEF1, GATA3, and PHF6 [4–6]. The
close interrelationship between key regulators of early T-cell
development and T-ALL oncogenic signals is best illustrated by the
prominent roles of the JAK-STAT signal pathway in T-ALL [5, 7, 8].
More than 25% of T-ALL patients carry JAK-STAT mutations [9–11], of
which JAK3mutation is the most frequent in T-ALL cases [8, 9, 12, 13].
The continuous activation of JAK-STAT signaling has been shown to
play an essential role in T-ALL initiation and progression [7, 8, 12, 13].
JAK family kinases are nonreceptor tyrosine kinases that

function as signal transducers to activate STAT protein to support
the differentiation, proliferation and survival of early T-cell
progenitors [10]. Activated STAT proteins translocate to nucleus
and act as transcription factors to regulate gene expression and/or

induce novel epigenetic changes [11]. Aberrant JAK signaling has
been linked with T-ALL development. JAK1 mutations can be
found in 10–15% of T-ALL and 1–2% of acute myeloid leukemia
(AML) patients [14, 15]. JAK2V617F mutation is mainly associated
with myeloproliferative neoplasms [16]. JAK3 mutations can be
identified in 16.1% of T-ALL cases. JAK3 plays a key role in
regulating T and B cell development [9, 13, 17], while the rate of
the most common JAK3 mutation (M511I) is 34.7% in all JAK3
mutations [8, 9, 13]. Transplantation of mice with bone marrow
(BM) progenitor cells expressing the active JAK3M511I mutant allele
induces a lymphoproliferative disorder followed by a T-ALL-like
disease [12]. Moreover, the JAK3M511I mutation induces phosphor-
ylation and activation of STAT5, which subsequently activates the
oncogenes to drive leukemia cell proliferation [8, 12].
It has been reported that JAK3 mutations could act as “driver”

mutations in T-ALL. Interestingly, JAK3 mutations are frequently
accompanied by a high number of genetic changes in T-ALL, such
as changes in epigenetic regulatory genes (ASXL1, DNMT3A, EED,
EZH2, PHF6, and SUZ12) [5, 13, 17, 18]. PHF6 is one of the most
common mutated epigenetic regulatory gene coexisting with JAK3
in T-ALL patients [8, 17, 19]. Studies have found that Phf6-
deficient HSCs had higher proliferation and reconstitution capacity
than the wild-type HSCs, although loss of Phf6 alone is not
sufficient to induce aberrant hematopoietic transformation [20–23].
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Nevertheless, Phf6 loss could significantly accelerate leukemia
development driven by aberrant expression of TLX3 or lower the
threshold of NOTCH1-induced T-ALL development. Phf6 deficiency
could also activate leukemia stem cell transcriptional programs and
enhance T-ALL leukemia-initiating cell (LIC) activity [20–22]. While
these studies provide mechanistic insight into the importance of
PHF6 in regulating early T-cell development, the mechanism of how
PHF6 and JAK3 co-occurring events drive leukemogenesis still
needs to be functionally dissected and elucidated.
Here we examined the role of cooperatively PHF6 mutations in

the context of JAK/STAT mutant-induced leukemia in patients and
further functionally dissect their biological events using JAK3M511I

T-ALL mouse model. We found that PHF6 mutations frequently
coexist with JAK3 mutations in T-ALL patients, and Phf6 comuta-
tion with JAK3 can drive aggressive leukemia in mice.

MATERIALS AND METHODS
Generation of leukemia mice models
Phf6 conditional deletion mice were generated using the homologous
recombination technique and mated with Vav1-Cre or Mx1-Cre mice to
delete Phf6 in hematopoietic cells. The mice, including donors and
recipients used in all our experiments were male mice of 8 weeks. The
MSCV-JAK3M511I-IRES-GFP retroviral vector was kindly provided by Dr. Jan
Cools [8, 12]. Lineage-negative (Lin−) cells were transfected with JAK3M511I-
GFP virus and transplanted into male mice to establish Vav1-Cre;Phf6fl/y+
JAK3M511I and Mx1-Cre;Phf6fl/y+ JAK3M511I mice models. Detailed mouse
lines used in this study have been listed in supplementary Table 1
(Table S1). This research was approved by the Institute Ethics Committee
and the Institutional Animal Care and Use Committee (IACUC), Institute of
Hematology and Blood Diseases Hospital, CAMS/PUMC, KT2020052-EC-1.

Extreme limiting dilution analysis of LICs
The recipient mice were sublethally irradiated and received 500,000,
50,000, 5000, 500, or 100 GFP+ BM cells. The mice were monitored for
4 months. The extreme limiting dilution LIC data were analyzed with ELDA
software online [24].

Inhibitor experiments
For the in vivo experiment, mice were treated through oral gavage with
tofacitinib (40 mg/kg per day), idasanutlin (30mg/kg per day) (MedChem-
Express, New Jersey, USA), or vehicle (0.2% dimethylsulfoxide [DMSO]). The
mice received medication daily until death. For the in vitro experiment,
MOLT-4 cells were treated with tofacitinib (2.0 μM), idasanutlin (0.5 μM) or
0.2% DMSO in culture medium for 48 h and then proliferation and
apoptosis were examined.

RNA-Seq and ChIP-Seq assay
For RNA-Seq analysis of Phf6WT/KO+ JAK3M511I cells, 1 µg RNA per sample
was used for RNA sample preparations. Transcriptome sequencing was
performed on Illumina NovaSeq 6000 platform (Illumina, CA, USA) to a total
target depth of 10 million 150 bp paired end reads. Differential expression
analysis was performed by DESeq2 R package (1.16.1).
The ChIP assay was performed with the ChIP assay kit (Cell Signaling

Technology, Boston, MA, USA) according to manufacturer’s recommenda-
tions. Chromatin from cross-linked HA-PHF6-overexpressed K562 or control
cells was sheared using an ultrasonicator (Covaris, S220, ABI, New York,
USA) to obtain DNA (100–400 bp). Immunoprecipitation was conducted
with ChIP-grade HA-tag antibody (Abcam, ab9110, Cambridge, UK), PHF6
antibody (Sigma-Aldrich, HPA001023, Missouri, USA) or normal IgG
antibody (Cell Signaling Technology, CST2729, Boston, MA, USA).
RNA-Seq and ChIP-Seq data are available at GEO under accession

number GSE159444 and GSE159549.

RESULTS
PHF6 mutation frequently co-exists with JAK3 mutation in
acute leukemia patients
We analyzed the genetic data of 449 T-ALL cases from different
clinical centers, among which JAK/STAT mutations occurred in

98 samples (21.83%) [13, 17, 25]. JAK/STAT and PHF6 comutation
accounted for 7.80% (35/449) of all T-ALL cases. Interestingly, JAK3
and PHF6 comutation accounted for 4.90% of the 449 cases
(Fig. 1A, B). PHF6 mutation occurred in 44.90% of patients with
JAK3 mutation (P < 0.001, Fig. 1C, left). JAK3 mutation occurred in
25.00% of PHF6-mutated patients and was significantly associated
with PHF6 mutation (P < 0.001, Fig. 1C, right).
We analyzed PHF6 and JAK/STAT mutations in 44 T/myeloid

mixed phenotype acute leukemia cases (T/M MPAL) from 102
MPAL patients in Alexander et al. [19]. We found that PHF6
and JAK/STAT comutation accounted for 6.82% (3/44) in total
cases (Fig. 1D, E and Table S2). We assigned the 44 T/myeloid
MPAL patients into four groups including PHF6 and JAK/STAT
comutation, single JAK/STAT or PHF6 mutation, and non-PHF6/JAK/
STAT mutation (others), and found that the survival time of
the PHF6 and JAK/STAT comutation group was significantly
shorter than the single JAK/STAT mutation group (P < 0.0001) or
the non-PHF6/JAK/STAT mutation group (P < 0.0001, Figs. 1E and
S1A). The combined clinical data suggested that PHF6 mutations
may play a synergetic role with JAK/STAT mutations in leukemia
development.

PHF6 mutation acts as an early event to accelerate JAK3M511I

hematopoietic progenitor cell transformation
To evaluate the potential role of PHF6 mutation in leukemia-
initiating events, we generated Phf6 knockout (Vav1-Cre;Phf6fl/y)
and wild-type (Phf6fl/y) mice. We sorted Lin− cells from BM of Vav1-
Cre;Phf6fl/y or Phf6fl/y male mice and transfected with JAK3M511I-GFP
virus. Equal number of GFP+ cells were transplanted into male
recipients to establish Vav1-Cre;Phf6fl/y+ JAK3M511I (presented as
VC Phf6+ JAK3M511I) and Phf6fl/y+ JAK3M511I (as Phf6 WT+
JAK3M511I) mouse lines (Figs. 2A and S1B) [8, 12]. While all mice
succumbed to leukemia, the survival time of VC Phf6+ JAK3M511I

mice was significantly shorter than Phf6 WT+ JAK3M511I mice
(Fig. 2B). The percentage of GFP+ leukemia cells was higher in the
peripheral blood (PB) of VC Phf6+ JAK3M511I mice than Phf6 WT+
JAK3M511I mice (Figs. 2C and S1C). Although GFP+ leukemia cells in
the two groups were mainly CD3+ or CD8+, the percentages of
myeloid and B cells were significantly increased in the PB of VC
Phf6+ JAK3M511I mice when compared with Phf6 WT+ JAK3M511I

mice (Fig. S1D, E). The VC Phf6+ JAK3M511I mice showed more
aggressive leukemia phenotypes than Phf6 WT+ JAK3M511I mice,
including higher white blood cells (WBCs), neutrophils (Neu), and
lymphocytes (Lym) in PB (Figs. 2D, E and S1F). The weights of
spleen, liver, and thymus were slightly increased in VC Phf6+
JAK3M511I mice when compared with Phf6 WT+ JAK3M511I mice
(Fig. S1G–J). The percentage of GFP+ leukemia cells and the
degree of extramedullary infiltration in spleen, liver, lung, and
brain, were increased in VC Phf6+ JAK3M511I mice than Phf6 WT+
JAK3M511I mice, (Fig. 2F, G). These results demonstrated that Phf6
deficiency accelerated the initiation of JAK3M511I hematopoietic
progenitor cell transformation.
To further investigate the role of Phf6 deletion in the

transformation of hematopoietic progenitors with JAK3 mutations,
we quantified the biological characteristics of VC Phf6+ JAK3M511I

cells in BM with various surface markers. The percentage of GFP+

cells was higher in BM of VC Phf6+ JAK3M511I mice (44.1%) than
the Phf6 WT+ JAK3M511I mice (7.8%) (Fig. 2H, I). The percentages
of myeloid and B cells in the BM of VC Phf6+ JAK3M511I mice were
20.9% and 25.7% respectively, and were higher than the controls
(Fig. 2I, J). Wright–Giemsa staining revealed the development of a
complex hematolymphoid neoplasm characterized by the coex-
istence of different populations of atypical cells displaying both
lymphoid and myeloid differentiation in VC Phf6+ JAK3M511I mice
when compared to the controls (Fig. 2K). These results suggested
that Phf6 deficiency induced the polyclonal expansion of JAK3M511I

hematopoietic progenitors.
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Phf6 deletion promotes JAK3M511I-induced T-ALL progression
Since JAK3 mutations could act as “driver” mutations in leukemia
patients, we investigated whether PHF6 mutations act as
subsequent events to promote JAK3M511I-induced leukemia
development by generating Mx1-Cre;Phf6fl/y (MC Phf6fl/y) and

Mx1-Cre;Phf6+/y (MC) mice, and constructed MC Phf6fl/y+ JAK3M511I

and MC+ JAK3M511I mice (Fig. 3A). MC Phf6fl/y or MC Lin− cells
were transfected with retrovirus containing JAK3M511I/GFP ex vivo,
and equal number of GFP+ cells were injected into lethally
irradiated mice. pIpC was injected at 3 weeks post-transplantation
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to delete Phf6 when CD3+ cells in GFP+ cells were above 70% in
JAK3M511I-induced T-cell leukemia (Fig. 3A, B). Phf6 deletion was
confirmed by western blotting of BM cells from MC Phf6fl/y+
JAK3M511I and MC+ JAK3M511I mice treated with pIpC (presented as
MC Phf6 KO+ JAK3M511I or MC Phf6 WT+ JAK3M511I) (Fig. 3C). We

sorted GFP+ cells from BM of MC Phf6WT+ JAK3M511I and MC Phf6
KO+ JAK3M511I mice, and performed Wright–Giemsa staining to
discern the morphological characteristics of GFP+ cells. We found
that most of the GFP+ cells in BM of the two mouse groups were
abnormal lymphocytes with larger cell size, irregular nuclear
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contours, and prominent nucleoli (Fig. S1K). Interestingly, both MC
Phf6 WT+ JAK3M511I and MC Phf6 KO+ JAK3M511I mice developed
CD8+ T-ALL without myeloid expansion (Fig. 3D, E). Furthermore,
the percentages of GFP+ cells in PB, BM, spleen, liver, and thymus
were higher in MC Phf6 KO+ JAK3M511I than in MC Phf6 WT+
JAK3M511I mice (Fig. 3F, G). The WBC and lymphocyte counts were
also increased, while the platelet count was decreased in the PB of
MC Phf6 KO+ JAK3M511I mice (Fig. 3H). The weights of spleens and
livers of MC Phf6 KO+ JAK3M511I were much higher than MC Phf6
WT+ JAK3M511I mice (Fig. 3I). Importantly, the survival time of MC
Phf6 KO+ JAK3M511I mice was significantly shorter than MC Phf6
WT+ JAK3M511I mice (Fig. 3J). These data indicated that Phf6
mutation acquired after JAK/STAT mutation could promote
JAK3M511I-induced T-ALL progression.

Phf6 deficiency increases the activity of leukemia-initiating
cells in T-ALL
To determine whether Phf6 deficiency promotes leukemia
initiation by increasing LIC number or activity, GFP+ primary
Phf6 WT+ JAK3M511I and VC Phf6+ JAK3M511I cells were sorted and
transplanted into secondary recipients (Fig. 4A). The mice
transplanted with VC Phf6+ JAK3M511I cells had more leukemic
cells in the PB, BM and extramedullary organs than the controls
(Figs. 4B, C and S2A), with significantly shorter survival time than
the controls (Fig. 4D). Importantly, secondary leukemia cells arising
from VC Phf6+ JAK3M511I primary cells in the BM were mainly
lymphoid cells (96.3%) (Figs. 4E and S2B), in contrast to the
primary VC Phf6+ JAK3M511I cells showed much greater hetero-
geneity (Fig. 2I). Wright–Giemsa staining showed that most GFP+

cells of the two groups were abnormal lymphocytes with typical
lymphoblastic characteristics (Fig. S2C). These results suggested
that the GFP+ cells were mainly T leukemic cells based on
immunophenotypes and morphological characteristics and the
GFP+ CD8+ T-cell subclone had a dominant growth advantage in
VC Phf6+ JAK3M511I cell populations.
To further identify the properties of VC Phf6+ JAK3M511I

leukemia cells, we analyzed T-cell surface markers of GFP+ cells
(CD4, CD8, CD25, and CD127). The CD25 marker is highly
expressed in T cells during embryonic development [26], and
we found that the percentage of GFP+ CD25+ cells was increased
in VC Phf6+ JAK3M511I mice than the controls, while no obvious
CD127 expression was observed (Fig. 4F). Notably, the expression
of TCR-β was significantly decreased in Phf6-deficient leukemia
cells, suggesting that VC Phf6+ JAK3M511I cells were more
immature (Fig. 4G). Consistent with the presence of more
immature T cells in the VC Phf6+ JAK3M511I populations, extreme
limiting dilution assay demonstrated a marked increase in LICs
activity in Phf6 KO T-ALL cells when compared with Phf6 WT T-ALL
cells, indicating that loss of Phf6 promoted LICs self-renewal and
proliferation (Figs. 4H–J and S2D).

Loss of Phf6 enhances leukemia cell proliferation through
acceleration of the cell cycle
To identify the definitive role of Phf6 deficiency in leukemia cell
over-proliferation, we investigated cell cycle and apoptosis in VC
Phf6+ JAK3M511I cells. We found more VC Phf6+ JAK3M511I cells

were in G1/S and G2/M stages than the control cells (Fig. 5A).
However, the cell apoptosis rate was similar in both groups in vivo
(Fig. S3A).
To explore the underlying molecular mechanisms of Phf6 loss in

accelerating T-ALL cell proliferation, we analyzed the transcrip-
tional profiles of VC Phf6+ JAK3M511I and Phf6 WT+ JAK3M511I

T-ALL cells. It revealed a distinct gene expression signature in VC
Phf6+ JAK3M511I cells (2377 genes upregulated and 3751 genes
downregulated; P < 0.05) (Fig. S3B) and these differentially
expressed genes were significantly enriched for activities asso-
ciated with cell cycle, apoptosis, adhesion and lymphocyte
differentiation (Fig. 5B). We identified 35 cell cycle-related genes
were upregulated, and 39 apoptosis-related genes were down-
regulated (P < 0.05) (Fig. 5C). We further validated that members
of Mcm and Cdc gene families, considered to enhance cell
proliferation, were upregulated, while genes related to apoptosis,
such as Caspase family genes, were downregulated in VC Phf6+
JAK3M511I cells (Fig. 5D, E). Notably, the analysis showed Phf6 loss
inhibited the P53 signaling pathway, as this was validated by the
decreased mRNA expression of Gadd45a, Gadd45b and Fasl in
Phf6 KO T-ALL cells when compared with the control cells (Fig. 5F).
GO and KEGG analysis revealed active nuclear division and cell

cycle in VC Phf6+ JAK3M511I cells (Fig. S3C, D), while GSEA showed
upregulation of cell cycle progression and DNA replication gene
expression in VC Phf6+ JAK3M511I cells (Fig. 5G). T-cell maturation
might be altered since naive CD8+ T-cell-related genes were
enriched in VC Phf6+ JAK3M511I when compared with the controls
(Figs. 5H and S3E). Meanwhile, embryonic stem cell related genes
were enriched in VC Phf6+ JAK3M511I cells (Fig. 5I). These data
suggested that Phf6 loss promoted JAK3M511I induced T-ALL
progression by accelerating the cell cycle and increasing immature
T cells.

Phf6 deficiency increases Bai1-mediated P53 degradation
To determine the underlying molecular mechanism driving the
enhanced oncogenic potential of JAK3M511I in the absence of Phf6,
we examined the phosphorylation level of Stat5 in Phf6 WT+
JAK3M511I, VC Phf6+ JAK3M511I, and WT cells. The p-Stat5 was
increased in both Phf6 WT+ JAK3M511I and VC Phf6+ JAK3M511I

when compared with WT cells, while Phf6 loss did not further
enhance p-Stat5 in VC Phf6+ JAK3M511I when compared with
Phf6 WT+ JAK3M511I cells (Fig. S4A). We further probed that
how Phf6 downregulates P53 signaling pathway, and found that
Phf6 deficiency decreased P53 protein expression but not P53
mRNA expression in mouse leukemia cells (Fig. 6A left panel, B left
panel). To investigate if PHF6 regulates P53 expression indepen-
dent of the JAK3-STAT5 signaling pathway, we examined P53
protein levels in PHF6 knockdown (KD) U2OS cells treated with
X-ray (35 Gy). We found that the protein expression of P53 was
decreased, while the mRNA expression of P53 was unchanged in
PHF6 KD U2OS cells when compared with the controls (Fig. 6A
right panel, B right panel). The ubiquitination of P53 was
significantly increased in PHF6 KD U2OS cells and PHF6 KD
MOLT-4 T-ALL cells when compared with the controls (Fig. 6C).
These results indicated that PHF6 regulates the ubiquitination
of P53.

Fig. 2 Phf6 deletion and JAK3M511I overexpression lead to rapid hematopoietic progenitor transformation to leukemia cells. A Scheme of
constructing VC Phf6+ JAK3M511I and Phf6 WT+ JAK3M511I T-ALL mouse models. B Kaplan–Meier survival curves of VC Phf6+ JAK3M511I T-ALL
mice and Phf6 WT+ JAK3M511I T-ALL mice (log-rank test P < 0.0001, n= 15 per group). VC Phf6+ JAK3M511I T-ALL mice (median survival time=
85 days), Phf6WT+ JAK3M511I T-ALL mice (median survival time= 143 days). C Percentage of GFP+ leukemia cells in PB at different time points.
D The counts of WBCs, lymphocytes (Lym), and neutrophils (Neu) in PB by routine blood tests. E Wright–Giemsa staining of peripheral blood
cells. F Percentage of GFP+ cells in spleen, liver, and thymus. G Hematoxylin and eosin (HE) staining of BM, spleen, liver, lung, and brain. A red
triangle or white arrow indicates the leukemia infiltration area. H Percentage of GFP+ leukemia cells in BM at 21 weeks after transplantation. I,
J Percentages of T cells, B cells, and myeloid cells in the GFP+ population in BM at 21 weeks after transplantation. KWright–Giemsa staining of
BM cells.
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Fig. 3 PHF6 deficiency accelerates T-ALL development in the context of JAK3 mutation. A Schematic representation of Phf6 deletion after
JAK3M511I-induced T-ALL in a mouse model. B Left panel, percentage of GFP+ leukemia cells in the PB of mice at 3 weeks after transplantation.
Right panel, percentage of CD3+ cells in GFP+ leukemia cells in the PB of mice at 3 weeks after transplantation. C The Phf6 protein expression
level in GFP+ cells of T-ALL mice treated with pIpC. D, E Percentage of T cells, B cells and myeloid cells in GFP+ cells in the BM of T-ALL mice
treated with pIpC. F Percentage of GFP+ cells in the PB and BM of T-ALL mice treated with pIpC. G Percentage of GFP+ cells in the spleen, liver,
and thymus of T-ALL mice treated with pIpC. H The counts of WBCs, lymphocytes and platelets in the PB of T-ALL mice treated with pIpC by
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Fig. 5 Phf6 loss accelerates the JAK3M511I T-ALL cell cycle transcriptional profile. A Representative FACS plots showing the cell cycle of GFP+

cells in BM (upper panel). Percentage of GFP+ cells at each cell cycle stage (lower panel). B Gene interaction analysis showing the significantly
altered expression pattern in genes that regulate the cell cycle, lymphocyte differentiation, cell adhesion and apoptosis in VC Phf6+ JAK3M511I

T-ALL cells compared with Phf6 WT+ JAK3M511I T-ALL cells. C Heatmap of cell cycle-related and apoptosis-related genes. D Validation of the
expression of cell cycle-related genes in GFP+ T-ALL cells. E Validation of the expression of apoptosis-related genes in GFP+ T-ALL cells. F
Validation of the expression of P53 signaling pathway-targeted genes in GFP+ T-ALL cells. G–I Gene set enrichment analysis (GSEA) of VC Phf6
+ JAK3M511I T-ALL cells versus Phf6 WT+ JAK3M511I T-ALL cells.
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It has been reported that adhesion G protein-coupled receptor
B1 (ADGRB1), also known as brain-specific angiogenesis inhibitor 1
(BAI1), prevents MDM2-mediated P53 ubiquitination, and loss of
BAI1 reduces P53 level [27]. We thus examined Bai1/BAI1
expression in VC Phf6+ JAK3M511I cells and PHF6 KD U2OS cells,

and found that the mRNA and protein expression of Bai1/BAI1
were significantly decreased in both cells in comparison with Phf6
WT+ JAK3M511I or PHF6 WT U2OS cells, respectively (Fig. 6D, E).
Chromatin immunoprecipitation sequencing (ChIP-seq) analysis of
HA-PHF6-overexpressing (PHF6 OE) K562 cells (Fig. 6F) showed
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that PHF6 directly bound to BAI1 gene (Fig. 6G). We used PHF6 or
HA antibody to enrich PHF6 protein in PHF6-OE K562 cells and
further verified the binding of PHF6 protein to the BAI1 DNA
sequence by ChIP-qPCR (Figs. 6H and S4B). K562 cells were then
co-transfected with a reporter vector containing the BAI1
sequence (or the control) inserted upstream of firefly luciferase
and Renilla luciferase vector. We found that PHF6 KD reduced BAI1
luciferase activity, while PHF6 OE increased BAI1 luciferase activity
(Fig. 6I). We further knocked-down BAI1 in U2OS cells and
observed that BAI1 KD significantly reduced the P53 level and
increased the P53 ubiquitination (Fig. 6j, k). To further investigate
whether PHF6 regulates P53 expression via BAI1, the expression of
BAI1 was restored in PHF6 KD U2OS cells and PHF6 KD MOLT-4
cells. We found that the expression of P53 was significantly
increased in PHF6 KD U2OS cells and PHF6 KD MOLT-4 cells when
BAI1 was rescued (Figs. 6L, M and S4C). We further investigated
the interaction between PHF6 and BAI1-P53 in the Kasumi-1 cells
without irradiation. We found that the mRNA and protein
expressions of BAI1 were significantly decreased in PHF6 KD
Kasumi-1 cells when compared with that of controls (Fig. S4D, E).
The protein level of P53 was also decreased in PHF6 KD Kasumi-1
cells (Fig. S4E) and could be partially rescued when BAI1 was
overexpressed in PHF6 KD Kasumi-1 cells (Fig. S4F). Taken
together, our data suggested that Phf6 loss inhibited the Bai1-
Mdm2-P53 signaling pathway rather than by activating the Jak3/
Stat5 signaling pathway.

Combined treatment with idasanutlin and tofacitinib shows
greater antitumor effects in Phf6 KO+ JAK3M511I T-ALL
Since P53 signaling pathway plays a central role in the
pathogenesis of Phf6 KO+ JAK3M511I T-ALL, we sought to
determine whether dual activation of P53 and inactivation of
JAK3 would be beneficial in Phf6 KO+ JAK3M511I T-ALL mice.
Tofacitinib is a JAK3-specific inhibitor [12]. Idasanutlin is a selective
MDM2 antagonist that can activate P53 [28, 29]. VC Phf6+
JAK3M511I T-ALL mice were treated with placebo, single tofacitinib,
single idasanutlin, or combined tofacitinib+ idasanutlin (To+ Id)
(Fig. 7A). We measured p-Stat5 and P53 in VC Phf6+ JAK3M511I BM
cells from treated or nontreated mice. We found that p-Stat5 was
decreased (Figs. 7B and S5A), and P53 was increased in mice
treated with To+ Id (Fig. 7C). The survival time of mice treated
with To+ Id was significantly longer than mice treated with
placebo, single tofacitinib or idasanutlin (Fig. 7D). The counts of
hemoglobin and PLT were increased, while the count of leukemia
cells was decreased in the PB of mice treated with To+ Id when
compared with mice in other groups (Fig. 7E). Additionally, the
percentages of GFP+ leukemia cells in the PB, BM, spleen, liver,
and thymus were decreased in mice treated with To+ Id when
compared with other groups (Figs. 7F and S5B–E). The weights of
spleen, liver, and thymus were significantly decreased in mice

treated with To+ Id in comparison with other groups (Fig. S5F, G).
HE staining showed that the degree of leukemia cell infiltration in
the spleen, liver, brain, thymus, and BM was reduced in mice
treated with To+ Id when compared with other groups (Fig. 7G).
Immunohistochemical staining of Ki67, a marker of cell prolifera-
tion, showed significantly reduced staining in the To+ Id-treated
group when compared with the other groups (Fig. S5H), while
TUNEL (TdT-mediated dUTP nick-end labeling) staining showed a
significant increase in apoptotic cells in mice treated with To+ Id
than other groups (Fig. 7G).
Also, we constructed JAK3M511I-overexpression MOLT-4 cells that

were treated with shPHF6 (PHF6 KD) or sh-Control (PHF6 Con464)
respectively, and confirmed by WB along with MOLT-4 cells (WT)
(Fig. 7H). We found that the proliferation of PHF6 KD+ JAK3M511I

cells was much faster than PHF6 Con464+ JAK3M511I or other
control cells (Fig. 7I). Furthermore, the proliferation of PHF6 KD+
JAK3M511I MOLT-4 cells was significantly decreased while their
percentage of apoptosis was increased after treated with To+ Id
when compared with single drug or control treatment groups
(Fig. 7J, K). Our result thus demonstrated that combination
therapy with tofacitinib and idasanutlin can reduce leukemia
burden better than single drug treatment in Phf6 KO+ JAK3M511I

mice, which was also validated by the result in human MOLT-
4 cells.

DISCUSSION
Understanding the mechanism of how epigenetic regulatory
genes target chromatin and redirect gene transcription and
activation in leukemogenesis is imperative for developing novel
therapies. As a chromatin remodeling-related gene, PHF6 is
frequently mutated in T-ALL patients [13, 17, 30]. Here, we
demonstrated that PHF6 mutations more commonly coexisted
with JAK/STAT mutations in T-ALL patients (Fig. 1A). The average
survival time of patients with JAK/STAT and PHF6 comutation was
shorter than that of patients without this comutation (Figs. 1E and
S1A). Phf6 deletion led to rapid development of JAK3M511I-induced
T-ALL by inhibiting the Mdm2-P53 signaling pathway. Leukemia
progression can be contained better by specific inhibition of JAK3
and Mdm2-P53 in Phf6-deficient and JAK3M511I T-ALL cells (Fig. 7D).
Furthermore, we revealed that the progression of JAK3M511I-
induced T-ALL from low to high malignancy is triggered by the
coexistence of PHF6 mutation, and that provided a potential
therapeutic window for the modulation of P53 and JAK3 activity in
the treatment of T-ALL patients with PHF6 and JAK3 comutation.
It has been reported that Phf6 is essential for HSC homeostasis

and T-ALL initiation, although Phf6 appears to play a modest role
in normal T-cell differentiation and proliferation [20]. Loss of Phf6
slightly reduced number of T cells in PB and BM, but did not lead
to spontaneous hematological malignant transformation in mice

Fig. 6 Loss of Phf6 increases P53 degradation by decreasing Bai1 expression. A Left panel, the protein expression of P53, Mdm2 and Phf6
in Phf6 WT+ JAK3M511I and VC Phf6+ JAK3M511I leukemia cells. Right panel, the protein levels of P53, MDM2, and PHF6 in PHF6 KD U2OS cells
and control cells treated with X-rays (35 Gy). B Left panel, the mRNA expression of P53 and Phf6 in Phf6WT+ JAK3M511I and VC Phf6+ JAK3M511I

leukemia cells. Right panel, the mRNA expression of P53 and PHF6 in PHF6 KD U2OS cells and control cells. C Co-IP was performed with P53
antibody. P53 ubiquitination was determined by WB with anti-ubiquitin antibody in PHF6 KD/Con U2OS cells treated with X-rays (35 Gy)
(upper panel) and PHF6 KD/Con MOLT-4 cells treated with γ-rays (7.5 Gy) (lower panel). D Left panel, Bai1 and Phf6 mRNA expression in Phf6
WT+ JAK3M511I and VC Phf6+ JAK3M511I leukemia cells. Right panel, BAI1 and PHF6 mRNA expression in PHF6 KD U2OS cells and control cells. E
Left panel, protein levels of Phf6 and Bai1 in Phf6WT+ JAK3M511I and VC Phf6+ JAK3M511I leukemia cells. Right panel, protein levels of PHF6 and
BAI1 in PHF6 KD U2OS cells and control cells treated with X-rays (35 Gy). F The protein level of HA-PHF6 in PHF6 OE K562 cells. G PHF6 binding
at the ADGRB1 (BAI1) gene locus in PHF6 OE K562 cells. H The relative amount of immunoprecipitated DNA quantified by ChIP-qPCR is given as
the percentage of input DNA. I Quantification of luciferase activity from K562 cells (PHF6 KD or OE) co-transfected with a luciferase reporter
containing the BAI1 sequence (or control sequence) and Renilla luciferase. J Co-IP was performed with P53 antibody. P53 ubiquitination was
examined in BAI1 KD/Con U2OS cells treated with X-rays (35 Gy). K The protein levels of BAI1, P53, MDM2, and PHF6 in BAI1 KD/Con U2OS
cells. L The protein levels of Flag-BAI1, P53, MDM2, and PHF6 in PHF6 KD+ BAI1 OE U2OS cell (lane 3), PHF6 KD+ Empty Vector U2OS cell
(lane 2) and PHF6 Con U2OS cell (lane 1). M The protein levels of Flag-BAI1, P53, MDM2, and PHF6 in PHF6 KD+ BAI1 OE MOLT-4 cell (lane 3),
PHF6 KD+ Empty Vector MOLT-4 cell (lane 2) and PHF6 Con MOLT-4 cell (lane 1).
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[20]. Earlier studies theorized that PHF6 may play important roles
in lineage-specification during leukemogenesis. For example, lack
of Phf6 promoted Notch-induced T-ALL initiation and MLL-AF9-
induced AML progression, while decelerated the development of
BCR-ABL1-induced B-ALL [31]. However, Thomas and colleagues

suggested that PHF6 might not act in a strictly lineage-dependent
manner. They found that Phf6 knockout accelerated TLX1/TLX3-
induced B-ALL [22], and that is different from the oncogenic role
of Phf6 in BCR-ABL1-induced B-ALL. It indicated that the role(s) of
PHF6 may depend on the combination of oncogenic mutations
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and specific molecular pathways that drive leukemia. In our
studies, we found that primary Phf6 KO+ JAK3M511I progenitor
cells developed a complex hematolymphoid neoplasm character-
ized by the coexistence of different populations of atypical cells
(Fig. 2I, J). However, when we depleted Phf6 in MC Phf6+
JAK3M511I mice with pIpC, leukemia cells were mainly lymphoid
cells (Fig. 3D, E). These results suggested that if PHF6 mutation
and JAK3 mutation occurred in hematopoietic progenitors, it may
induce a complex hematolymphoid neoplasm. When PHF6
mutation acted as “a secondary strike” in JAK3M511I-induced T-
ALL, it might also promote the T-ALL progression. Based on our
observations, we reasoned that PHF6 might function as a tumor
suppressor, while PHF6 loss or mutations favors T-ALL initiation by
lowering the threshold for subsequent oncogenic transformation
in hematopoietic progenitors, and postulated the role in promot-
ing T-ALL development.
We further demonstrated how PHF6 functions in JAK3M511I-

induced T-ALL independent of the Jak3-Stat5 signaling pathway.
As expected, we found that Stat5 was activated in both Phf6 KO/
WT+ JAK3M511I cells (Fig. S4A) [12]. However, the Mdm2-P53

signaling pathway was inhibited only in Phf6 KO+ JAK3M511I but
not in Phf6 WT+ JAK3M511I leukemia cells (Fig. 6A). This suggested
that T-ALL progression due to Phf6 loss is dependent on
additional signaling pathways. BAI1 belongs to the adhesion
subgroup of GPCRs, which functions at preventing MDM2-
mediated P53 ubiquitination, and its loss could substantially
reduce the P53 level [27]. Consistent with prior findings showing
that P53 loss increased penetrance and accelerated progression of
leukemia [28, 32], we showed here that PHF6 loss increased
JAK3M511I-induced T-ALL initiation by downregulating BAI1 expres-
sion, thereby decreasing BAI1 and MDM2 interaction, and
destabilizing P53 (modeled in Fig. 8). Thus, our results defined a
PHF6-BAI1-P53 signaling axis and linked it with JAK3M511I-induced
T-ALL genesis. It will be interesting to assess whether T-ALL
patients with JAK3 and PHF6 comutation could further benefit
from combined therapy with MDM2 and JAK3 inhibitors.
In conclusion, we revealed that PHF6 and JAK3 mutations

cooperatively drive T-ALL progression probably via inhibiting the
BAI1-MDM2-P53 signaling pathway, in addition to activating the
JAK3/STAT5 signaling pathway. We further demonstrated that

Fig. 7 Combined treatment with tofacitinib and idasanutlin prolonged the survival of Phf6 KO+ JAK3M511I T-ALL mice. A Schematic
representation of different drug treatments in VC Phf6+ JAK3M5111 T-ALL mice. B Phosphoflow cytometry was used to measure the
phosphorylation level of Stat5 in leukemia cells from VC Phf6+ JAK3M5111 T-ALL mice treated with placebo, single tofacitinib, single idasanutlin,
or combined tofacitinib and idasanutlin through oral gavage. C Western blotting was used to assess the expression of P53 in leukemia cells
from VC Phf6+ JAK3M5111 T-ALL mice treated with different drugs. D Kaplan–Meier survival curves of VC Phf6+ JAK3M5111 T-ALL mice treated
with different drugs (n= 10 per group). Mice treated with combined tofacitinib and idasanutlin VS placebo (log-rank test P < 0.0001), single
tofacitinib (log-rank test P= 0.0019) or single idasanutlin (log-rank test P= 0.0034). E The counts of HGB, PLT, and WBC in PB by routine blood
tests. F The percentage of GFP+ leukemia cells in BM from VC Phf6+ JAK3M5111 T-ALL mice treated with different drugs. G
Immunohistochemical staining for hematoxylin and eosin (HE) (magnification, ×40) and TUNEL staining (green represents TUNEL, blue
represents DAPI, magnification, ×60) in BM, spleen, liver, brain, and thymus from VC Phf6+ JAK3M5111 T-ALL mice treated with different drugs.
H Construction of PHF6 KD+ JAK3M511I and PHF6 Con464+ JAK3M511I MOLT-4 cells and their WB verification. I The proliferation of MOLT-4 PHF6
KD+ JAK3M511I cells was much faster than MOLT-4 PHF6 Con464+ JAK3M511I, MOLT-4 PHF6 KD, MOLT-4 Con464 or MOLT-4 WT cells respectively.
J, K Proliferation and apoptosis of MOLT-4 PHF6 KD+ JAK3M511I cells were examined in vitro with various drug treatment of 0.2% DMSO, single
tofacitinib (2.0 μM), single idasanutlin (0.5 μM) or combined tofacitinib+ idasanutlin for 48 h.
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Fig. 8 A proposed model for the role of PHF6 in T-ALL initiation by regulating BAI1-MDM2-P53 signaling pathway. In JAK3M511I-induced
leukemia, PHF6 could bind to ADGRB1 (BAI1) gene, increase its expression, upregulate BAI1 level, prevent MDM2-mediated P53 ubiquitination,
stabilize the P53 protein, and suppress leukemia development (Left panel). In the same leukemia model, loss of PHF6 could downregulate the
expression of BAI1, lead to increased MDM2-P53 binding and P53 degradation, and accelerate JAK3M511I-induced T-ALL progression (Right panel).
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combination therapy with tofacitinib and idasanutlin reduced the
Phf6 KO+ JAK3M511I leukemia burden in vivo. Our study suggested
that the combined usage of JAK3 and MDM2 inhibitors should
increase the drug benefit for T-ALL patients with PHF6 and JAK3
comutation.
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