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Abstract: The contractile apparatus of cardiomyocytes is considered to be a stable system. However,
it undergoes strong rearrangements during heart development as cells progress from their non-muscle
precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization
of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle
type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes
both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile
apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of
contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures
and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the
culture system are described along with the extracellular matrix alterations. The data supporting the
regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of
such regulation are discussed.
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1. Introduction

Cardiomyocytes (CMs) are heart muscle cells, which are responsible for contractility. Their
highly organized contractile apparatus is considered to be a stable system. However, the processes
of differentiation, as well as adaptation to culture conditions in these cells, involve significant
rearrangements of their contractile structures.

In normal adult myocardium, the contractile apparatus is composed of actin-based myofibrils with
the sarcomeric actin represented by α-skeletal and α-cardiac isoform the latter being predominantly
expressed [1–3]. Early cardiogenesis, as well as stem cell differentiation towards CMs [4,5] are
both accompanied by the remodeling of actin structures, wherein α-smooth muscle actin isoform is
transiently expressed with its sequential replacement by α-skeletal and α-cardiac actin as development
proceeds [2,6,7]. Similar processes are observed in cell adaptation to the culture system, where CMs
undergo the reversible rearrangement of their contractile apparatus with the conversion of typical
myofibrils into structures of non-muscle type and the loss of contractility. This phenomenon is
accompanied by the transient replacement of the inherent α-cardiac actin with α-smooth-muscle
isoform [2,8–11]. The following down-regulation of α-smooth muscle actin goes along with the
expression of cardiac isoform and myofibrillar system recovery [11]. During these rearrangements,
actin isoforms are shown to have different distribution patterns within the cells and appear to play
distinct and non-redundant roles suggesting their spatiotemporal regulation. Despite a lot of data
on specific functions of actin isoforms within different muscle and non-muscle cells, the mechanisms
regulating their expression and subsequent rearrangements of actin structures are still unclear. At the
same time, there is growing evidence to indicate that the dynamics of actin structures in different
cell types strongly correlate with the identity and stiffness of extracellular matrix (ECM). In the
heart, the composition and distribution of ECM alter during cardiogenesis, being crucial for the cell
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differentiation process [12,13]. Moreover, ECM proteins were shown to influence the organization of
contractile apparatus in CMs in culture [14,15].

The aim of this review is to put together the dynamics of ECM and the contractile apparatus in
CMs during the processes of differentiation and adaptation to the culture system and to analyze the
role of ECM in the remodeling of actin contractile structures.

2. Literature Overview

The maturation of myofibrillar apparatus in CMs during their differentiation has been studied
in vivo as well as in vitro [16–23] and is well described (see reviews by Sanger et al. [24,25] for current
models of myofibrillogenesis).

Studies on CMs primary culture allowed to reveal the rearrangement of contractile apparatus in
mature CMs during their long-term culturing [26–28] with the following evidence for re-expression of
embryonic isoforms of contractile proteins [2,8,9,29–31]. However, the causes and mechanisms of such
rearrangements were not well investigated. At the same time the organization of myofibrils in CMs
in vitro was shown to depend on the presence of ECM proteins [32,33]. Through the last decade data
is accumulating to indicate that the composition, as well as organization of the ECM, influences the
dynamics of contractile structures in CMs [14,15,34].

Cardiac ECM has been investigated with different methods. Pinkert et al. overviewed the imaging
technics for cardiac ECM [35], and Hacker [36] summarized different animal models with altered
expression of genes related to cardiac ECM that reveal the role of individual matrix components.
There are some excellent reviews that describe the composition and distribution of ECM in heart
tissue [37] and characterize its alterations during heart development [13,38] and aging [39]. The role
of ECM turnover in heart physiology as well as heart pathology has been overviewed [40–43] and
the effect of natural as well as synthetic ECM for the proliferation, attachment, and differentiation of
different heart cells has been evaluated [44].

There are also some great reviews that look into the cell-matrix communication in the heart,
including integrin-mediated mechanotransduction [45–48]. Studies from modulation of the expression
of different integrins in heart tissue have been summarized [49] and the role of integrins in the initial
steps of myofibrillogenesis was discussed [50].

However, there is still no available overview to correlate the identity and organization of ECM
with the remodeling of actin contractile structures in cardiomyocytes.

3. Actin-Based Contractile Systems in Muscle and Non-Muscle Cells

3.1. Actin Cytoskeleton

Contractile structures of both muscle and non-muscle cells are based on actin filaments. However,
the contractile apparatus of muscle cells, on the one hand, and the actin cytoskeleton of non-muscle
cells, on the other hand, are considered to be fundamentally different systems where the structurally
stable myofibrillar apparatus of muscle cells is commonly contrasted with the highly dynamic
cytoskeletal structures.

Continuous rearrangements of the actin cytoskeleton are provided by rapid
polymerization/depolymerization of actin filaments, which can be organized into three main
patterns inside the cells, including branched filament networks, filament parallel bundle arrays, or
bundle arrays of mixed polarity [51]. These organization types are involved in the formation of
more complex structures, composed of polymeric actin and actin-binding proteins [52,53]. The most
characteristic actin structures include actin filament network in lamellipodia, actin filament bundles
in filopodia, and actin stress fibers [51–53], the latter being contractile structures that require cell
attachment to extracellular components or other cells. In addition to actin, stress fibers include
actin-binding proteins, such as myosin II [54], tropomyosin [55], α-actinin [56], filamin [54], myosin
light chain kinase [57], caldesmon [58], and palladin [59]. Some authors believe that the general
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organization of proteins in stress fibers resembles muscle myofibrils [60]. However, stress fibers
lack sarcomeric organization. Filamin is distributed continuously along the actin filament, while
myosin II and α-actinin show point periodic distribution and are adjacent to each other. Myosin light
chain kinase, caldesmon, and tropomyosin colocalize with myosin, while palladin colocalizes with
α-actinin [52,59].

The ability of stress fibers to contract has been shown in living cells, as well as in cells permeabilized
with detergent, in the presence of ATP [61,62]. However, unlike muscle myofibrils, characterized by
repeated cycles of contraction and relaxation, stress fibers are constantly contracted with irregular acts
of relaxation or stretching. In addition, stress fibers contract unevenly over the entire length, and the
distance between the myosin or actin containing sites of stress fibers can vary [63].

3.2. Actin Filaments in Myofibrillar Apparatus

In contrast to the dynamic cytoskeleton, the highly organized contractile apparatus of muscle
cells, in particular CMs, is considered to be a structurally stable system. It is presented by cross
striated myofibrils, composed of thick and thin filaments, which are actin and myosin based
structures, accordingly.

Thin filaments are formed by fibrillar actin in combination with tropomyosin and troponin
complex. Fibrillar actin is a double-stranded helix, each strand of which is formed by globular actin
subunits. The tropomyosin molecule consists of two α-helices and is located in grooves of the actin
filament. In the absence of calcium, tropomyosin prevents the interaction between myosin and actin
fiber. Troponin complexes are located along the thin filament at regular intervals corresponding to the
length of the tropomyosin molecule, and are composed of three proteins: troponin I associated with
actin, troponin T associated with tropomyosin, and troponin C, which belongs to a class of regulatory
proteins called calmodulins and is activated by Ca2+ binding. When calcium binds to specific sites
of troponin C, tropomyosin releases from the active sites of the actin molecule so as to allow myosin
interaction with actin fiber. The thin filament is further stabilized by nebulin protein [64].

Thin and thick filaments are organized into structural and functional units called sarcomeres.
The sarcomere length can vary, but usually is about 2 microns. The cross-section of each sarcomere
demonstrates two overlapping hexagonal lattices of thick and thin filaments [65]. Thick filaments in
sarcomeres have a bipolar organization, while thin filaments are attached by one end to the so-called
Z-disk and are of opposite polarity on each side thereof. Z-disks include actin-binding proteins such as
α-actinin, filamin, desmin, as well as CapZ proteins that cap fibrillar actin. α-actinin forms transverse
bridges between actin filaments, combining them into bundles. Filamin, like α-actinin, interacts with
F-actin to form bundles of actin filaments. Both proteins are localized inside Z-disks. In contrast,
desmin is located on the periphery of Z-disks, and is also detected in the areas where Z-disks adjoin
the plasma membrane. Desmin combines thin filaments of one myofibril and also binds Z-disks of
neighboring myofibrils, maintaining their common register [66–68].

3.3. Actin Isoforms

Muscle and non-muscle contractile systems are based on different actin isoforms. The actin family
in vertebrates consists of six closely related proteins [69,70], which are encoded by separate genes and
are highly conserved [71,72]. All six functional genes of actin are located on different chromosomes.
The genes encoding various actin isoforms have different promoters that are regulated by distinct sets
of transcription factors [73]. Depending on the isoelectric point, actins are divided into three classes
which are α-, β-, and γ-actins [74–76]. β-Actins (β-CYA) and γ-actins (γ-CYA) are characteristic of
non-muscle cells [76]. These isoforms are expressed ubiquitously and are known as cytoplasmic actins.
In contrast, α-actins are considered to be tissue-specific actin isoforms and are characteristic of muscle
cells [77]. Myofibrils of skeletal and cardiac muscles contain different α-isoforms, skeletal α-actin
(α-SKA) and cardiac α-actin (α-CAA). Another α-isoform of actin is represented by smooth muscle
α-actin (α-SMA), which is characteristic of vascular smooth muscle and myoepithelial cells, and is also
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found in myofibroblasts. One more tissue-specific actin isoform is smooth muscle γ-actin (γ-SMA),
which is mainly expressed in smooth muscles of the intestine and other internal organs.

The maximum amino acid sequence differences of actins isolated from different cells and tissues
do not exceed 10% [78], however, cytoplasmic non-muscle actins are more similar to each other than
to muscle actins. Four muscle actins differ in 10 out of 375 amino acid residues. α-CAA differs
from α-SKA only in four residues in positions 2, 3, 299, and 388. γ-SMA differs from α-SMA in four
residues in positions 1, 4, 5, and 360. Cytoplasmic actins differ from muscle actins approximately by
25 amino acid residues and differ from each other only by four residues in positions 1, 2, 3, and 9,
all of which are within the 10 N-terminal amino acid residues. There is another classification of actins
based on the specificity of N-terminal processing. The most variable region of actin molecules is
represented by 10–20 N-terminal amino acid residues. It is believed that this site plays an important
role in the regulation of actin polymerization in vivo and in vitro [79]. The N-terminus of the actin
molecule is acetylated, and the acetylated amino acid residue (N-acetyl-Asp or N-acetyl-Glu) results
from a post-translational multi-step process [80]. Isoactins, called class I molecules, are encoded as
polypeptides containing Met-Asp/Glu at the N-terminus. When the N-terminus is removed, the new
N-terminal residue (Asp or Glu) is acetylated, providing a mature form of protein. This class combines
cytoplasmic β- and γ-actins and smooth muscle γ-actin. Class II molecules are encoded as polypeptides
containing Met-Cys-Asp/Glu at the N-terminus. In these actins, acetylation of N-terminal Asp or Glu
occurs after a stepwise process, including removal of Met, acetylation of Cys-Asp/Glu, and removal of
acetyl-Cys. Class II includes skeletal muscle, cardiac muscle, and smooth muscle α-actin.

Since each actin isoform is encoded by a separate gene, the specificity of their synthesis is regulated
at the expression level of corresponding genes. The relationship between cytoskeletal and muscle
isoforms is likely to be further regulated by N-terminal processing, the latter being two-step or
multi-step, respectively [77].

4. Dynamics of Contractile Apparatus in Cardiomyocytes

4.1. Myofibrillogenesis

In spite of the fact that muscle vs. non-muscle contractile systems based on different actin isoforms
are commonly contrasted to each other, their transition can be observed in heart development, since
the precursors of muscle cells are non-muscle cells. Therefore, in the process of CMs differentiation,
the contractile apparatus evolves from cytoskeletal structures.

Myofibrillogenesis was studied on embryonic cardiac muscles of different animals, as well as on
tissue and cell cultures [18–23]. The development of a mammal heart is a multistage process and begins
with the specification of CMs precursors and their subsequent differentiation. Precursor cells contain
cytoskeletal actin structures distributed close to the cell membrane [81,82]. During myofibrillogenesis,
cytoskeleton is replaced by muscle-specific, highly organized myofibrillar apparatus [81].

According to the most common three-step model of myofibrillogenesis, the assembly of myofibrils
begins with the association of many sarcomeric proteins into a multicomponent complex [25]. Using
electron microscopy, it was shown that the formation of Z-disks begins with the appearance of dense
material, which is presented by small membrane-associated complexes, called Z-bodies, connected
with actin and myosin filaments. Immunofluorescent studies and electron microscopy have shown the
presence of α-actinin and titin in Z-bodies. In this regard, Z-bodies are considered to be precursors of
Z-disks [83].

During differentiation of CMs, the sarcomeres increase in size, align and join with each other
and with sarcolemma. The first myofibrils, called premyofibrils, are always detected directly under
the sarcolemma and then begin to appear in the central part of the cells [18,84,85]. Premiofibrils are
composed of sarcomeric proteins, with the exception of non-muscle myosin II, which is gradually
replaced by muscle isoform as myofibrils mature [84,86–89]. Sarcomeres of premyofibrils may have
different lengths. As myofibrils mature, the lengths of sarcomeres are aligned, and the neighboring
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myofibrils are arranged as to allow Z-disks to form a common register. Thus, immature and mature
myofibrils can be simultaneously present in the cell. By the end of myofibrillogenesis, densely packed
myofibrils fill the most of the cell volume. Mature CMs containing myofibrillar apparatus are called
terminally differentiated cells.

4.2. Actin Isoform Switching during Differentiation of Cardiomyocytes

Despite the tissue-specific distribution of actin isoforms in adult organisms, during the
development of vertebrates, a complex pattern of different isoform expression within the same
tissue can be observed [70]. In normal adult myocardium, the contractile apparatus is composed of
actin-based myofibrils, where the sarcomeric actin is represented by α-skeletal and α-cardiac isoforms
with α-cardiac actin being predominantly expressed [1]. However, in early cardiogenesis, as cells
evolve from their non-muscle precursors, the gradual substitution of cytoskeletal beta and gamma actin
isoforms for their muscle counterparts occurs [82]. Intensive synthesis of muscle-specific contractile
proteins is activated before the formation of myofibrils [90]. During cardiac muscle development,
smooth muscleα-actin, which is normally restricted to vascular smooth muscle cells and myofibroblasts,
is the first muscle actin isoform [6,7]. As development proceeds, it is sequentially replaced by α-skeletal
and α-cardiac actin isoforms [1,2,6,7], which are both expressed in adult myocardium with cardiac
α-actin being the main isoform [1,4]. Thus, during differentiation of cardiac muscle cells, coordinated
switching of actin isoforms precedes the formation of myofibrils. Different actin isoforms may coexist
within the cell as differentiation proceeds.

During stem cell differentiation towards cardiomyocytes [4,5], a replacement of actin isoforms
also occurs with transient expression of smooth muscle α-actin [6,7,91]. For example, when CMs are
differentiated in vitro from mouse embryonic stem cells, the same pattern of actin isoform expression
is observed as that observed in cardiogenesis. In addition, it was shown that inhibition of smooth
muscle α-actin expression leads to the impaired differentiation of mouse embryonic stem cells towards
CMs [4].

4.3. Rearrangements of Contractile Apparatus in Cardiomyocytes in Culture

In spite of the fact that mature CMs are called terminally differentiated cells, their contractile
apparatus may rearrange during cell adaptation to the culture system. It is well known that neonatal, as
well as adult, CMs are readily transferred into monolayer cultures. However, their long-term culturing
is accompanied by significant changes in cell morphology and organization, where the reversible
rearrangement of their contractile apparatus occurs with the conversion of typical myofibrils into
non-striated structures of non-muscle type and the loss of contractility [2,8,9,14,28–31]. Non-striated
structures are referred to as stress fiber-like structures, since they resemble stress-fibers of non-muscle
cells [27,92].

Interestingly, the phenomenon of rearrangement is accompanied by transient replacement of
the inherent α-cardiac actin with α-smooth-muscle isoform [2,8–11]. Since smooth muscle α-actin is
characteristic of embryonic CMs, many researchers consider it to be a marker of dedifferentiation of
these cells [93,94]. In this regard, the changes observed during the culturing of CMs are often considered
as the process of dedifferentiation or the return of cells to the embryonic phenotype. Our previous
results show that the appearance of smooth muscle α-actin precedes the transformation of myofibrils
into structures of non-muscle type and corresponds to the inhibition of contractile activity. Interestingly,
myofibrils that are still present in the cells are intensely stained with antibodies against smooth muscle
actin along with non-striated structures [11]. To date, quite a lot of data has accumulated to indicate that
different actin isoforms, despite conservative sequences, cannot replace each other without affecting
thefunction [95–101]. In particular, smooth muscle and skeletal actin isoforms cannot ensure the
normal formation of myofibrillar apparatus in cardiac isoform knockout models [98]. In light of these
data, the inclusion of smooth muscle α-actin into myofibrillar structures when CMs are transferred
into culture system seems to result in the inhibition of CMs contractile activity and transformation of
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myofibrils into structures resembling stress fibers of non-muscle cells. The fact that smooth muscle
α-actin is the main protein of stress fibers in myofibroblasts [102,103] supports that stress fiber-like
organization of the contractile system may be more preferable for this actin isoform. The incompatibility
of smooth muscle actin with myofibrillar organization is also confirmed by the release of sarcomeric
proteins from actin-containing structures into cell cytoplasm during the rearrangement of myofibrillar
apparatus in cultured CMs [104]. It was shown that actin-binding proteins may distinctively interact
with certain actin isoforms and contribute to the functional specificity of different actins [3,77,105–113].

The rearrangement of the contractile apparatus is followed by the restoration of myofibrillar
system and the recovery of contractility. These changes are accompanied by a decrease in smooth
muscle actin isoform, which leaves the area occupied by the newly formed myofibrils. Interestingly, at
the initial stages of myofibrillar apparatus recovery, a small amount of smooth muscle actin is detected
in some fragments of nascent myofibrils, suggesting that myofibrils are formed by gradual replacement
of smooth muscle isoform with cardiac actin [11].

Thus, the rearrangements observed in CM primary culture may be considered as a dedifferentiation
process followed by the maturation of myofibrillar apparatus. During rearrangements of the contractile
system in CMs in vivo and in vitro, actin isoforms are shown to have different distribution patterns
within the cells and appear to play distinct roles, suggesting their spatiotemporal regulation.

Despite a lot of data on the specific functions of actin isoforms within different muscle and
non-muscle cells, the causes and mechanisms regulating their expression and subsequent remodeling
of actin structures are still unclear.

For this, the rearrangement of the contractile apparatus in CMs in culture may be a clue as to how
actin dynamics are regulated. When transferred to the culture system, cells lose their microenvironment
and the ability to maintain the initial organization of the contractile system. However, the reversible
nature of rearrangement indicates that during long-term culturing CMs are able to reconstitute the
microenvironmental cues required for the maturation of their myofibrillar apparatus.

5. Extracellular Matrix

5.1. Cardiac Extracellular Matrix

Substantially all cells in an organism are surrounded by extracellular matrix (ECM) which is an
organized spatial network of macromolecules secreted by cells that provide structural and biochemical
support [114–116]. It has been shown that cardiac ECM is necessary for cell migration, proliferation,
and differentiation [117] and is important for the structural integrity and elasticity of heart tissue
providing mechanical stiffness [39,118]. Myocardial ECM is composed of collagens, glycoproteins
(e.g., fibronectins, elastin, laminins) and proteoglycans [119]. Collagens are the most abundant
structural component of ECM in the heart [120]. Collagens can be divided into two major classes,
the fibrillar and non-fibrillar collagens [121]. Five collagens (collagens I, II, III, V, and XI) form
fibrils [121]. The fibril-forming collagens provide the tissue structural framework [119,121,122]. In the
heart, type I collagen is the main component of ECM. It makes up about 85% of all collagens in the heart,
while collagen III is about 11% [123]. In vivo, collagen I assembles into aligned fibers and regulates
heart growth [124,125].

Another important component of myocardial ECM is fibronectin, which has been implicated in
cell adhesion, being crucial for cell binding to other ECM components. Fibronectin was shown to be
essential for heart development and repair [44].

Elastin is one more important component of cardiac ECM, which regulates the elasticity of cardiac
tissue [126]. Elastin has been shown to be essential for the proper development of the heart and
vasculature [127].

In addition to the general ECM, cardiomyocytes have their own basement membrane which is
a highly organized layer of proteins on the outer surface of sarcolemma composed of glycoproteins
and proteoglycans, such as collagen IV, laminins, entactins, perlecan, and chondroitinsulfate [128–131].
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Components of the basement membrane are known to play a role in both cardiac tissue stabilization
and angiogenesis and are the first extracellular proteins synthesized during embryogenesis [132].

For a detailed description of ECM composition and organization in the heart see excellent
reviews [13,39,48].

In heart tissue, fibroblasts and smooth muscle cells are the main producers of ECM components,
including fibronectin, laminin and collagen type I, III, and IV. However, the ability to synthesize
components of the basement membrane was shown for endothelial cells, as well as for cardiac myocytes
in vitro [37,129,133]. Recent studies indicate that ECM components can also be synthesized by the
stem cells of the heart [134].

5.2. Extracellular Matrix in Heart Development

Cardiac ECM plays an important role in embryogenesis [135]. The distinct roles of different ECM
proteins in heart development have been approved in vivo using knockout experimental animal models
(summarized in Table 1). For example, in mice, mutations in collagen I were shown to impair heart
development [136], and collagen III knockout resulted in life-shortening due to vessel rupture [137].
Lack of the fibronectin gene was lethal in early embryogenesis resulting in various cardiac and vascular
defects [138]. Lack of the elastin gene resulted in mortality several days after birth [139]. Collagen IV
knockout did not impair heart development until embryonic day 9.5, but was lethal in following days
due to structural defects in basement membrane [140]. Deletions of the laminin α1 chain were shown
to be lethal at early embryonic stages [141], whereas deletions of the laminin α4 chain led to impaired
microvessel maturation [142].

Table 1. Mouse models with altered gene expression demonstrating the role of individual extracellular
matrix proteins in heart development.

Extracellular
Matrix Protein Model Effect on Cardiovascular System Reference

Collagen I

Col1a2-deficient mice
impaired heart development, decreased heart weight,
altered mechanical and structural properties of the
ventricular myocardium

[136]

Col1a1-deficient mice vascular abnormalities, age-dependent aortic dissection
and rupture [143,144]

Col1a1−/− mice
normal development up to embryonic day 12, lethality
between embryonic days 12-14 due to rupture of major
blood vessels

[145]

Collagen III Col3a1−/− mice
abnormal cardiac development, life-shortening due to
rupture of major blood vessels [137]

Collagen IV Col4a1/2−/− mice
structural defects in the basement membrane, lethality
between embryonic days 10.5-11.5 due to pericardial
bleeding and rupture of major blood vessels

[140]

Collagen V Col5a1−/− mice
lethality at embryonic day 10 due to
cardiovascular insufficiency [146]

Collagen XI Col11a1–/– mice
lethality at birth, thickening of the interventricular
septum and atrioventricular valve leaflets, significant
changes in the heart shape

[147]

Col XV Col15a1−/− mice
defects in vessel architecture, impaired microvascular
hemodynamics, defects in heart structure and function [148,149]

Collagen XVIII Col18a1−/− mice
significant thickening of the endothelial basement
membrane in the atrioventricular valves of the heart [150]
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Table 1. Cont.

Extracellular
Matrix Protein Model Effect on Cardiovascular System Reference

Fibronectin

Fn1−/− mice
multiple developmental abnormalities at embryonic day
8, lethality at embryonic day 10 due to cardiac and
vascular defects

[138,151]

EIIIA−/− or EIIIB−/−

mice
normal phenotype, viability, and fertility without defects
in angiogenesis [152]

EIIIA−/− EIIIB−/−

mice

severe cardiovascular defects by embryonic day 9.5,
including vascular hemorrhage, impaired angiogenesis
and heart defects, lethal at embryonic day 10.5

[153]

Elastin
Eln−/− mice

lethality at day 4.5 of postnatal development due to
obstructive arterial disease [139]

Eln+/− mice
changes in the arterial wall structure,
high blood pressure [154]

Laminin

Lama1−/− mice
lethality after embryonic day 6.5 due to defects in the
extraembryonic basement membrane [155]

Lama4−/− mice
hemorrhages during the embryonic and neonatal
development, impaired microvessel maturation,
ischemic cardiac phenotype

[142,156]

The composition and distribution of ECM proteins were shown to alter during cardiogenesis,
being crucial for the cell differentiation process [12,13]. Changes in collagen and other ECM proteins
are most evident during the rapid growth of a neonatal heart [157]. In general, the level of all ECM
proteins is strongly decreased in the adult heart [158,159].

Type 1 collagen predominates at each stage of heart development [160]. In mouse hearts,
the amount of collagen I was greatest at an early embryonic stage, however, an increase in the
density and organizational complexity of collagen fibers was observed from embryonic to postnatal
development [161]. During early development of chicken heart, expression of collagens I and III
remained stable throughout the late stages of fetal growth [162]. In hamster heart, collagen synthesis
was elevated during neonatal development especially the first 4–5 days after birth [163]. In rat hearts,
ventricular expression of types I and III collagen genes was shown to reach its maximum within the
first 2–3 postnatal weeks with the following rapid decline [164].

The ratio of collagen I to collagen III is high in relatively stiff neonatal hearts, however, for some
time after birth it decreases and becomes stable in adulthood [126]. Besides the ratio of collagens their
crosslinking was shown to contribute to the heart stiffness (see, for example, a recent review by González
et al. [165]). In general, cardiac tissue is becoming less compliant during heart development [166].

The expression of total fibronectin in rat myocardium is high during embryogenesis and decreases
in postnatal life. In adult rat hearts, it is ten-fold less as compared to the fetus [159]. In humans,
fibronectin expression is relatively constant during fetal life, but decreases after birth [167].

Elastin levels in mouse heart are low early in development but increase significantly from
embryonic to postnatal life [161,164]. The dynamics of elastin synthesis seems to be essential for
the regulation of elasticity of cardiac tissue [126]. Development of the cardiac basement membrane
plays a key role in the organogenesis of the myocardium, where basement membrane components
are the first extracellular proteins synthesized during embryogenesis [132]. Collagen IV in mouse
hearts is found throughout the development and increases in amount from early embryonic to early
postnatal stages [164]. Laminin expression in humans was shown to be not age-dependent and constant
throughout life [167]. However, the remarkable changes in spatial distribution of laminin during
development of rat hearts were shown [168].
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5.3. Extracellular Matrix in Cardiogenic Differentiation Methods

Because of the established role of ECM in cardiogenesis, some methods of cardiogenic
differentiation include ECM proteins as a scaffold to enhance differentiation of various cells towards
CMs. The enhanced expression of cardio-specific markers was demonstrated in cardiomyocyte-like
cells derived from mesenchymal stem cells cultured on collagen V as compared to collagen I and
the lack of matrix [169]. In CMs, spontaneously differentiated from mouse embryonic stem cells the
cardiac fibroblast-derived ECM supported earlier cell maturation as compared to the commercial
ECM (Matrigel) and the lack of ECM [170]. Culturing of mouse embryonic stem cells on thin sections
of decellularized heart tissue induced high expression of cardiac myosin heavy chain and cardiac
troponin I as compared to cells cultured on liver ECM [171]. Moreover, culturing of human adipose
tissue-derived stem cells on the plates coated with the ECM, produced from decellularized heart tissue,
induced high expression of cardio-specific genes [172].

Monocomponent, as well as multicomponent, ECM systems, have also been used in 3D in
cardiogenic differentiation methods to approximate the natural conditions. The maturation of CMs
derived from induced pluripotent stem cells was enhanced when the cells were seeded into a 3D
cardiac ECM scaffold as compared to 2D culture [173]. In one study, fibrin gels supported cardiac
differentiation in cardiac reprogramming method, whereas Matrigel and collagen I gels were poorly
efficient [174]. 3D cardiac fibroblast-derived ECM [175] was shown to control differentiation of bone
marrow-derived stem cells toward a cardiomyocyte phenotype [176]. Native ECM, obtained by heart
decellularization, was also described to maintain the differentiated state of cardiomyocytes derived
from human induced pluripotent stem cells as well as their capability of forming functionally active
myocardial segments [177].

Besides the identity of ECM its elasticity, in particular, the concentration of collagen, was shown
to influence cardiogenic differentiation. For example, too high a content of collagen reduced the
differentiation of human embryonic stem cells towards CMs [178]. In another work a cell-derived
ECM cross-linked with the naturally derived cross-linker to provide an elastic modulus approximating
the stiffness of the neonatal rat heart was supportive of cardiomyocyte differentiation compared to
the uncross-linked ECM [179]. The native ECM, combined with fibrin to adjust matrix stiffness to the
mechanical properties of the native myocardium promoted differentiation of cardiac progenitor cells
toward CMs [180].

In the light of described data, ECM is emerging as an important regulator of cardiogenic
differentiation in vivo and in vitro. On the other hand, there is growing evidence on cell cultures to
indicate that identity and stiffness of ECM strongly correlate with the dynamics of actin structures in
different cell types.

5.4. Culturing of Cardiomyocytes in the Presence of Extracellular Matrix

It is well-known that ECM proteins have a significant effect on the formation of actin cytoskeletal
structures in non-muscle cells [181]. The results demonstrate the specificity of the actin cytoskeleton
organization in the same cells cultured on different ECM proteins. For example, studies on A431
cells demonstrated differences in cytoskeleton organization for cells cultured on fibronectin and
laminin [182]. Similar results were shown for fibroblasts that were cultured on fibronectin, laminin,
and type III collagen [183]. Moreover, ECM topography was shown to influence the dynamics of actin
cytoskeleton [184].

Much fewer data are currently available on the culturing of CMs in the presence of ECM
components. However, there is evidence that matrix identity influences the behavior of CMs in vitro.
For example, embryonic CMs, which were cultured on laminin, tended to remain a rod-shaped
morphology, whereas CMs, cultured on collagen, became round and flattened in a few hours [185].
In another study, rat neonatal cardiomyocytes were shown to differ in their rate of maturation in
culture depending on the type of ECM substrate, where the fibroblast-derived ECM supported earliest
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maturation in terms of spontaneous contractions, calcium handling efficiency, cell size, and development
of the mitochondrion, as compared to commercial laminin and fibronectin [186].

Interestingly, cardiac myocytes isolated from different stages of heart development demonstrated
different affinities for specific ECM components. Neonatal as well as fetal myocytes were shown to
attach with high affinity to all types of collagen (type I, II, III, IV, and V) and to fibronectin and laminin,
with the rate of attachment correlating with the protein concentration [187–189]. Myocytes from adult
hearts attached efficiently to basement membrane components laminin and type IV collagen in a
concentration-dependent manner, however, they demonstrated low attachment to fibronectin and did
not attach to interstitial collagens. [187,188,190]. These data led to the hypothesis that recognition of
components of the ECM is developmentally regulated [188,191].

Besides matrix composition, its elasticity was shown to influence the contractility of cardiomyocytes.
In one study, embryonic cardiomyocytes were shown to beat best on a matrix with heart-like
elasticity [192]. In another work, neonatal CMs were cultured on polyacrylamide coated with the type
I collagen in various concentrations. The substrate with the elasticity characteristic of the heart tissue
was optimal [193]. As stiffness increased, cells ceased to contract, while culturing the cells in a softer
substrate reduced the contraction force [193].

There are also some works demonstrating the influence of ECM on the organization of the
contractile system in CMs. In one paper, CMs placed on different ECM proteins exhibited different
patterns of myofibril distribution. Cells on collagen I and III contained striated myofibrils which
extended to the cell perimeters where focal adhesions were predominately located. In the cells plated
on laminin and fibronectin myofibrils and focal adhesions were located more centrally. In addition,
cells on laminin contained circumferential arcs of filaments near the cell periphery [32]. In another
study, when single cardiomyocytes were cultured on micropatterned islands, unique myofibrillar
patterns were formed with respect to geometric cues in the ECM [33]. The results of our previous work
demonstrate that culturing of rat neonatal CMs on individual ECM proteins, such as fibronectin and
laminin, remarkably shorten the time of rearrangement of their contractile apparatus [14]. In another
study, neonatal cardiomyocytes that were cultured on a naturally occurring ECM, synthesized by
cardiac fibroblasts, exhibited spontaneous contractility earlier with the earlier maturation of their
myofibrillar apparatus as compared to cardiomyocytes grown on laminin or fibronectin alone [175].
These results may reflect the synergistic effect of numerous components in fibroblast-derived ECM [175].
When rat neonatal CMs were cultured in 3D collagen gels, the rearrangement of their myofibrillar
apparatus did not occur, however, their contractility was impaired [15]. Different concentrations
of collagen I in 3D gels resulted in differences in cell morphology and myofibril organization [15].
The effect of matrix stiffness on the contractile apparatus was also shown for rat neonatal CMs cultured
on collagen-coated polyacrylamide gels. Cells on the substrate with myocardium-like stiffness formed
aligned sarcomeres in contrast to CMs cultured on the stiffer substrates which exhibited unaligned
sarcomeres and stress fiber-like structures [194].

In general, data on the culturing of CMs in the presence of ECM components indicate that ECM
is an important regulator of not only the cytoskeletal structures in non-muscle cells, but also of the
contractile apparatus in muscle cells.

5.5. Extracellular Matrix Production by Cardiomyocytes in Culture

The effect of ECM on the occurrence and duration of the contractile apparatus rearrangement in
cultured CMs suggests that it is the lack of ECM that leads to the CMs dedifferentiation when they
are transferred to the culture system. In the heart tissue, non-muscle cells, such as fibroblasts and
endothelial cells, are responsible for the synthesis of ECM, while CMs specialize in the contraction.
However, it was shown that CMs synthesize their own basement membrane components when placed
into culture system. For example, rat neonatal CMs cultured on aligned collagen substrates for 3 days
in vitro produced a basement membrane component laminin, where its deposition changed from
4 to 72 h in culture from a dot-like shape to a fine fishnet-like network [32]. Another study has
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shown that adult rat CMs cultured in vitro synthesize basement membrane components collagen
type VI and laminin as they progress into culture over a 14 day period. The deposition patterns of
the collagen type IV and laminin were different with the laminin forming a dense layer beneath the
cells and the collagen type IV forming a much finer network [129]. Previously we have shown that,
besides basement membrane components, rat neonatal CMs in culture begin to synthesize structural
components of cardiac ECM collagen type I [11]. Interestingly, a strong correlation between the ECM
production and the dynamics of contractile system was shown during long-term culturing of CMs.
The gradual accumulation of ECM proteins was observed in CMs culture with their maximum level
corresponding to the stage of contractile apparatus rearrangement and the loss of contractility. This
maximum accumulation preceded the recovery of myofibrillar organization, suggesting that it is the
ECM acquired by this time that is necessary and sufficient for the restoration of myofibrillar system.
These data allowed to speak of a temporary change in CMs function in the process of adaptation to
monolayer culture system from contractile to non-typical secretory. In this regard, the reorganization of
contractile apparatus with the transformation of myofibrils into structures of non-muscle type seems to
be a necessary condition for CMs to synthesize their own ECM components, since a highly organized
myofibrillar apparatus, which occupies the most of cell volume, can interfere with the active synthetic
processes. The decrease in ECM production following the restoration of CMs contractile apparatus
and the recovery of contractility confirms the return of cells to their initial function [11].

These results are particularly interesting when they are considered together with the data on actin
isoform switching in CMs. The ECM accumulation in CMs culture goes along with α-smooth muscle
actin downregulation and precedes the upregulation of α-cardiac actin expression [11]. These data
may suggest a feedback loop between ECM and actin isoforms expression [11], allowing to speak
about the regulation of actin system dynamics in CMs by ECM.

6. Integrins in Cardiomyocytes

It is well known that the interaction of cells with ECM components is mediated by
integrins [195–197], which are transmembrane receptors connected with the ECM components by
their extracellular domains and with the cell contractile structures via intracellular domains. Integrins
are expressed in all cell types and consist of alpha-beta heterodimer units. In mammals, more than
18 α and 8 β subunits were identified, which can combine to form at least 24 distinct receptors.
It has been shown that integrins can transmit signals from the extracellular space into cells via
mechanotransduction, which is the process of converting mechanical forces (in particular, ECM tension)
into biochemical cues [49,198,199]. Because integrins do not possess enzymatic activity, they must
trigger downstream molecules to transmit their signals within the cell [195,200,201]. Activation of
integrins is followed by their clustering with the attraction of adapter proteins and non-receptor kinases
to their cytoplasmic domains [202]. Using this mechanism, extracellular signals can be translated
into appropriate cellular responses, such as migration, differentiation, growth, and survival, as well
as tissue remodeling [49,198,199]. The role of integrins as mechanoreceptors has been described for
various cell types, including cells of cardiovascular system [203–205]. It was shown that integrins
are necessary for the normal development and functioning of the heart and can participate in the
regulation of protein expression and synthesis in heart cells [45,200,206,207].

In CMs, α1β1, α5β1, and α7β1 are the most abundant integrin heterodimers that bind mainly
collagen, fibronectin, and laminin, respectively. The main β integrin subunit is β1, which is
predominantly expressed in costameres of cardiac myocytes, where the cells attach to the collagen
network [208]. It was shown that cardiomyocyte differentiation, particularly organization of sarcomere
structures, is crucially dependent on the presence of βl integrin [209].

In addition to variations in subunits, the integrin repertoire is extended by alternative splicing.
For example, β1 integrin has four isoforms. In the heart, the isoform β1A is expressed by non-muscle
cells, and the β1D is expressed in mature cardiomyocytes [208,210], with these isoforms differing in
their exchange dynamics and adaptor proteins recruitment [211]. α7 integrin subunit also has multiple
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alternatively-spliced variants with the α7B being the major partner for β1D isoform in cardiomyocytes
of adult heart [208,210].

Some studies imply that cardiomyocytes on different stages of development have different integrin
receptors suggesting that integrin expression is developmentally regulated [212]. During cardiogenesis,
splice variant β1D is known to replace the common isoform β1A, which is predominantly expressed
in the embryo [208,213]. Similar to β subunits, expression of α-chains varies with the stage of
development [214–216]. In fetal as well as neonatal CMs, α5 subunit is mainly expressed. However,
with the onset of postnatal development it is replaced by α7, which is the main α subunit in adult
CMs [214]. Moreover, in fetal as well as neonatal myocytes isolated from rat hearts the expression of α1
and α3 subunits was demonstrated, whereas freshly isolated cells of adult hearts were shown to lack
α1 chain. [189]. In general, the expression of α1 chain was observed at stages of increased collagen
synthesis [189].

Interestingly, changes in integrin distribution were shown in the adaptation of rat neonatal
CMs to culture system. The cellular localization of α3βl integrin dramatically changed from a
diffuse distribution to a sarcomeric banding pattern during the maturation of contractile apparatus,
and its localization in sarcolemmal regions associated with Z-disks closely correlated with myofibril
assembly and organization of sarcomere structures [189,191]. Moreover, the addition of antibodies
against β1 integrin to CMs cultured on different ECM components impaired cell spreading and
myofibrillogenesis [217]. These data suggest that integrin dynamics are likely to be linked with the
development of contractile apparatus in CMs.

The mechanisms by which the engagement of different integrins results in remodeling of contractile
structures are not described. However, relevant knowledge has accumulated through the last decade
that allows to contemplate them.

7. Possible Mechanisms of Integrin-Mediated Regulation of Actin Contractile System
in Cardiomyocytes

Integrin receptors are linked with actin contractile structures via direct interaction of their
cytoplasmic domains with actin-binding proteins, such as talin [218] and α-actinin [219]. Besides
this mechanical linkage, integrins can affect microfilament system dynamics via the attraction of
non-receptor kinases to their cytoplasmic domains after interaction with ECM components [202]
followed by the activation of relevant signaling pathways [220–222] (see Figure 1). One of the tyrosine
kinases, activated by integrin binding with ECM proteins, is the integrin-linked kinase (ILK) [223–225].
ILK was shown to mediate actin filament rearrangements through PI3K/Akt/Rac1 signaling [226].
Moreover, ILK activation has been linked to α-SMA expression in some models [227]. Inhibition of ILK
expression in normal dermal fibroblasts suppressed α-SMA expression likely through ILK-PI3K/Akt
signaling pathway [228]. In rat neonatal CMs, the rearrangements of their contractile apparatus in
culture were accompanied by changes in ILK level and its redistribution from perinuclear area to a
sarcomeric pattern [229].

Another kinase attracted by integrins is the focal adhesion kinase (FAK). It is believed that FAK
plays a key role in the further transfer of intracellular signals after the activation of integrins [230–232].
In vitro studies have indicated that, in rat neonatal cardiomyocytes, the interaction of cytoplasmic
integrin domains with FAK can mediate the phosphorylation of mitogen-activated protein kinases
(MAP kinases), such as ERK, p38, and JNK, [233], where p38 was shown to regulate α-SMA promoter
activity in smooth muscle cells and to be a crucial mediator of mechanical force-induced α-SMA
expression in fibroblasts [234,235]. Besides MAP kinases, the interaction of cytoplasmic integrin
domains with FAK [236,237] may lead to the recruitment of Rho family GTPases, which subsequently
regulate key steps in actin cytoskeleton polymerization and reorganization [238]. The small GTPase
RhoA is involved in many actin-based cytoskeletal processes, including formation of stress fibers, cell
adhesion, cytokinesis, and contractility [239,240]. RhoA activation was shown to cause stress fiber
formation and integrin clustering with associated proteins into focal adhesion complexes [241].
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Figure 1. Schematic diagram summarizing the possible mechanisms for integrin-mediated regulation
of actin filament rearrangements by extracellular matrix in cardiomyocytes.

Interestingly, actin rearrangements themselves might be involved in the regulation of actin gene
expression (see Figure 1). It has been shown that the dynamics of cytoplasmic actin can affect the activity
of transcription factors and, thus, modulate the expression of various genes [242,243]. The best known
actin-regulated transcription factor is serum response factor (SRF), which controls the expression of
many genes associated with contractile structures in response to the relative concentration of actin
filaments and actin monomers [244]. SRF was shown to be necessary for the expression of skeletal,
cardiac, and smooth muscle α-actin genes [49,241,245–247] and is known to be an important regulator
of force-induced smooth muscle actin (SMA) expression [248].

Taken together, described data allow to suggest that integrin-mediated mechanotransduction
could control the dynamics of actin contractile apparatus in CMs via the activation of signaling
molecules involved in regulation of actin isoforms and rearrangement of actin microfilament system.

8. Conclusions

The obvious correlation between the organization of actin structures and actin isoforms expression
in CMs, on the one hand, and ECM expression and organization, on the other hand, suggests the
regulation of actin dynamics by ECM. The mechanisms underlying are likely to be mediated by
transmembrane integrin receptors (see Figure 1). However, the in vivo investigation of integrin
engagement and following signaling pathways is limited by the complex organization of heart tissue,
which makes it difficult to isolate the effects of individual ECM proteins on particular cell processes [44].
In vitro investigations on the cells induced for cardiogenic differentiation are still ineffective because
of the heterogeneity of cell population varying in lineages and stages of differentiation. Moreover,
cardiogenic inducers can mask the intrinsic effects of matrix components. The primary culture of
CMs appears, therefore, to be a better solution being a homogenous culture of cardiac muscle cells
reproducing the processes of contractile apparatus dedifferentiation and redifferentiation in vitro.
The advantage of this system is the ability to better distill the interplay of cells with particular ECM
components and to discern the signaling pathways elicited during rearrangements of contractile
structures. Such investigations may shed a light on the ECM-dependent regulation of contractile
system in CMs during the key physiological as well as pathological processes.
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