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Abstract: The influence of high-heel footwear on the lumbar lordosis angle, anterior pelvic tilt, and
sacral tilt are inconsistently described in the literature. This study aimed to investigate the impact
of medium-height heeled footwear on the static posture parameters of homogeneous young adult
standing women. Heel geometry, data acquisition process, as well as data analysis and parameter
extraction stage, were controlled. Seventy-six healthy young adult women with experience in
wearing high-heeled shoes were enrolled. Data of fifty-three subjects were used for analysis due to
exclusion criteria (scoliotic posture or missing measurement data). A custom structured light surface
topography measurement system was used for posture parameters assessment. Three barefoot
measurements were taken as a reference and tested for the reliability of the posture parameters.
Two 30-degree wedges were used to imitate high-heel shoes to achieve a repeatable foot position.
Our study confirmed the significant (p < 0.001) reduced vertical balance angle and pelvis inclination
angle with large and medium-to-large effects, respectively, due to high-heel shoes. No significant
differences were found in the kyphosis or lordosis angles. High-heeled shoes of medium height in
young asymptomatic women can lead to a straightening effect associated with a reduced vertical
balance angle and decreased pelvic inclination.

Keywords: mid-high-heeled footwear; static posture parameters; young adult women; standing;
spine curvatures; vertical trunk inclination

1. Introduction

The perception of a woman’s physical appearance by other people (both female and male) is
significantly dependent on the type of footwear she is wearing. Wearing high-heeled shoes belongs
to women’s social behavior that increases the attractiveness, elegance, and even self-confidence of
women [1,2]. Over 50% of women wear high-heeled shoes for 1–8 h per day, and at least one-third of
women in western countries wear high-heeled shoes daily [3]. A common belief about the adverse
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impact of footwear on the body has attracted the attention of many researchers to the problem of the
impact of wearing high-heeled shoes on various biomechanical aspects of the body. In particular, it has
been reported that the habitual wearing of high heels may result in static and dynamic changes in
posture and spinal curvatures [4–12], as well as the lower extremities [13]. Studies also suggest that
long-term wearing of high-heeled shoes may correlate with a higher rate of lower back pain [7].

High-heeled shoes may lead to the development of postural disorders of the head, spine, pelvis,
and knees [14] that are characterized by head protraction [8], lumbar hyperlordosis [4,9,10,12,15] or
decrease of the lordosis angle [6], unnecessarily increase the forward inclination of the body and its
asymmetry [11], and also pelvic anteversion [4,5,9,15,16]. Additionally, an elevated risk of foot and
ankle injuries from high-heeled shoes is reported [17]. The postural changes like a compensatory
increase in lumbar lordosis and pelvic tilt are suggested to provoke lumbar back pain in habitual wearers
of high heels [10,15,18]. Decreased lumbar lordosis was usually described in habitual wearers [14,19,20].
Increased lumbar lordosis [21] associated with high-heeled shoes has been reported for inexperienced
wearers [9,22], or adolescent experienced wearers [15]. Cowley et al. [23] concluded in their review
that increased lumbar lordosis angles were found predominantly in inexperienced users. Some authors
suggest that high-heeled shoes do not affect lumbar lordosis [12]. Research results until now have been
inconclusive with respect to which effects and to what extent they are caused by wearing high-heeled
shoes. The inconsistency of the literature findings may be due to high-heel habituation grade, age
of the users, small samples, a variation of investigated heel-height used in the experiments, and the
variety of assessment methods used.

The low, medium, and high heel shoe categories are mentioned in the literature [24]. Dai et al. [9]
used heels in range 50.3 ± 13.9. Drzał-Grabiec and Snela [11] conducted the study with two heel
heights (4 cm and 8 cm). De Oliveira Pezzan et al. [15] used wooden shoes with 10 cm heel and 2 cm
elevation in the metatarsal region. Schroeder and Hollander [4] used in their experiments different
heel heights ranging from 7 to 11 cm.

Franklin et al. [14] conducted measurements with a three-dimensional electrogoniometer.
Russell et al. [12] used a spinal mouse device to measure lumbar lordosis. Drzał-Grabiec and Snela [11]
assessed the body posture parameters based on photogrammetry moiré pattern projection and fiducial
markers attached to the skin. De Oliveira Pezzan et al. [15] also used fiducial markers but with
single-camera photogrammetry. Dai et al. [9] analyzed standing left lateral radiographs, including that
of the spine and pelvis, obtained in a standardized standing position barefoot and with high heels.
Weitkunat et al. [8] used two standing lateral radiographs of the whole body taken using a biplanar
low-dose radiographic imaging system (EOS Imaging, Paris, France). Comparing radiological methods
and surface topography is a big challenge due to the differences in the imaged structures [25–27].
The unified interpretation of the results for various methods remains difficult. An additional barrier for
the comparability of the results is the presence of moderate statistical relations of the studied parameters.

Recently, the reduction of radiation exposure has become a severe concern for researchers [28–35].
The most crucial argument in favor of the development of surface topography methods is the
reduction of the cumulative X-ray effect during systematic diagnostic tests of patients with
scoliosis [28,29,31,32,34,36–41]. There is a noted preference in the use of non-radiation dependent
measurements [42–53]. However, even radiographs using a biplanar low-dose radiographic imaging
system (EOS Imaging) may produce a total radiation dose as low as 0.1–0.7 mSv per participant [54].

Repeatability of the experiment also depends on the measurement uncertainty of the devices
used to deliver image data and algorithms used to extract parameters and indices from that data.
The majority of the studies do not take these factors into account.

A more rigorous investigation is necessary to confirm the significant factors. The aim of this study
was to investigate the effect of high-heeled footwear on static posture parameters in a homogenous
sample of young adult women while standing. Surface topography (ST) was selected as the investigation
tool to facilitate comparison of results, but also for its moderate availability, non-invasive character,
and amount of delivered information about the body shape [18]. The experiment was performed while
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controlling all its core components: the geometry of the heel, the data acquisition process (including
hardware), and the data analysis and parameter extraction stage. In this way, we intended to remove
most of the uncontrolled variables, which should contribute to more reliable and repeatable results.
All the steps are described in detail to provide a basis to reproduce the results in similar experiments in
the future.

2. Material and Methods

2.1. Design

The experiment followed a repeated measures design, two conditions were examined, the initial
state being barefoot, and the modified state wearing high-heeled shoes. The initial state was measured
multiple times to test repeatability. No randomization was applied in order to follow the posture
changes in each subject.

2.2. Subjects

A group of seventy-six healthy volunteers, students of the Physiotherapy Department of the
Medical University in Warsaw, was initially enrolled in the study. Body mass index (BMI) was used to
determine subjects at ranges reliable for surface topography measurements. The high body mass index
may prevent the surface topography from detecting the severity of the curves. The reproducibility
of surface topography has been found to be accurate in patients with BMI up to 29 [55]. The healthy
normal BMI range (18.5–24.9) applies the same for men and women.

The inclusion criterion was at least two years of experience in wearing high-heeled shoes.
The exclusion criterion was the occurrence of faulty posture, assessed by performed measurements [56].
Additional subjects with corrupted measurement data were removed from the study after performing
the measurements. After the drop-out, a total number of 53 subjects were analyzed (Figure 1).
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The study protocol adhered to the ethical standards of the Helsinki Declaration and the Institutional
Review Board (IRB) of the Medical University of Warsaw approved the study (No. KB 158/2009, issued
25 August 2009).

2.3. Data Acquisition

The measurements were performed using a prototype custom-made structured light illumination
(SLI) 3D scanner developed for the tasks of the project entitled “Telemedical, automatized system for
three dimensional measurement, analysis, detection, monitoring and treatment of postural failures and
deformations of the human body” in cooperation with the Institute of Micromechanics and Photonics
(IMP), Warsaw University of Technology. The scanner was composed of a Casio XJ-A142 (https://www.
casio-projectors.eu/euro/products/green-slim/xj-a142/) projector and a Point Grey FL2-08S2M-C (https:
//www.flir.com/products/firewire-cameras/?model=FL2-08S2M-C) industrial camera. The structured
light method used was the 6-frame temporal phase-shifting (TPS) method, known for excellent accuracy
and spatial resolution, with nine additional images encoding Gray code for fringe enumeration [43,57].
The camera calibration and projector-camera stereo-calibration used were from the 3DMADMAC
solution [58].
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The projector and the camera were synchronized using a photodiode, which made it possible to
perform a single measurement in approximately 0.85 s. A glass plane surface of dimensions 1.2 m by
2.0 m with precise circular markers printed on an adhesive sheet and attached to the plane was used for
system calibration and precision assessment. The measurement precision of a single point was 1 mm,
and the spatial resolution was approximately 2–3 mm, depending on the position of the subject in the
measurement volume. As the last step, the plumb line was calibrated to facilitate analysis of the body
with respect to the gravity vector. The calibration was performed by measuring a loosely-hanging
cylindrical artifact and fitting a cylinder to the resulting point cloud. The result of a measurement of a
subject’s back was a point cloud consisting of approximately 100 thousand points, depending on the
subject body size. The surface of the back was measured from a single direction, and the measurement
was automatically aligned concerning the gravity vector using the plumb line calibration.

2.4. Application of Fiducial Markers

A set of anthropometric landmarks of the dorsum and shoulders was palpated on the surface of
the back of a subject. A plain white, adhesive circular marker of 10 mm in diameter was attached to
the skin in each palpated landmark location. The landmarks were:

- C7—the spinous process of the vertebra prominens,
- LAX/RAX—left and right axilla,
- LSC/RSC—the inferior angle of the left and right scapula,
- ThK—the apex of thoracic kyphosis,
- ThK-LL—point of transition from thoracic kyphosis to lumbar lordosis,
- LL—the apex of lumbar lordosis,
- LVD/RVD—left and right Venus dimple,
- IF—top of the intergluteal cleft.

The complete map of anthropometric points used in the experiment is presented in Figure 2.
The marker at the transition from the thoracic kyphosis to the lumbar lordosis curve, used to calculate
the thoracic kyphosis angle and lumbar lordosis angle, was chosen by the examiners based on their
expert anatomical knowledge. The twelfth palpated rib was used to establish the position of the marker.
A little more demanding to assess were the actual inflection point of the spinal curve and the kyphosis
and lordosis angles. Points were found as the most prominent anthropometric point seen or palpated
on the thoracic kyphosis and the deepest depression point of the lumbar lordosis. The correspondence
of sagittal curvatures obtained on the point cloud and their radiograph equivalents could be considered
best. However, these angles should be treated merely as values, generally describing the thoracic and
lumbar curves of the spine.

2.5. Barefoot Measurements

Barefoot measurements were performed at the beginning of every subject. The measurement
was repeated three times to test the repeatability of the method. For each repetitive measurement,
the subject would step out of the measurement volume, remain there for approximately 1 min doing
simple movements, and then step back in.
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Figure 2. The sample images of the examined subject with self-adhesive markers on the skin ((A)
posterior view, (B) oblique view). Markers used in the analysis are captioned with the name of the
corresponding anatomical structure. C7—the spinous process of the vertebra prominens, LAX/RAX—left
and right axilla, LSC/RSC—the inferior angle of the left and right scapula, ThK—the apex of thoracic
kyphosis, ThK-LL—point of transition from thoracic kyphosis to lumbar lordosis, LL—the apex of
lumbar lordosis, LVD/RVD—left and right Venus dimple, IF—top of the intergluteal cleft.
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2.6. High-Heeled Measurements

For the high-heel measurement, instead of regular high-heeled shoes, wooden wedges with
an angle of incidence of 30 degrees were used (Figure 3). The students were instructed to put the
metatarsal heads on the floor and the rest of the foot on the wedge, to obtain an effect analogous to that
of a mid-height high-heel shoe.
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Figure 3. Schematic view of the wedge used as the heel with dimensions. The maximum height of the
wedge was slightly larger than the heel effect it had on the foot.

The reasons for choosing the wedges over regular high-heeled shoes were multiple. Firstly, the
wedge provides a constant angle of inclination of the foot and, as a result, a more homogeneous
reaction of the body in all the subjects. Different stability characteristics of the shoes and degree of
adaptation to the chosen pair of shoes could be ruled out. The angle of incidence for the wedges was
chosen to match an average heel height. According to a survey conducted by the American Podiatric
Medical Association, a heel of 2 inches (app. 5 cm) was reported as too high by 20% of women, whereas
a heel of 3 inches (app. 7.5 cm) was reported as too high by 54% of women [59]. For a foot of average
length, our setup would provide a heel of approximately 6–6.5 cm (2.5 inches) high, which should be
in the acceptable range for most women.

2.7. Data Analysis

Dedicated algorithms were developed to detect on-skin fiducial markers and calculate
the parameters for evaluating changes in posture and balance according to current
recommendations [42,60–62]. Analysis of the measurement data was performed using IMP’s proprietary
FRAMES programming environment [63], an extensible framework used for different tasks involving
point cloud data. It was written in C++ with minimal use of third-party programming libraries.
The processing path consisted in:

• filtering measurement noise using FRAMES built-in algorithms,
• using a custom algorithm for automatic detection of the circular markers on the surface of the

skin developed for this experiment, and
• methods for estimating parameters connected with posture.

Filtering algorithms were used to remove parts of the measurement that did not represent the
surface of the back, and remove measured surface edges, prone to noise because of the nature of the
measurement technique.

The algorithm for marker detection was based on an analysis of intensity (grayscale value), as
white markers were easy to distinguish from the surrounding skin. Since some over-exposed erroneous
points appeared in the measurement, additional conditions had to be checked to ensure that a particular
group of high-intensity points is circular, and its radius is within the expected values range. Only the
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positively verified point groups were regarded as marker areas. For each marker, its (x,y,z) center was
calculated, and a textual name label was assigned based on the marker’s position on the body.

Some of the markers were not retrieved correctly using the automated method. Because the
markers were partly reflective, the depth component within the area of the markers was noisier than in
the rest of the measurement. The above was fixed by a dedicated semi-automatic algorithm, which
used an initial marker position on the cloud pointed by the operator, segmented the surrounding
area using a min-max ratio threshold, and calculated the center of the marker by fitting a 2D circle,
disregarding the depth component. Then, the recovered center was projected back onto the cloud,
obtaining the final (x,y,z) marker position.

2.8. Postural Parameters Extraction

The markers LVD and RVD located at the left and right fossae lumbales laterales (“dimples of Venus”)
were used to establish the base of the frontal plane measurement. Both the superficial topography
indentations correspond to the upper parts of the sacroiliac joints. The transformation was found for
each measurement independently by rotating the measurement space around the calibrated plumb
line in such a way, that the Venus dimples were found in the frontal plane. Then, we used the markers
located at vertebra prominens (C7), the point of transition from thoracic kyphosis (ThK) to lumbar
lordosis (LL) (ThK-LL) and top of the intergluteal furrow (IF) to calculate the parameters for monitoring
posture change. The postural parameters included:

- vertical balance angle (vertical trunk inclination in the sagittal plane)(VBA), which is the angle
between the vertical axis and the line connecting C7 and IF, the positive value corresponds to the
subject leaning forward,

- thoracic kyphosis angle (TKA), which is the angle between normal vectors of planes fitted in the
area around points C7 and ThK-LL, with an additional offset to C7 equal to 5 mm in the direction
of ThK-LL,

- lumbar lordosis angle (LLA), which is the angle between normal vectors of planes fitted in the
area around points IF and ThK-LL, with an additional offset to IF equal to 15 mm in the direction
of ThK-LL,

- pelvic inclination angle (PIA), which is the angle between the normal vector of the plane fitted to
the area between LVD and RVD and the horizontal axis.

All the vectors were projected onto the sagittal plane before calculating the angles. Additional
markers at the left and right scapula (LSC, RSC), left and right axilla (LAX, RAX) and the deepest point
of lumbar lordosis (LL) were used to calculate the parameter for determining possible faulty posture:

- the Suzuki Hump Sum (SHS) [64–66], calculated as the sum of the difference in depth between
points of contact of lines in the axial plane tangent with the surface of the back, on three different
levels: halfway between LSC and RSC, at ThK-LL and LL.

The principles of extracting all the parameters are presented in Figure 4. Out of the angles
used for monitoring posture change, calculated for the three measurements without heels for each
subject, the average value was calculated and used as the reference. The exclusion criterion was
based on the SHS parameter. Although this parameter is well established in Surface Topography (ST)
measurements [26,27,60,65–68], literature does not provide specific cut-off values for faulty posture.
Thus, subjects with outlier values of the SHS distribution in any of the measurements were suspected
of having a faulty posture and were excluded from the study. This parameter was used only as a base
for exclusion and was not used in further analysis.
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2.9. Influence of Marker Placement Accuracy

The position of attached fiducial markers affects directly the calculated parameters. Additional
analysis was performed to test the influence of their position on the obtained results. The procedure
was as follows:

• for each subject, for each landmark, draw a random displacement vector from the N(0, 10)
distribution, each vector component was drawn independently,

• after applying the displacement vector to each landmark, the point was projected to the cloud to
find a real point on the surface.

The random displacement vector was constant for each subject. This is equivalent to a different
marker placement throughout the whole session. The values of parameters were calculated again for
the new set of markers, and the results were statistically analyzed. The procedure was repeated ten
times and was performed for parameters, which were statistically significant for the original marker
positions. Three runs of application of marker displacement vectors for one measurement is shown in
Figure 5.
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and the yellow point is the marker after the displacement, and in magenta is the displacement vector.

2.10. Statistical Analysis

Then, R version 3.5.1 (The R Foundation for Statistical Computing, Indianapolis, IN, USA) software
was used to compare the distribution of the angles measured with and without heels. Outliers were
identified as outside 1.5 The interquartile range (IQR). The measurements that qualified as outliers were
examined for correctness. The Wilcoxon signed rank test was used to search for statistically significant
differences between the two subject states (barefoot and heels) for any of the monitored angles and
to reveal whether mean barefoot position measurements are statistically significantly different from
high-heeled position measurements.

The effect size was assessed using the matched pairs binomial correlation coefficient, where
values less than 0.3 were considered small, between 0.3 and 0.7—medium, and more than 0.7—large.
Repeatability of barefoot measurements was tested using the Intraclass Correlation Coefficient (ICC3,3)
with a mean-rating (k = 3), absolute-agreement, 2-way mixed-effects model. The result was interpreted
according to the guidelines for ICC inter-rater agreement measures, where: Less than 0.40—poor;
Between 0.40 and 0.59—fair; Between 0.60 and 0.74—good; Between 0.75 and 1.00—excellent.
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3. Results

During the 3D data pre-processing stage, a complete set of markers required for further analysis
could be successfully extracted in 56 subjects. The rest was removed from the dataset. The high
drop-out rate at this stage was caused by the poor quality of the fiducial markers. Three subjects had
outlier values of SHS and were excluded from the study. Then, five measurements selected as outliers
in the vertical balance angle distribution, and four in the pelvic inclination angle distribution were
found, nine in total. Distributions of thoracic kyphosis angle and lumbar lordosis angle did not show
any outliers. All outliers were examined for any factors that would render them unacceptable for the
experiment: faulty posture, measurement and calculation errors. No irregularities were found, and the
measurements were kept in the dataset.

After this procedure, 53 complete measurements were left for analysis. The remaining subjects were
20.4 ± 1.2 years old, characterized by BMI 20.2 ± 2.2. The summary of the calculated angle distributions
is presented in Table 1. Intraclass Correlation Coefficient (ICC3,3) for barefoot measurements are
presented in Table 2. Significant differences between the barefoot and high heel conditions were found
in the vertical balance and pelvic inclination angles for p < 0.001 using the Wilcoxon signed-rank test.
The thoracic kyphosis and lumbar lordosis angles did not differ significantly. All results of the effect
size for the vertical balance angle, the pelvic inclination angle, for thoracic kyphosis angle, and lumbar
lordosis angle—small are presented in Table 3.

Table 1. Summary of distributions for all the angles.

Parameter Distribution Minimum
[◦]

Lower-Hinge
[◦]

Median
[◦]

Upper-Hinge
[◦]

Maximum
[◦]

Thoracic kyphosis
angle

Barefoot 11.5 24.8 32.5 35.5 47.0

High Heels 12.9 25.3 31.1 36.8 47.7

Lumbar lordosis
angle

Barefoot 15.1 28.7 33.8 40.5 50.6

High Heels 14.0 26.4 32.6 39.0 50.0

Pelvic inclination
angle

Barefoot 16.5 25.2 28.5 31.8 37.6

High Heels 15.1 23.0 26.8 31.5 36.6

Vertical balance
angle

Barefoot 0.0 2.6 3.5 5.3 10.0

High Heels −1.1 1.2 2.4 4.0 9.7

Table 2. Intraclass Correlation Coefficient (ICC3,3) for barefoot measurements.

Parameter ICC3,3

Thoracic kyphosis angle 0.94
Lumbar lordosis angle 0.99
Pelvic inclination angle 0.96
Vertical balance angle 0.98

Table 3. Wilcoxon signed rank test results and effect size.

Parameter Wilcoxon Signed Rank Test
(Heels vs. Barefoot, Paired)

Matched Pairs Rank-Biserial
Correlation

Thoracic kyphosis angle W = 547, p = 0.13 0.23 (small)
Lumbar lordosis angle W = 620, p = 0.40 −0.13 (small)

Pelvic inclination angle *** W = 201, p < 0.001 −0.72 (medium to large)
Vertical balance angle *** W = 51, p < 0.001 −0.93 (large)

*** p < 0.001.
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The influence of fiducial marker placement was examined for the pelvic inclination and vertical
balance angles, where the difference was statistically significant, and the effect size at least small.
Ten repetitions of the random movement of the fiducial markers on the measured surface were
performed. The displacement of markers was 13.4 ± 7.2 mm. The W statistic for the vertical balance
angle was 67 ± 21 with a p-value less than 0.001 for all random runs and 215 ± 18 for the pelvic
inclination angle with a p-value less than 0.001 for all random runs. The effect size was −0.90 ± 0.03 in
the vertical balance angle (large effect size in all cases), and −0.69 ± 0.02 in the pelvic inclination angle
(medium to large effect size in all cases).

4. Discussion

There is a lack of consensus in the literature regarding the posture changes caused by the use
of high heel shoes due to several factors. This study aimed to investigate how medium-high heeled
footwear influences static posture parameters. The majority of the symptoms associated with wearing
high-heeled shoes are considered attributable to the observed adaptive biomechanical phenomena.

No significant effects on the lumbar lordosis angle under static conditions found by Schroeder
and Hollander [4] were confirmed in this study. A small reduced pelvic tilt was similarly present.
Our study did not confirm any moderately increased transversal pelvic rotation. Other postural effects
of high-heeled shoes were mentioned in the literature, namely, head protraction [8], postural disorders
of the head and spine [14], pelvic anteversion [4,5,9,15,16], and knee valgus [8,10,16]. Only the selected
parameters were evaluated in our study. Head protraction and knee position were not evaluated in
the present study. The debate remains open about the potential impact of high heels on posture and
lumbar hyperlordosis [4,9,10,12,15] or its decrease [6], pelvic tilt changes and whole-body sagittal
balance. Silva et al. [10] reviewed studies searched in the Scopus, SciELO, and PubMed databases
between 1980 and 2011 regarding the effects of high heeled shoes on the body posture of adolescents.
They suggested that wearing regularly high heels can lead to permanent malposition of the spine and
the legs. The results of our study show the wearing mid-high-heeled shoes may decrease the forward
inclination of the body [11], and pelvic anteversions [15]. However, asymmetry [11] while wearing
high-heels was not found. The effect of producing an uneconomic body position [8,9] could not be
assessed using our methods.

Postural changes like a compensatory increase in lumbar lordosis and pelvic tilt are suggested
to provoke lumbar back pain in habitual wearers of high heels [10,15,18]. Decreased lumbar lordosis
was usually described in habitual wearers [14,19,20]. Increased lumbar lordosis [21] associated with
high-heeled shoes has been reported for inexperienced wearers [9,22], or adolescent experienced
wearers [15]. Cowley et al. [23] concluded in their review that increased lumbar lordosis angles were
found predominantly in inexperienced users. Some authors have suggested that high-heeled shoes
may not affect lumbar lordosis [12]. This is a duplicate from the introduction

Similarly to the results obtained in the current research, the angle of the forward trunk inclination
was found to be statistically significant. Its increase gradually with the increasing height of the
heels [11] was already suggested in other studies [11]. The authors explained observed changes as
the reaction in the body’s center of gravity and the attempt to maintain postural stability. The only
significant difference was noticed between barefoot patients and those wearing 4-cm high-heeled shoes.
When measuring the parameters in patients wearing 10-cm heels, the trend toward increasing body
inclination was preserved; however, these differences were not significant. The paper mentions that
higher values were observed for the angle of trunk inclination, despite the data showing a decrease in
the angle of trunk bend (ATB angle), rendering the conclusions unreliable.

The cervical spine may show increased lordosis due to the forward displacement of the head [18].
Weitkunat et al. [8] found that most of the high heels-related adaptive responses to the antero-cranial
shift of the center of gravity occur in the lower extremities, especially the knees. An additional
mechanism to shift the center of gravity backward was an increase of cervical lordosis. Franklin et
al. [14] showed significantly lower anterior pelvic tilt, lumbar lordosis, and sacral base angles with
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high heels when compared with zero heel inclination using a three-dimensional electrogoniometer.
Russell et al. [12] using a spinal mouse device showed that high-heeled shoes did not affect lumbar
lordosis. Drzał-Grabiec and Snela [11] using moiré photogrammetry found that wearing high-heeled
shoes increases the forward inclination of the body and increases its asymmetry. However, the results
are unreliable due to the absence of parameter definitions used to conclude, as well as discrepancies
between the presented data and the text. De Oliveira Pezzan et al. [15] used custom-built software
for postural assessment and photographs in the sagittal plane and extracted angles based on the
location of fiducial markers found that the effect of increased lumbar lordosis and pelvic anteversions.
Schroeder and Hollander [4] showed a small to moderate the effect of high-heeled shoes on static and
dynamic pelvic positions (sagittal pelvic tilt and axial pelvic rotation) in females habituated to the
use of high-heeled footwear. Additionally, they found no effects of footwear on the static or dynamic
lumbar lordosis [4].

Spino-pelvic radiographic parameters characterizing sagittal balance are clinically
relevant [8,38,69–72]. Dai et al. [9] analyzing standing left lateral radiographs of the spine and
pelvis revealed increased lumbar lordosis. No significant differences for sagittal balance parameters
(SS, PT or PT/SS) between the barefoot and high-heel positions were found. One study [9] showed that
the radiographic sagittal vertical axis (SVA) was always positive and was worse after wearing a variety
of heights of high-heel shoes. Finally, they concluded that the SVA was significantly more extensive
under the 45.5 mm height high heel use than barefoot. Weitkunat et al. [8] studied biplanar standing
lateral radiographs of the whole body found in some cases, increased cervical lordosis. Substantial
correlations and pronounced differences between the barefoot/high-heeled conditions were found
in the C7 sagittal vertical axis (SVA), the cervical lordosis, the knee flexion angle, and the femoral
obliquity angle. No statistically significant changes were seen for thoracic kyphosis, lumbar lordosis,
or the measures of pelvic sagittal inclination. A radiographic study by Aota et al. [73] found that arms
relaxed in front with hands loosely clasped produce the least negative shift in SVA is the best arm
position for SVA measurement.

Authors of the radiographic studies used the images of patients who were positioned with fingers
on the clavicles that could significantly influence the angle of lordosis [74]. The surface topography
study using structured light has shown that position with fingers on clavicles does not influence
vertical trunk inclination and kyphosis, but significant changes of the lordosis angle were found [74].
The positioning of the body during the posture assessment may influence the spinal curvatures [73–76]
and sagittal alignment.

Out of all the methods used to examine static changes in posture, rasterstereography (also
referred to as surface topography, ST) offers the most reliable information [46,47,77–81], while not
exposing the measured persons to ionizing radiation. Various parameters and indexes are drawn
from the surface-topography and radiographic data that may confuse the interpretation of the results.
Surface topography is usually used to detect or monitor scoliosis deformities [25,42,49,57,67,82–96],
few publications address the physiological curvatures of the spine, lumbar lordosis and thoracic
kyphosis [26,42,48,64,82,97–100]. Radiographic measurements of SVA, PT, LL, SS, or PI are based
on radiographic points assessed on the full spine radiograms [72], which are inaccessible in surface
measurements. Parameters extracted by means of recently developed non-invasive optical systems
(including moiré projection method and surface topography) are frequently novel and specific for
each device [12,14,47,82,88,99,101–103]. Some of the indexes are recommended by the SOSORT [60].
However, the guidelines are known mostly to researchers dealing with scoliosis, and not applied
during most experiments.

In our study, significant differences were found for the vertical balance angle and pelvic inclination
angle. Unexpectedly Weitkunat et al. [8] found no statistically significant changes for thoracic kyphosis,
lumbar lordosis, and the measures of pelvic sagittal inclination. The absence of statistically significant
changes of the lumbar lordosis was explained by the high variability in pelvic incidence in the
study sample.
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We assume that vertical trunk inclination in the sagittal plane may express the same condition of
the vertebral column in surface topography as SVA in lateral view radiography. However, the actual
relation between these parameters has not been investigated.

4.1. The Biomechanical Aspect of Results/Observations

Biomechanical phenomena described in particular publications may lead to generalized and
explainable impressions. Many studies on the influence of high heels on the sagittal balance
focused on these parameters due to the possibility of an antero-cranial shift of the body’s center
of gravity while standing on high-heeled shoes [8,9,104]. The cranial and anterior shift of the
center of gravity [8,10,72,105] of the body when standing in high-heeled shoes was described in the
literature. Lee et al. [18] showed a compensatory posterior tilt of the whole upper body with high
heels. When standing in high-heeled shoes, the body’s center of gravity is being shifted cranially and
anteriorly [18,104]. Weitkunat et al. [8] observed that wearing high heels led to increased flexion of the
knees and more ankle flexion or to increased cervical lordosis to compensate for the antero-cranial
shift of the body’s center of gravity. Increased lumbar lordosis and changing body position to
an uneconomic [9] or permanent malposition of the spine and the legs [10] was described due to
high-heeled shoes. However, in the literature, high-heeled shoes were not always found as the factor
that increases the forward inclination of the body, its asymmetry [11], and pelvic anteversions [15] that
may lead to an uneconomic body position [8,9]. Some studies [1,9,20,106] have suggested that high
heels induce a vertical integration in the sacrum, pelvic tilt and lumbar adjustment due to increased
activity of the hamstring muscles to counteract the abnormal gravity line. A small to moderate effect
of high-heeled shoes was observed on static and dynamic pelvic positions (sagittal pelvic tilt and
axial pelvic rotation) in females habituated to the use of high-heeled footwear [4]. The wearing of
high-heeled shoes may cause a “chain reaction” of postural alteration superior to the ankle, where
the pelvis, rather than the lumbar spine that is involved in postural compensatory strategies [4].
The statistically significant gradual increase of the trunk forward inclination angle with the increasing
height of the heels [11] was explained as the reaction in the body’s center of gravity and the attempt
to maintain postural stability. The cervical spine may show increased lordosis due to the forward
displacement of the head [18] as an additional mechanism to shift the center of gravity backward. Most
of the high heels related adaptive responses to the antero-cranial shift of the center of gravity occur in
the lower extremity, especially the knees [8].

4.2. Influence of Precision of Fiducial Marker Placement

The markers were placed once for all the measurements, did not change their position on the skin,
and thus provided a good base for comparison. Additional tests were conducted for the statistically
significant parameters that showed at least a small effect size: the vertical balance and pelvic incidence
angles. Tests were performed according to the described procedure.

The pelvic incidence angle and vertical balance angle can be considered reliable measurements.
All ten random tests showed statistically significant results for the parameters, and the effect size did
not decline.

In the case of pelvic incidence angle, the area around the left and right dimple of Venus markers
used for calculation of the angle was large and was related closely to the orientation of the pelvis. For the
vertical balance angle, the distance between the two markers used for calculation was considerable
compared to possible inaccuracy in placing the markers. Additionally, possible inaccuracy in the
frontal plane was small due to the location of the markers along the spine line, and the inaccuracy
vector in the sagittal plane was almost parallel to the line connecting the two markers, thus did not
have much influence on the angle value.
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4.3. Limitations of the Study

The general limitations of this study concern the acquisition of the 3D image that can only
document a short moment of a body’s position. However, this limitation appears equally in static
examinations regardless of the measurement method used for image acquisition: radiogram, moiré
photogrammetry, rasterstereography, 3D structured light. None of the methods adjust to the dynamic
process of balancing. The repeatability of three subsequent barefoot measurements was high, which
implies that the captured differences between the barefoot and high-heeled conditions were significant
at that moment in time.

A limitation of this study is also the inability to measure the surface of the nude skin of the dorsum
up to the hairline, which usually makes the skin of the occiput unavailable for the measurement.
The comparison of the cervical lordosis studies with surface topography is not possible until the bald
occipital protuberance can be exposed to the structured light.

The limitations of comparison of the radiographic with surface topography studies are concerned
in the measures and indexes [88,103,107]. The only trend of observed changes can be compared to some
extent. Radiographic measurements of SVA, PT, LL, SS, or PI are based on radiographic points that are
not achievable by surface topography and vice versa. Surface topography addresses anthropometric
points that are seen or palpable superficially on the patient’s body [25,103]. The measurements were
performed from the glutei upward, and only the posterior part of the torso was acquired. This setup
impeded us from considering knee and ankle flexion, where additional compensations could occur, as
reported by other studies [8,104].

5. Conclusions

In our study, significant differences were found for the vertical balance angle and pelvic inclination
angle, which correspond to a decrease in the forward inclination of the body and pelvic anteversion.

The strength of the study was the well-delineated model and measurement methodology of the 30
degrees inclination high heel. The parameters measured in surface topography and radiography require
cross-calibration in future research that may improve the understanding of the postural relations.

There are reasonably clear premises in the literature about the differences in effects caused by
high heels depending on their height. In the model used in our research, the heel height is classified as
an average, and it is probably the reason for the obtained results.

It seems that the problem of the impact of the heel height still leaves many questions. Subsequent
research should include, among others, trunk examination of 360 degrees and dynamic tests. The current
results can be applied to people working statically in heels for many hours. A comparison of the
impact of different heel heights on the postural condition should also be included in the study plan.
With particular interest should be addressed the question of whether one can adjust the heel height,
which will be optimal for body posture and curvature of the spine? The research is based on the
mechanisms of symptom formation in orthopedics. In the next step, there is a particular need to
standardize the methodology of surface topography research and to obtain a reference system for
radiological studies, which will increase the reliability and repeatability, especially in the sagittal
alignment tests. The constant angle of heel elevation can be used in future studies focusing on the knee
and hip flexion effect.
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