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Spin-polarized triangular graphene nanoflakes (t-GNFs) serve as ideal building blocks for the long-desired
ferromagnetic graphene superlattices, but they are always assembled to planar structures which reduce its
mechanical properties. Here, by joining t-GNFs in a spiral way, we propose one-dimensional graphene
spirals (GSs) with superior mechanical properties and tunable electronic structures. We demonstrate
theoretically the unique features of electron motion in the spiral lattice by means of first-principles
calculations combined with a simple Hubbard model. Within a linear elastic deformation range, the GSs are
nonmagnetic metals. When the axial tensile strain exceeds an ultimate strain, however, they convert to
magnetic semiconductors with stable ferromagnetic ordering along the edges. Such strain-induced phase
transition and tunable electron spin-polarization revealed in the GSs open a new avenue for spintronics
devices.

T
he quantum confinement effects resulting from the reduction of dimensions offer a nontrivial manner to
tune the electronic properties of graphene-based nanostructures. For example, electron spin-polarization
and even ferromagnetic ordering can be achieved in the graphene nanostructures of low dimensionality1–3.

When graphene is cut into strips along zigzag direction, the produced one-dimensional (1D) graphene nanor-
ibbons (GNRs) with zigzag-shaped edges have spin-polarized edge states and become half-metals under certain
transverse electric fields4–10. Triangular graphene nanoflakes (t-GNFs) with zigzag edges severed from graphene
have spin-polarized ground states where the net spin (S) obeys the so-called Lieb’s theorem, S 5 jNA 2 NBj/2, NA

and NB being the number of atoms belonging to the two sublattices of the bipartite lattice11–15. The spin-polarized
t-GNFs are therefore ideal building blocks for ferromagnetic graphene superlattices. First-principles calculations
indicate that the local magnetic moments of the GNFs in these superlattices interact either ferromagnetically or
anti-ferromagnetically depending on the angle between two zigzag edges13,14,16. The electron spin polarization and
ferromagnetic ordering of these planar graphene-based nanomaterials can be explained in terms of the none-
quivalence between the two sublattices of graphene. However, the voids of the superlattices greatly reduce the
mechanical properties compared to perfect graphene.

The flexibility of graphene allows the formation of helical structures with curved surfaces, such as carbon
nanotubes (CNTs), graphene stripes, and ribbons17–20. The curvature and topology of the curved surfaces modify
the electronic properties of these p-electron systems, leading to some interesting phenomena. For example, CNTs
can be either metallic or semiconducting depending on its chirality. Recently, Avdoshenko et al. proposed
graphene spirals (GSs) using hexagonal graphene nanoflakes as building blocks21. Distinct from the earlier helical
graphene motifs, the electronic structures of these GSs exhibit topological signatures with robust topological
states as those observed in topological insulators. Such an unusual property is related to the helical track of
electrons in this material class, in analogous to the electron procession under an external magnetic field. Spiral
structures are naturally robust against tensile strain along the axial direction, and the significant mechanical-
electronic coupling may lead to some interesting properties. Unfortunately, these features have not yet been
reported and understood clearly. Meanwhile, the electrons in these hexagonally symmetric GSs are spin-unpo-
larized. In view of the attractive properties arising from the electron spin-polarization in topological insulators,
making the GSs spin-polarized is highly desirable.

Here, we propose novel one-dimensional (1D) GSs with superior mechanical properties and tunable electronic
spin-polarization under tensile strains from first-principles. At equilibrium states, the GSs are nonmagnetic
metals due to ‘‘strong’’ interlayer interactions. When the axial tensile strain exceeds an ultimate strain, however,
they become spin-polarized semiconductors with stable ferromagnetic ordering along the edges. We also pro-
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posed a simple tight-binding Hamiltonian based on a Hubbard
model involving electron-electron interactions within a mean-field
approximation to understand the phase transition. It is found that
the ‘‘switch on’’ and ‘‘switch off’’ of the electron spin-polarization are
the result of the competition between interlayer hopping and intra-
layer hopping of electrons on the spiral surfaces. Such strain-induced
phase transition and the tunable electron spin-polarization revealed
in the GSs open a new avenue for spintronics devices.

Results
The GSs considered in this work are made up of t-GNFs assembled
perfectly in a spiral way and are free from topological defects, as
shown in Fig. 1(a). Viewing along the axial direction, they look like
equilateral triangles with the rotary shaft passing through the centers
(Fig. 1(b)). The layered structure of graphite with perfect hexagons is
preserved in the local structures of the GSs. The inner edge is free
from dangling bonds but has the largest perturbation and strain. The
outer edge has zigzag profile terminated by hydrogen atoms. The
spiral axis goes through the centers of the hexagons where a p/3-
symmetry line merges. We distinguish the GSs on the basis of the
number of zigzag segments along the outer edge. Due to the restric-
tions of the three-fold symmetric rotary shaft, the number of zigzag
segments of the GSs is 4 1 3n where n is an integer number. Due to
the computational limitation, in the present work, we only take the
GSs with n 5 0 and 1 as examples to study the mechanical and
electronic properties. In the following parts, we focus on the GS with
n 5 0. The data of the GSs with n 5 1 and another type of edge
termination (Klein termination)22 are presented in the
Supplementary Information online. The results of these GSs are very
similar to those of the GS (n 5 0) described in the following sections.

We first relax the atomic positions of the GS by fixing the lattice
constant (a) to different values. The variation of total energy as a
function of lattice constant is plotted in Figure 2(a), where the energy
minimum state corresponds to the equilibrium state. The energy
profile is asymmetric about the equilibrium state, implying the inhar-
monic features of the mechanical properties. The lattice constant at
the equilibrium state is a0 5 3.24 Å, slightly shorter than that of
graphite23, 3.35 Å. The C-C bond length decreases gradually from
the center to the outer edge of the GS. The center bond lengths are
about 1.44 Å, while those at the outer edge are 1.41–1.39 Å. The C-H
bond length is 1.09 Å. This indicates that the bonds are stretched near
the rotary shaft and compressed at outer edge compared with the
bond length in graphene, 1.42 Å. The strain energy involved in the
GS is evaluated by the energy difference between the GS and the
corresponding t-GNFs stacked with the same interlayer spacing. At
equilibrium state, the strain energy of the GS is about 1.76 eV per
unit cell. The stain energy can be attributed to the stretched bonds of
the GS. In order to explore the thermal stability of the GS, we perform
ab initio molecular dynamics simulations (MDs) with a Nose-

Hoover thermostat at room temperature (300 K) for 5 ps. Our simu-
lations show that the geometry of the GS remains unchanged in
addition to small fluctuation of temperature and total energy with
the passage of time (see Supplementary Fig. S2 online). Although the
time scale is too short due to computational limitation, our MDs
clearly indicate the stability of the GS at room temperature.

We define an engineering strain as t 5 (a 2 a0)/a0. A negative t
value corresponds to a compressed GS, while a positive t means a
stretched one with respect to the equilibrium state. We also define a
strain energy density as W 5 (Etot 2 E0)/a0, where Etot and E0 are the
total energies of the strained GS and the GS at equilibrium state. W
can be expanded as a function of strain in a Taylor series including
quadratic and higher order terms. The quadratic term corresponds to
linearity of elastic deformation, while the higher order terms account
for both nonlinear elastic deformation and strain softening. The
strain energy densities of the GS as a function of applied strain with
and without considering spin polarization are plotted in Fig. 2 (b).
Clearly, W is asymmetric for compression and tension. When the
tensile strain is taken between 20.03 , t ,0.03, W is a quadratic
function of strain and the higher order terms of Taylor series are
neglectable. This range of t can therefore be regarded as harmonic
region, in which the stress increases linearly with the increase of
applied strain. The Young’s modulus of the GS in this harmonic
region is about 109.80 GPa, which is smaller than those of individual
CNTs (260–950 GPa)24. When the tensile strain is further increased,
the contribution of high order terms becomes significant, and the
variation of the strain energy with respect to the applied strain tends

Figure 1 | Schematic representation of graphene spirals (GS) in a 1 3 1 3
3 supercell considered in main text. (a) side view, (b) top view. The blue

arrow and dot in circle indicate the direction of the axis of the spiral.

Figure 2 | Total energies (a) and strain energy densities (b) of the GS with
and without electron spin polarization under the tensile strains along
spiral axis (represented by the lattice constant). Bond length at the inner

edge of the strained GS and the stress-strain responses are also shown by

the right axis in figure (a) and (b), respectively.
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to be inharmonic up to the ultimate strain, followed by a strain
softening process. The stress calculated from the derivative of the
strain energy density with respect to strain per cross-section area25 is
shown in Figure 2(b). It reaches the maximum at the ultimate strain
(0.154) with the corresponding ultimate stress of about 8.69 GPa. At
this critical point, the interlayer spacing is enlarged to 3.74 Å. It is
noteworthy that the ultimate strain of the GS is nearly three times
larger than that of CNTs (0.05–0.06)24. This is related to the unique
spiral configuration of the GS which can endure large deformation
along the axial direction.

Materials under the strain beyond the ultimate strain become
softening and enter a plastic state, which may be easily destroyed
by long wavelength perturbations, vacancy defects and high temper-
ature effects26. Destruction always accompanies fracture of bonds
along stretching direction. For the GS, however, due to its spiral
structure, destruction does not occur as the tensile strain exceeds
the ultimate strain. Neither energy decrease nor bond breaking takes
place, as indicated by the variations of the bond length and the total
energy shown in Fig. 2(a). This implies that the deformations con-
sidered in this work are plastic and the GS remains stable even the
strain is larger than the ultimate strain. In this region, the interlayer
interactions are very weak. The plastic deformation arises mainly
from the changes of bond angles rather than the bond lengths.
Therefore, the stress is nearly constant in tension, in contrast to
the linear variation of stress in compression due to ‘‘strong’’ inter-
layer interactions.

It is interesting to see the electronic structure modification of the
GS in response to tensile strain. At equilibrium state, the GS has a
spin-unploarized ground state, as shown in Fig. 3(a), in sharp con-
trast to the spin-polarized t-GNFs. We attribute the features to
‘‘strong’’ interlayer interactions which diminish the electron spin-
polarization of the t-GNF building blocks. In the band structures of
the GS, there are three bands across the Fermi level, indicating that it
is metallic. The three bands are rather dispersive with width larger
than 1.5 eV, implying ‘‘strong’’ interlayer interactions. Such dispers-
ive bands are unfavorable for electron spin-polarization. The metallic
band structures as well as the band profiles resemble those of the GSs
proposed by Avdoshenko et al21, suggesting the topological features
of the electronic structures. When the tensile strain is lower than the
ultimate strain, the ground state of the GS remains spin-unploarized,
but the widths of the three bands decrease significantly with the
increase of tensile strain due to weakening of interlayer interactions.
When the tensile strain exceeds an ultimate strain (0.154), the three
bands split into spin-up and spin-down branches, as shown in
Fig. 3(b). The GS becomes spin-polarized with a magnetic moment

of 3 mB per unit cell. The magnetic moment obeys the so-called Lieb’s
theorem15 which holds for the corresponding t-GNFs. This suggests
that the emergence of magnetism in this GS is related the edge
imbalance. The atoms at the outer edge belong to the same sublattice
of GS, resulting in a global imbalance or topological frustration of p-
bonds. Meanwhile, the GS converts to a semiconductor, as indicated
by the electronic band structures shown in Fig. 3(b). The metal-
semiconductor transition takes place in the region of 0.136 , t ,

0.173.
We further analyze the electronic structures of the GS in this

region to reveal the origins of the phase transition. There are no
obvious changes in bond length and the interlayer spacing varies
slightly (3.68–3.80 Å) in this region. However, the modification of
the spin-resolved electron density of states (DOSs) in response toten-
sile strain is significant, as shown in Fig. 4. When the interlayer
spacing (pitch of the spiral) is less than 3.68 Å, the spin-up and
spin-down branches of the DOSs are compensated, leading to zero
magnetic moments. There are abundant electronic states at the Fermi
level, indicating the metallic features of the GS. With the increase of
interlayer spacing, the spin-up and spin-down channels begin to
move in the opposite direction. When the interlayer spacing is larger

Figure 3 | Spin-resolved band structure and electron density of states of GS at (a) equilibrium state and (b) under the tensile strain of 0.235. The energy

at Fermi level was set to zero. (c) The spatial distribution of spin-polarized electron density of the spin-polarized GS under the tensile strain of 0.235

calculated using Dr 5 r" 2 r#. The isosurface value was set to 0.003 Å23.

Figure 4 | The variation of the spin-resolved electron density of states
(DOS) of the GS in response to the tensile strain represented by the lattice
constant near the critical point of phase transition. The energy at the

Fermi level was set to zero.
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than 3.80 Å, the two spin branches split completely, opening a band
gap at the Fermi level, and the GS becomes a spin-polarized semi-
conductor. This suggests that both the metal-semiconductor trans-
ition and the appearance of electron spin polarization are closely
related to the weakening of interlayer interactions due to tensile
strain.

The spin-resolved band structures and electron density of states of
the GS under the tensile strain of 0.235 (a 5 4.00 Å) are plotted in
Fig. 3(b). It is clear that the GS has an indirect band gap of 0.97 eV
from the C (0,0,0) to the X (0,0,p/a) point in the BZ for the spin-up
branch, whereas the spin-down channel has a direct band gap of
1.24 eV at the X (0,0,p/a) point. Remarkable spin splitting appears in
the three bands near the Fermi level, whose spin-up branch is filled
by electrons and spin-down branch is empty. This leads to 3.0 mB

magnetic moments per unit cell. The spin-polarization is more obvi-
ous in the spin-resolved electron density of states. The energy split
between the two peaks near the Fermi level is about 0.45 eV, imply-
ing the high stability of the local magnetic moments. The spatial
distribution of spin-polarized electron density calculated from the
charge density difference between the spin-up and spin-down chan-
nels, Dr 5 r" 2 r#, is shown in Fig. 3(c). Clearly, electron spin-
polarization occurs mainly at the carbon atoms and the contribution
from the hydrogen atoms is negligible. The shapes of the Dr iso-
surfaces also indicate that the local magnetic moments arise mainly
from the pz orbitals of the carbon atoms at the edges of the GS. This
is similar to the cases of isolated triangular graphene nanoflakes11–15.

Our first-principles results can be well reproduced by a single-
orbital tight-binding (TB) Hubbard model under the mean-field
approximation9,27–29. The TB Hamiltonian of the GS is written as:

H~
X

i,j,s
tijc

z
is cjszU

X
i,s
½hni,{si{1=2�nis, ð1Þ

where cz
is , cjs and ni,s are creation, annihilation, and number opera-

tors for an electron of spin s in the pz orbital centered on the i-th
carbon atom. tij is the hopping integral between i-th and j-th atoms.
To reflect the interactions of pz orbitals in the spiral structures, tij is
given in the following forms30,31:

tij~ cos2 (hij)Vppsz sin2 (hij)Vppp, ð2Þ

Vpps~c0 exp (qs(1{dij
�
d0

)), ð3Þ

Vppp~t0 exp (qp(1{dij
�
b0

)), ð4Þ

hij represents the angle of the vector rij to the axial of the GS, c0 and t0

are interlayer and intralayer hopping integrals between the nearest-
neighboring carbon atoms. dij is the distance between i-th and j-th
atoms. The parameters d0 and b0 are the interlayer spacing and
average bond length. The nearest-neighboring intralayer hopping
integral is taken equal to t0 5 22.7 eV and the next nearest-neigh-
boring intralayer hopping integral equal to 0.1t0, which fixes a value
of qp 5 3.1532. The value of qs is set to 4.24 in this work. U 5 2.75 eV
is the on-site Coulomb energy which is necessary for describing the
electron-electron interactions of the system. Æni,sæ is computed self-
consistently from the local spin density of states (gis) obtain from
Eq.(1).

hni,si~
ðEf

{?
gis(E)dE, ð5Þ

Fermi energy Ef is determined from the equation:

X
i,s

ðEf

{?
gis(E)dE~N, ð6Þ

N is the total p electrons of the system. When the GS is stretched
under a tensile strain, the parameter c0 is decreased correspondingly

to reflect the weakening of interlayer interactions. Our calculations
based on the TB Hamiltonian show that if c0 . 0.495 eV, corres-
ponding to ‘‘strong’’ interlayer interactions, the GS is a non-magnetic
metal, as shown in Fig. 5(a) and (b). As c0 is smaller than 0.495 eV,
electron spin-polarization takes place, and the GS converts to a spin-
polarized semiconductor, as shown in Fig. 5(c) and (d). It is inter-
esting to see that the profiles of the band lines in the region near the
Fermi level resemble well those obtained from first-principles calcu-
lations, implying the validity of our TB Hamiltonian in dealing with
the conjugation of pz orbitals on spiral surfaces. The c0-dependent
electron spin-polarization revealed from the TB Hamiltonian con-
firms that the weakening of interlayer interactions dominates the
phase transition of the GS under tensile strain. More importantly,
our TB Hamiltonian offers a simple but efficient method for the
study of the GSs with different cross sections including those pro-
posed in the Ref. 21.

Finally, we adopt a large supercell containing two primitive cells to
study the magnetic ordering in the spin-polarized GS. Starting from
different initial spin arrangements, self-consistent calculations lead
to two types of magnetic orderings between adjacent primitive cells:
ferromagnetic (FM) and antiferromagntic (AFM) orderings. The
total energy difference DE between the FM and AFM states, DE 5

EFM 2 EAFM, can be used to evaluate the stability of magnetic order-
ing. The variation of DE as a function of tensile strain is presented in
the Supplementary Fig. S4 online. Our calculations show that the FM
state is energetically more preferable than the AFM one as the tensile
strain is larger than 0.219. With the increase of tensile strain, the
stability of the FM ordering is further enhanced. Such tunable mag-
netic coupling under tensile strain is very useful for the applications
in spintronics and magnetic devices.

Discussion
For the isolated GNFs cut from graphene with different types of
edges and cross sections, zero-energy states (ZESs) appear in the
region near the Fermi level whose number equals to the nullity of
the graphene segment11,13. The nullity (g) of a GNF is defined as g 5

ja 2 bj, where a and b represent the maximum numbers of non-
adjacent vertices and edges, respectively, according to the graphics
theory (GT)13. Obviously, nullity represents the topological features
of the GNFs. For the t-GNFs considered in this work, the nullity
equals to the difference of number of atoms between the two sub-
lattices, i.e., g 5 jNA 2 NBj. When the GNFs are assembled together
to a GS, the ZESs interact with each other, giving rise to g dispersive
bands (zero-energy bands) in the region near the Fermi level. Due to
the spiral configurations of the GSs, the profiles of the zero-energy
bands exhibit topological features with robust topological states
characterized by Rashba splitting at the BZ center (C) similar to those
observed in topological insulators21. Protected by spiral topology and
time-reversal symmetry, the Rashba splitting is robust against tensile
strain. Such interesting properties can be employed to mimic the
coupling of Dirac particles in spiral curved space. The advantages
of the GSs proposed in this work lie in that the Dirac particles are
spin-polarized. More importantly, we offer an efficient TB
Hamiltonian to describe these interesting phenomena.

The synthesis of the GSs is quite challenging because high strain is
involved even at equilibrium state. The stain arises mainly from the
deformation in the region near the inner core. It could be greatly
released by formation of vacancy defects at the inner core. Therefore,
the actual GSs probably have a hollow shaft. However, the above-
mentioned mechanisms still hold for these defective GSs. A prom-
ising approach to the realization of the GSs could be started from
screw dislocations which have been found in graphite33,34. Taking the
Burgers vector as the axial and cutting the defective graphite using a
top-down strategy, GSs can be produced. Both the shape and size of
GSs are controllable in this approach. Top-down strategy has been
wide used in the synthesis of graphene nanoribbons (GNRs) with

www.nature.com/scientificreports
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different widths, edge shapes and chirality22,35,36. Another approach
to synthesize graphene nanostructures starts from molecular precur-
sors8,37. The power of this approach lies in the fact that well-designed
molecular precursors can lead to uniquely defined nanostructures.
By choosing appropriate precursor monomers, such as an organic
polymer family with a helical motif, GSs could be synthesized
through this bottom-up approach.

To conclude, we demonstrated theoretically that triangular gra-
phene spirals (GSs) have excellent mechanical properties and tunable
electronic structures under tensile strain. The GSs exhibit linear
elastic deformation under low tensile strain and nonlinear elastic
deformation under large tensile strain up to an ultimate strain, fol-
lowed by a strain softening process. When the tensile strain is lower
than an ultimate strain, the GSs are nonmagnetic metals. As the
tensile strain exceeds an ultimate strain, electron spin-polarization
begins to take place, and the GSs ultimately convert to spin-polarized
semiconductors with moderate band gaps for the two spin channels.
The phase transition is dominated by the weakening of interlayer
interactions under tensile strain. Such tunable electron spin-polar-
ization and ferromagnetism of the GSs induced by tensile strain are
quite promising for applications in spintronics, as well as some fun-
damental researches in physics.

Methods
Our first-principles calculations are performed in the framework of density-func-
tional theory (DFT) which is implemented in the Vienna ab initio simulation package
known as VASP38–41. The electron-electron interactions are treated within a gener-
alized gradient approximation (GGA) in the form of Perdew-Burke-Ernzerhof (PBE)
for the exchange-correlation functional42. The energy cutoff employed for plane-wave
expansion of electron wavefunctions of both carbon and nitrogen atoms are set to
500 eV. The electron-ion interactions are described by projector-augmented-wave
(PAW) potentials43,44. The van der Waals (vdW) interactions are included to evaluate
the interlayer interactions of the GSs by using a vdW corrected PBE functional (DFT-

D2)45. The supercells are repeated periodically along the z-direction while a vacuum
region of about 20 Å is applied along the x- and y-direction to avoid mirror inter-
actions between adjacent images. The Brillouin zones (BZ) are represented by
Monkhorst-Pack special k-point meshes of 1 3 1 3 5 for structural optimizations of
the unit cells, 1 3 1 3 3 for large-size suprecells, and 1 3 1 3 21 for the electronic
structure calculations, respectively. The convergence of these k-point meshes has
been verified. Structural optimizations are carried out using a conjugate gradient
(CG) method until the remanent force on each atom is less than 0.01 eV/Å. Molecular
dynamics simulations are performed using an efficient ab initio code SIESTA46 to save
computation resource.
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