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Abstract

Background: High-density tiling microarrays are a powerful tool for the characterization of complete genomes. The two
major computational challenges associated with custom-made arrays are design and analysis. Firstly, several genome
dependent variables, such as the genome’s complexity and sequence composition, need to be considered in the design to
ensure a high quality microarray. Secondly, since tiling projects today very often exceed the limits of conventional array-
experiments, researchers cannot use established computer tools designed for commercial arrays, and instead have to
redesign previous methods or create novel tools.

Principal Findings: Here we describe the multiple aspects involved in the design of tiling arrays for transcriptome analysis and
detail the normalisation and analysis procedures for such microarrays. We introduce a novel design method to make two
280,000 feature microarrays covering the entire genome of the bacterial species Escherichia coli and Neisseria meningitidis,
respectively, as well as the use of multiple copies of control probe-sets on tiling microarrays. Furthermore, a novel
normalisation and background estimation procedure for tiling arrays is presented along with a method for array analysis
focused on detection of short transcripts. The design, normalisation and analysis methods have been applied in various
experiments and several of the detected novel short transcripts have been biologically confirmed by Northern blot tests.

Conclusions: Tiling-arrays are becoming increasingly applicable in genomic research, but researchers still lack both the tools
for custom design of arrays, as well as the systems and procedures for analysis of the vast amount of data resulting from
such experiments. We believe that the methods described herein will be a useful contribution and resource for researchers
designing and analysing custom tiling arrays for both bacteria and higher organisms.

Citation: Thomassen GO, Rowe AD, Lagesen K, Lindvall JM, Rognes T (2009) Custom Design and Analysis of High-Density Oligonucleotide Bacterial Tiling
Microarrays. PLoS ONE 4(6): e5943. doi:10.1371/journal.pone.0005943

Editor: Janet Kelso, Max Planck Institute for Evolutionary Anthropology, Germany

Received February 12, 2009; Accepted May 18, 2009; Published June 17, 2009

Copyright: � 2009 Thomassen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was funded by the Research Council of Norway (FUGE and CoE grants) (www.rcn.no) and the University of Oslo (EMBIO) (www.embio.uio.
no). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: torognes@ifi.uio.no

Introduction

The availability of affordable custom-made expression arrays is

increasing, and the feature number on oligonucleotide microarrays

has increased remarkably during the last few years. Traditional

Affymetrix GeneChip arrays focus on probing the coding

sequences of known genes, and the probes usually only cover the

annotated transcripts’ 39 end, hence much information regarding

new transcripts (e.g. microRNAs, anti-sense transcripts and new

genes), as well as splice variants of both known and unknown

transcripts, are never found [1,2]. Also, recent reports show that

annotated genes tend to contain methylation sites with biased

distribution towards the 39 end. This bias in the expressed gene

indicate that methylation might interfere with transcription

initiation and termination [3,4]. To address this problem, new

microarray approaches that enable mapping of the total genome

have emerged [5]. Tiling probes on the microarrays is one strategy

that has been developed to completely cover areas of the genome

[6]. For the majority of completely sequenced genomes no such

arrays are currently on the market. Researchers therefore need to

design the tiling array themselves. One great advantage of custom

made arrays is that they enable total control over chip content with

regard to probes for expression measurements, control probes and

the distribution of probes over the array.

There are many aspects that have to be taken into consideration

in order to achieve high quality data when designing microarrays;

including probe density, probe-length, melting temperature, probe

placement, strand coverage, cross-hybridization/probe-sequence

complexity, probe uniqueness and control probes. The probe-

specific aspects mentioned above make up a set of probe-

properties. All probes on an array should ideally have approxi-

mately the same properties to ensure a constant probability of

hybridization [7], the mean value of all these properties can be

referred to as the consensus property. The ultimate, but impossible

achievement, is to obtain dense coverage of an entire genome by

probes with high consensus properties.

Today, several methods for the estimation of background signal

level (sum of noise and non-specific hybridization) and data

normalisation exist, but these are designed to work with

commercial arrays (MAS 5.0, RMA, MBEI, and gcRMA) [8–

PLoS ONE | www.plosone.org 1 June 2009 | Volume 4 | Issue 6 | e5943



11]. Such methods might rely on mismatch-probes [12] or assume

that the majority of probes target coding regions, and are therefore

often sub-optimal for non-standard custom arrays. Meanwhile, the

more generally applicable analysis algorithm MAT (Model-based

Analysis of Tiling-arrays) [13], originally designed for ChIP tiling

arrays, would be sub-optimal for this study as it applies a 600 bp

window which is far larger than the short transcripts targeted here

(,60 nts). Other methods for dividing a transcriptome into

discrete transcription segments involve different applications of

hidden Markov models (HMMs), for instance the supervised

Markov model framework of Du et al. [14]. One downside of

HMM based methods is the need for a training set (generally

originating from annotated regions of the genome) which

necessarily guides the method towards the recognition of regions

which are characteristically similar to the training set. Since a

major goal of the approach presented here is to locate novel, short,

differentially expressed transcripts in unannotated regions, a

standard training set is not optimal. Finally, an HMM method

which may successfully work on a single stressed or unstressed

dataset will not simultaneously be applicable to data from a direct

reference vs stress transcription comparison.

Present analysis methods for microarrays are mainly focused on

known coding regions [8,10], and researchers soon run into

problems when trying to analyse signals from intergenic regions or

un-annotated genomes, because of the difficulty in defining

consistently expressed segments of the genome without the aid of

an annotation. These problems can be addressed by applying the

methods presented here, and the annotation-independent analysis

method can be applied to any tiling array project, regardless of

whether the investigated regions are coding or non-coding, and

without the need of any genomic annotation or training set.

In this manuscript we present a novel design method for tiling

arrays, here targeting prokaryotic genomes, but easily applicable

to eukaryotic genomes as well. We present a novel normalization

method suited to equidistantly or un-equidistantly distributed

probes on tiling arrays. Additionally, we show how increased

numbers of control probes, including random controls, can be

used to assess the levels of non-specific binding and noise, which is

always more or less of a problem with microarrays. Finally, we

present two different analysis methods for genome-wide tiling

array data, of which the latter is independent of annotations and

training-sets.

Methods

There are several important considerations regarding micro-

array design and analysis. Here we present a method for designing

tiling arrays and methods for normalisation, background esti-

mates/adjustments and data analysis of tiling experiments. As an

initial project, two different prokaryotic genomes are used, the E.

coli K12 MG1655 genome and N. meningitidis MC58 genome,

respectively.

Microarray design
Genomic coverage will always be a trade-off between probe-

length, genome size and array feature number. The choices made

here ensure coverage comparable to regular gene chips of all genes

with a known function, as well as a very high coverage of the

remaining genome. The arrays used in this project are the 280,000

feature NimbleExpress [15–17] custom arrays provided by

Affymetrix, as this was the most reasonable choice when

considering the feature number versus production cost. The oligo

length was set to 25 nucleotides. The bacterial genomes and

annotations of E. coli K12 MG1655 [GenBank:NC000913] and N.

meningitidis MC58 [GenBank:NC003112] used for the probe design

were downloaded from the NCBI ftp-site (24th of May 2005). A

basic tiling strategy places a probe at every Nth nucleotide (for

some N where N,probe-length). Such an approach does not

apply any probe-quality measures except for the widely used

exclusion of repeat-elements from the target sequences (by using

programs such as RepeatMasker [18] or Dust (Tatusov RL and

Lipman DJ, unpublished). Use of probes covering repeat elements

in the genome should be avoided because of the high risk of cross-

hybridisation by similar probes with plural origin, generating

meaningless data within these regions. If a more selective tiling

approach is used, as described in this paper, it should be possible

to choose a set of probes that are more homogeneous, reducing the

noise that is otherwise introduced by significant probe-affinity

differences.

A limited number of features on the arrays often prohibits a

high density tiling strategy from covering the entire genome

evenly. As these chips have a 280,000 feature size limit, the

decision to split the genomes into two categories was taken; coding

and non-coding. All regions annotated with an Open Reading

Frame (ORF) having a known function on either strand were

defined as coding regions, ORFs separated by less than 25

nucleotides were concatenated. The remaining regions were

defined as intergenic (Figure 1). This process of dividing the

genome into two categories does not introduce any bias to the

applied analysis method, and is solely used for the purpose of

probe design as the feature number is limited. For the genomes

used in this design, the intergenic regions make up about 10

percent of the E.coli and 20 percent of the N. meningitidis genome.

The terms ‘‘coding’’ and ‘‘non-coding’’ are used here only to

describe the two categories defined during the design phase.

As E. coli and N. meningitidis differ in genome-sizes as well as the

percentages of non-coding versus protein-coding regions, the

probe densities in the coding and non-coding parts in the two

genomes were set independently. This density trade-off was

dictated by the percentage of coding and non-coding regions

along with the total feature number available. The coding regions

were covered by 19 and 32 probes per gene in E. coli and N.

meningitidis, respectively. The probe density parameter details can

be found in Table S1.

Several probe selection programs are available today, such as

OligoArray 2.0 [19], CommOligo [20], OligoWiz 2.0 [21,22] and

a web tool from the Gerstein lab (http://tiling.gerstein.org) [23].

OligoArray 2.0 from 2005 was designed for automated selection of

short oligonucleotide probe sequences, it requires BLAST and uses

MFOLD [24] for thermodynamic secondary structure and probe

specificity predictions. CommOligo, accompanied by the Comm

Oligo Parameter Estimator, on the other hand addresses whole

genome array design or probe design from highly homologous

sequences. OligoWiz 2.0, which is applied here, is an oligonucle-

otide selection software with several user defined parameters;

DTm, homology, low-complexity, position and ‘‘GATC’’ only,

probe spacing and a maximum and a minimum probe number per

sequence. The two algorithms from Bertone et al. [23] that form

the Gerstein lab web tool concentrate on eukaryotic genome tiling,

hence detection of similar probes or sub-sequences between probes

is their main focus. Their work emphasise the value of a tiling

strategy which optimises the probe affinities rather than a uniform

tiling solution, as long as the obtained coverage is sufficient to

answer the biological question asked.

As the target organisms here are bacteria, the large-scale

eukaryotic similarity problems are excluded (i.e. the Gerstein lab

web tool solution) and since the homology problems in bacteria are

relatively small, the need for the CommOligo special functionality

Tiling Array Design & Analysis
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relating to probe designs for highly homologous sequences is not as

critical as for higher species/organisms. To make the initial oligo

selection, OligoWiz 2.0 was chosen on the basis of functionality,

and the implemented selection algorithms were well suited to the

tiling design in these specific projects. Major factors contributing

to the selection of OligoWiz 2.0 were the ability to adjust the score

parameters to fit the selective tiling design and to apply different

probe densities for known ORFs and intergenic regions. In

addition, OligoWiz 2.0 is more compatible, since it can be run

without the position score-filter, since every part of each probed

region is equally important in terms of the detection of novel

transcripts. Some recent methods for probe selection are discussed

in the ‘‘Conclusion and method remarks’’ section at the end.

After the divison into coding and non-coding regions, the initial

selection of probes was made using OligoWiz 2.0 [21,22]. From

the resulting set of all possible probes, a subset was chosen by

setting the selection parameters in OligoWiz 2.0 (see Tables S2

and S3). When choosing a small minimum inter-probe distance

(%probe-length) for the intergenic regions a ‘‘selective tiling’’ is

achieved, i.e. high density, but with high quality probes only (see

Table S1 for maximum probe density.) Repeat regions were not

removed prior to the probe selection, but were avoided by the

combination of OligoWiz 2.0 criteria followed by subsequent

probe selection scripts. The main function of these scripts was to

remove duplicates, see ‘‘probe-uniqueness’’ below. On the actual

array no genomically adjacent probes were closely located on the

chip, in order to minimize errors from spatial effects.

To ensure sufficient coverage of both strands, every probe on

the array has a complementary probe (if unique) covering the

opposite strand. This complementary design also enables all

probes to be hybridized with DNA or RNA from both strands.

One should keep in mind that hybridization to total DNA can give

good probe-quality measurements, which is a useful mean for

experimental probe-quality assessment [10]. To achieve this

design, OligoWiz 2.0 was applied on one strand and then all

probes were complemented to cover the reverse strand. Each

complement probe was assigned the same score as its origin. Test-

runs with OligoWiz 2.0 proved this approach reliable compared to

applying OligoWiz 2.0 on both strands. The complementary

probes were then checked for uniqueness (see below), and removed

if non-unique (exemplified by the removal of 166 out of 273.414

probes from the original E. coli design).

The optimal melting temperature was estimated by OligoWiz

2.0. All regions were considered equally important, as the goal was

to map the entire transcriptome. Therefore, the OligoWiz 2.0

position score was left unused. For future designs, variable probe

length design (24–26 mers) might be considered in order to

achieve a more uniform melting temperature distribution for all

probes [25].

Cross-hybridization occurs when a piece of cDNA in the sample

binds with, and hence add signal to, a probe that is not 100%

complementary. This results in false positives that are almost

impossible to identify and remove. This is considered to be a

critical problem in array designs [26]. Therefore, the cross-

hybridization threshold was the most heavily weighted score. The

related sequence–complexity score was also set reasonably high to

further decrease the risk of cross-hybridization, see Table S2. One

major drawback regarding the probes selected by OligoWiz 2.0 is

that the program is able to select identical probes from two

different input sequences. The program can thus report two good

probes while actually choosing two identical probe sequences.

Similar probes on the chip therefore make it impossible to map the

actual transcript back to the genome. To avoid this problem of

non-unique probes, a computer program removing duplicates

from the OligoWiz 2.0 output-files was written and applied

(available upon request). The script uses a hash-table with all 13

nucleotide sub-sequences of all probes as keys, if similar keys are

detected, all non-overlapping probes with this sub-sequence are

removed. This allows a maximum similar continuous stretch of

12 nts. The removal is followed by a control of the regions from

which the probes have been taken away. If the removal strongly

affects the coverage, another probe with a lower OligoWiz 2.0

score is selected, from the set of all possible probe-sequences

generated, to ensure sufficient probe coverage.

A quality assessment of the sample preparation, the hybridiza-

tion-process and the intensity measurements can be obtained by

using control-probes [27]. Control probes are sequences foreign to

the target genome designed to assess cross-hybridization and

background noise. There are several commercial sets of control

probes made to measure the hybridization quality, as well as the

RNA sample preparation, labelling and fragmentation process

[28]. An improvement of the data quality measurement is sought

here by the inclusion of multiple control sets in combination with

multiple copies of each control probe. By distributing six copies of

these control probes (seven including the hybridization controls,

see Figure S1) around the arrays, more measurements can be

taken to improve the quality control process. This control probe

distribution is used particularly to assess chip-area specific

hybridization artefacts. In total there are 4566 control probes

distributed over seven separate patches on the chip, see Figure S1

Figure 1. Tiling strategy. The genome was divided into coding and non-coding regions, and the two region types were probed with different
densities. The grey bar represent the genome, red arrows represent genes and the blue arrows represent probes. The numbers of probes are not
realistic here (see Table S1 for density details).
doi:10.1371/journal.pone.0005943.g001
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and Table S4 for details. The standard controls used on these

arrays are the Affymetrix hybridization control-set, the Affymetrix

prokaryotic spike-in set (poly-A) for assessment of the sample

preparation and labelling process and the HXB2-yeast spike-set

(all three sets described in [28]). Additionally there is a custom

made control probe-set consisting of 50 probes having a di-

nucleotide composition similar to the E.coli specific probes. These

custom probes were generated by computing all di-nucleotide

frequencies for the target genome probe sequences. Then a

probabilistic algorithm producing 25-mers with similar di-

nucleotide composition to the target specific probes was

implemented. The algorithm outputs the N first probes that differ

on at least seven out of 25 nucleotide positions when compared to

every E. coli specific probe.

The design method presented here was originally made for

relatively small genomes (46106). However, the design is easily

adapted and scaled up to larger genomes. The target genome size

and the feature number available, combined with the biological

question asked, will decide whether a tiling approach with

equidistantly distributed probes of the entire genome is possible

or not. If this approach is considered, Gräf et al. [29] as well as

Schliep et al. [30] recently presented more suitable methods for

equidistant probing. The method presented here is on the other

hand an elegant alternative for non-equidistant tiling designs. We

believe that the division of the target genome into ‘‘high’’ and ‘‘less

high’’ interest regions is trivial after the biological question has

been stated. OligoWiz 2.0, or another well suited oligo selection

tool depending on the biological question (see ‘‘Method remarks’’

section and [31]), should then be applied to design probes suitable

for the feature number available and the resolution needed in the

genomic region of interest. A probe selection as described here will

then select the set of best unique probes for the final design. The

control of uniqueness described here can be exchanged for a suffix

array approach [32], if the hash-based method raises memory-

limit problems. Also, if splice-variant related questions are raised,

probes must be designed with probe sequences that represent both

the end of exonA and the start of exonB, as used by Skotheim et al.

[33]. The control probe design method, including the random

negative controls, is well suited to any genome or array size.

Data normalisation
There are a number of accepted normalization techniques that

can be applied to microarray data, with varying levels of

complexity and transparency. In many experiments, normalisation

procedures have proved extremely advantageous; but, as discussed

elsewhere [34], in the cases of relatively small genomes such as that

of E. coli (,4.6 Mbp) and N. meningitidis (,2.3 Mbp) the benefits

are usually minimal and the application of complex sequence

based normalisation routines can in fact confound otherwise clean

data (See File S1 for full discussion). It follows, therefore, that it is

preferable to minimise normalisation solely to the removal of

significant outliers from the data. Ideally, data from multiple

arrays show a variance between the log2 intensities of a single

probe-set, which is independent of the mean log2 intensity for the

given probes for all but the extremes of the data. Plotting the

standard deviation versus the intensity for all probe-sets after

aligning the data by the mean values of all chips (red circles in

Figure 2) allowed a mean level to be calculated for the standard

deviation. This was considered as a global measure of the standard

deviation (sg) between probes in the set of 5 chips (see Figure 2).

The global standard deviation was then used to process the data

set, by removing the worst-case outliers from the data sets. Here,

exactly 46,321 out of 2,733,980 data points were removed from

the MNNG experiment. Outlier detection was performed by

sorting the five different array signal values from each probe into

ascending order and taking the mean of the middle three points as

the central value. If either of the remaining probes was found to be

more than three global standard deviations (3sg) from the central

mean value it was considered to be an outlier with .99% certainty

and was therefore discarded. In all other cases, the probe values

Figure 2. Standard deviation versus intensity for all probe sets. Plotting standard deviation versus intensity for all probes across the 5 arrays
(red circles) allowed a mean level of interest to be calculated for the standard deviation. This was considered as a global measure of the standard
deviation (sg) between probes in the set of 5 arrays. All extreme outliers were removed (see text for details) and the result from this filtering is shown
by blue circles.
doi:10.1371/journal.pone.0005943.g002
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were retained. The result of this probe outlier filtering is shown as

blue circles (Figure 2). This was done before a comparison of

relative expression levels was performed on the data.

Given that adjacent probes within a single gene may differ in

signal with a standard deviation .1 (on a log2 scale) [35] we have

the option to create a very conservative dataset by selectively

removing probes using the results of the gcRMA algorithm [11]

run on the original raw dataset, in comparison to the dataset

returned by the normalization procedure described above. As the

original gcRMA algorithm (version 1.0) uses mismatch (MM)

probes we applied gcRMA 2.0 (http://rss.acs.unt.edu/Rdoc/

library/gcrma/doc/gcrma2.0.pdf). Our custom designed random

negative control probes where used in the ‘‘bg.adjust.gcrma()’’

method call, that adjusts for background signals, instead of MM

probes. Approximately 10% of all probes (28.594 out of 273.398 in

the referred MNNG experiment) can subsequently be discarded

where the difference between the gcRMA results and normalized

data exceeded the set threshold. The threshold difference level was

defined on the basis of the distribution of mean differences

between the control and stressed data sets (Figure 3). At extreme

difference values, .6 (log2), there is clearly a secondary peak in the

distribution, contributed by data points, which are in strong

disagreement with the gcRMA algorithm. In order to minimize

data adjustment, while removing the points with strongest

disagreement, the threshold difference was set in the minimum

region of the distribution between primary and secondary peak.

As previously stated, the large number of control probes assured

good assessment of the labelling and hybridization process,

respectively. The average signal intensity values of all the spike-

in probes for two experiments with a reference and a treated

dataset are shown in Figures 4 and 5. The intensities of non-

specific probes (HXB2-yeast-, random- and trpnX-probes) give an

estimate of the level of cross-hybridisation and background noise.

An interesting observation is that HXB2-yeast spike set has slightly

lower average signals than the custom-made experiment specific

control probes, indicating that custom-made, genome specific,

negative controls might be better for background signal estimation

than these standard spike-sets. The, custom controls show a higher

and probably more correct background signal intensity level than

the standard sets. The background level was defined as the level at

which low level transcription becomes indistinguishable from other

background signals. Since low-level transcription predominates

along the total length of the genome, this low-level intensity is

defined by the peak of a histogram of probe intensities (Figure 6).

Below this level it is impossible to separate error from transcription

levels. Therefore the background level was set to a log2 intensity

level of 9.0 for the E. coli arrays, which is a slightly higher level

than the intensities of the custom negative control probes (Figure 4

and 5). All signals below the background noise level are considered

as uncertain since they might be a result of noise and/or cross-

hybridisation.

Scaling of experimental data should be performed when

comparing two datasets where a consistent difference can be

detected between control probes designed to give equal signals at a

range of different intensities. Here, the average difference showed

little variation between probes at differing intensities and therefore

the difference was applied as the baseline shift of the reference

dataset (Figure 4 and 5).

Figure 3. Probewise difference distribution between normal-
isation methods. Distribution of differences between our normalised
data and the gcRMA normalised data is shown. Y-axis represent probe
frequencies and the X-axis the absolute value of the difference (log2).
doi:10.1371/journal.pone.0005943.g003

Figure 4. Reference and MNNG treated E. coli control probeset average intensities. Average signal intensities for all control probes in
reference (Dimethyl Sulfoxide Reductase (DMSO) added only) and treated (N-methyl-N’-nitro-N-nitrosoguanidine (MNNG)) E. coli. It is easily seen that
the lines overlap very well (sometimes one is hidden by the other), and hence the two experiments can easily be compared with only a minor
baseline shift.
doi:10.1371/journal.pone.0005943.g004
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Probe-specific effects and estimation of the minimum
length of a trustworthy signal

One important question regarding tiling arrays is how long a

region is needed to be for its signal to be considered a true signal?

A short stretch of the genome with unusual base-composition

might result in probes with a very high or very low binding affinity

[11]. Probes having low binding affinity might give rise to false

negatives, while the ones with high affinity can produce false

positives only when looking at the expression levels, and false

negatives only when considering differentially expressed regions.

These possible high or low affinity probes could be removed by the

application of the gcRMA [11] based method described previously

to the raw data. This decreased the number of probes that

potentially have biased signal intensities due to highly diverging

probe-affinities, although the design process tries to avoid such

differences. In the case of differentially expressed regions, probe-

artefacts should be equivalent in both conditions and hence

regions detected as differentially expressed should be trusted,

although there might be uncertainties connected to the absolute

signal intensity values, due to the probe affinity problem.

Similarly expressed regions and regions detected as present are

a different matter. First one must consider the very high probe

density, which inevitably will give rise to probes with diverging

affinities, even though this has been striven against in the design

and normalization process. Thus, with strict selection criteria,

regions that are transcribed in vivo as long stretches of RNA might

appear to be divided into several shorter stretches by the presence

of low-affinity probes. On the other hand, short stretches

appearing to be expressed in both conditions might be a result

of probe artefacts, indicating that they might represent false

positives. In addition to this, cDNA production and RNA

degradation may, to some degree, represent certain sources of

errors. This would likely be due to shortened or missing cDNA

pieces from the sample, generating false negatives. Bearing in

mind the above observations, differentially expressed regions with

a length of only one probe (25 nts) will be considered significant in

this study. To define a minimum length threshold for regions

detected as present, or similarly expressed, the length distribution

of the expressed regions (#50 nts) with a signal above the

background level were plotted in a histogram (Figure 7). A cut-off

of minimum 36 nts was set based on this distribution plot

combined with the criterion of a separation of the two adjacent

probes by at least 10 nts to ensure specific binding of the cDNA to

both probes. The minimum spacing criteria of 10 nts is based on

the Roche NimbleGen design guide [36]). This exclusion will

inevitably exclude true positives, but still it will remove far more

false positives and in the end increase the overall data-quality.

Analysis methods
The era of tiling arrays is fairly new [6] and there is not yet one

preferred, established and thoroughly tested data analysis method.

One problem is that most commercial and free-ware analysis tools

are made solely for traditional gene arrays and are therefore not

designed to handle the tiling strategy. Therefore the researcher has

to create new functions to sub-optimal programs already available,

or develop new data analysis tools to fit their specific need.

The percentage of transcribed DNA compared to total DNA is

unknown with regards to the bacterial genomes considered in this

paper, but is believed to be significantly higher than the

percentage annotated today (based on previous tiling projects

[37–42]). Nonetheless, tiling arrays are supposed to show far fewer

high-intensity signals than normal for gene-targeting arrays

Figure 5. Reference and UV treated control probeset average intensities. Average intensity for all control probes in reference (Mock) and
treated (UV irradiated) E. coli. Note the consistent difference on all spiked in genes.
doi:10.1371/journal.pone.0005943.g005

Figure 6. Raw data signal intensity distribution. Signal intensity
distribution of all probes for reference (DMSO) and treated (MNNG
treated) E. coli before data processing. Log2 signal intensities on the X-
axis and probe frequencies on the Y-axis.
doi:10.1371/journal.pone.0005943.g006
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probing only coding regions. When intergenic regions are probed

there are no defined areas in which to look for signals, hence new

considerations and adjustments have to be made.

As the goal of this project was divided into transcriptome

mapping and detection of differentially as well as similarly

expressed genes and transcripts, including novel short transcripts,

different analysis methods needed to be developed. First, an

annotation guided approach was applied in order to investigate

similarly and differentially expressed annotated genes between

reference and treated cells. Then, a novel and more complex

sliding/expanding window approach, independent of previous

annotations, was developed to segment the data and give a

comparative analysis of the tiling-results. This approach also

allowed transcriptome mapping independent of the comparison

between reference and stress datasets.

Annotation based method. In the annotation guided

approach all probe signals for each condition of an annotated

gene were collected into two groups Xn and Ym. Xi is probe i of a

total of n probes probing the reference sample, while Yj is probe j

of a total of m probes probing the treated sample. As a result of the

probe-by-probe normalization method, n and m are not necessarily

equal. A two-tailed unpaired t-test was applied to compare the

means of the signal values Xn and Ym. A p-value of 0.05 was

chosen as the threshold for rejection of the null hypothesis that the

mean values of the two probe sets originate from the same

distribution. This threshold equates to a 0.95 confidence of a

differential expression between reference and treated data sets.

Probe sets conforming to this condition were logged as candidates

for differentially expressed genes. Subsequently the absolute

average signal intensity difference (fold-change) between all Xn

and Ym probes was calculated. Genes having a probability

. = 0.95 for differential regulation combined with an absolute

fold-change . = 0.5 were finally considered as differentially

expressed. In cases where the average of Xn or Ym was below

background signal, this average was adjusted to be equal to the

background signal before the fold-change calculation was made.

This excluded the possibility of false positives in difference

calculations occurring due to the presence of erroneous low

signals. Although it may be argued that the use of a t-test is

suboptimal in cases where many probes are present in an

annotated region, the subsequent application of the fold change

rule ensures that regions defined as differentially expressed are

valid. Meanwhile, when attempting to distinguish differential

expression in the shortest fragments, which is our primary interest,

application of the t-test as the first rule is the optimal solution.

The p-value returned by each t-test was recorded and subjected

to a Bonferroni multiple-testing correction. In practice, these p-

values were so small (%0.05) that the entire genelist measured as

differentially expressed all pass the Bonferroni test. Similar results

were shown for the t-tests applied to the top two-hundred regions

identified by the sliding window method (below).

Genes where the average of Xn. = background and the average

of Ym. = background and the probability of differential expression

or the fold change was below either threshold value were

considered similarly expressed. We are aware that a more correct

term would be non-significantly differentially expressed but for

simplicity similarly expressed is used. Genes having either the

average Xn or Ym below the background level were excluded, as

the true signal value is uncertain. Inclusion could lead to false

positives, while exclusion gives possible false negatives. The false

negatives might be further investigated by looking at the dataset

from the plain transcriptome-mapping data (see present/absent

regions further below). The background adjustment is, as for the

differentially expressed genes, adjusted for the ‘‘worst-case’’

scenario.

Sliding and expanding window method. The normalized

data, i.e. after removal of datapoints defined as outliers compared

to the gcRMA-normalized data, was sorted according to strand

and genomic position.

A sliding and expanding window algorithm was then applied to

run along the probes in order to perform calculations on window-

sizes of one, three and five probes, for each consecutive probe. For

every probe along the genome, a score (0 or 1) was computed for

each of the three window sizes. First, an unpaired t-test was

applied to calculate the probability of differential regulation

between the reference and the stressed samples within the window.

Second, the absolute difference of the average signal intensities

(fold-change) of all the signals inside the window was computed.

Third, the probability and the fold-change were used to define a

boolean set of zeroes or ones for differential expression in each

window at each probe-position where a 1 indicate that the window

has a probability . = 0.95 for being differentially regulated,

combined with a fold-change . = 0.5 (log2 value). On the other

hand a 0 indicates that the probability and/or the fold-change

criteria of differential expression are not met. Furthermore, no

window could include regulation in both directions, if the window

received a score of 1. This sliding and expanding window

algorithm resulted in two large score matrices, one for each strand

(example in Table 1). A selection algorithm was then applied on

these score-matrices. This algorithm searches through the matrices

sequentially and selects regions that are differentially regulated.

Differentially regulated regions are identified by locating rows in

the matrices where all window sizes (1 through 5) had a score of 1

and continues if the next row in the matrix is equal to one of the

following [1 X X] or [0 1 1], where X can be either 0 or 1. If a

single matrix row of [0 0 1] is located between two rows fulfilling

either of the mentioned criteria, this row is also included in the

differentially expressed region. In addition, the regulation has to

be uniform (either up or down) on all the probes inside a detected

region. For all regions detected, the overall t-test score and fold-

change value was computed. The final step of the region-selecting

Figure 7. Distribution of short similarly expressed regions.
Distribution plot of all similarly expressed regions (, = 50 nts in length)
in the DMSO and the MNNG dataset
doi:10.1371/journal.pone.0005943.g007
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algorithm was to annotate all the detected regions. This was

performed by searching for genes overlapping on the same or the

opposite strand. If no such overlap was found, the distance to the

closest upstream and downstream genes were calculated. For all

regions not detected as differentially regulated, another algorithm

was applied that located all similarly expressed regions, i.e. regions

where both datasets had a signal average .background level but

with t-test probability and/or the fold-change level below the

threshold of a differentially regulated region, (0.95 and 0.5

respectively). Finally, all the similarly expressed regions were

annotated as described earlier. As this method is independent of

previous annotations, genes might be reported as partly similarly

and partly differentially expressed. Also, there might be some

overlap (,25 nt) between regions being differentially and similarly

expressed due to the algorithm selection criteria and the

overlapping probes (Figure 8).

Transcriptome mapping. An expressed region is a

continuous stretch of probes that on average show a signal

intensity value above the background noise level. All regions not

detected as expressed (scored present) were reported as absent, i.e.

missing. This present and absent calculation was done for the

samples independently prior to the annotation procedure. Regions

excluded by the applied algorithms for the selection of

differentially and similarly expressed regions within the confines

of the methods described above, can be investigated by comparing

the present and absent data for the samples.

Normalisation method comparisons
The issue of normalization is critical in microarray experiments,

since the data quality can be highly dependent upon the chosen

algorithm. In the case of these custom arrays designed using the

OligoWiz 2.0 probe selection program, a visual inspection of the

data after application of the gcRMA normalization method [11]

indicated data quality degradation. In order to quantify this

impression we extracted the 87637 probe values from regions that

are annotated and therefore expected to be consistently expressed.

The strategy chosen was to use the mean value of all probes within

a single similarly-expressed region in order to define the

transcription level within this region. This led to the possibility

to calculate the deviation – or sequence-dependent bias – of each

individual probe from the mean transcription level. The measured

biases were, as would reasonably be expected, normally distributed

around zero. The quality of any normalizing algorithm was then

easily defined by its influence on the normal distribution. A

worthwhile normalization method would result in a reduction of

the observed variance, while any increase in the variance would

imply no improvement to the data quality, thus telling us that the

chosen method is wrong for the dataset. Comparison of the

variance between probes normalized by our method and the

equivalent gcRMA normalized probes showed a variance of 1.17

and 6.84, respectively Therefore, in this case, application of the

gcRMA method severely degrades the data quality. This in itself is

intriguing and leads us to conclude that the design setup and the

application of OligoWiz 2.0 (choosing uniform Tm values and GC-

content) for probe selection defines a probe set which is

incompatible with the gcRMA algorithm. The relative concen-

tration of non-coding compared to coding region probes on our

Figure 8. Genes reported as differentially and similarly expressed. A visualisation graph of how several regions can cover one single gene.
The blue bars represent genes, differentially expressed regions are represented by the brown horizontal bars above the genes and similarly expressed
regions are represented by the green bars below. The numbers indicate genomic start and stop coordinates.
doi:10.1371/journal.pone.0005943.g008

Table 1. Strand-wise score matrix from the Sliding window
algorithm.

Probe
start

Probe
end Window-size 1 Window-size 3 Window-size 5

49 74 0 1 1

57 82 1 1 1

64 89 1 1 1

72 97 0 0 1

79 104 1 1 1

86 111 1 0 1

94 119 0 0 1

102 127 1 1 0

110 135 1 0 1

119 144 1 1 1

129 154 0 1 1

137 162 1 1 0

145 170 0 1 0

152 177 1 0 0

165 190 1 1 0

195 220 0 1 0

229 254 1 1 0

A strand-wise score matrix generated by the sliding window algorithm. The
example is fictional and illustrates different examples of how the algorithm
expands a differentially expressed region. The region from 57 to 162 (italics) will
be detected as differentially expressed, while the rest are non-differentially
expressed regions.
doi:10.1371/journal.pone.0005943.t001
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chips will also work against the gcRMA algorithm. Additionally

the substitution of MM probes with random control probes,

presumably having higher intensities than regular MM probes, will

confuse the gcRMA algorithm. The decision was therefore taken

not to apply any further normalisation to the data. (See discussion

in File S1)

As a further exercise in understanding the sequence dependence of

the bias, we compiled our data into histograms of the bias for each

nucleotide type at each position along the probe (see Figure S3) and

used this to generate a graph of the mean bias for each nucleotide at

each position along the probe (Figure 9), which would act as the basis

for any sequence dependent bias estimate. This is markedly different

to the curve shown by Wu et al. and in their discussion of gcRMA

[11], further confirming the incompatibility of our probe set with the

gcRMA normalisation. Taking this even one step further and

applying a generalized linear model (GLM), incorporating single

nucleotide positions to the measured biases (using the SAS statistical

package) we subsequently produced a set of additive coefficients for

individual nucleotide positions (see Figure S2 and Table S5) with

which sequence specific probe bias corrections could be made to the

data set. Application of this sequence based correction show that a

reduction in bias variance from 1.17 to 0.95 was attainable; thus

implying that some sequence based normalization is achievable. Due

to the time constraints imposed by related biological experiments that

were necessary in order to confirm stress responses measured using

this microarray data, this fine-tuning normalisation was not applied to

the published data sets; however we include the outline of what is

possible for the sake of completeness.

To investigate whether our probesets are compatible with

standard normalization methods, gcRMA regular RMA and VSN

[43] were applied to the data, and a variation comparison study

was conducted. Details of these tests are in File S1, but the

conclusion showed quite clearly that all three methods made the

signal-to-noise ratio worse than unnormalized data. Thus we are

vindicated in our choice not to apply standard methods.

Results and Discussion

Different genomes have different nucleotide-compositions, and

one should always ensure that regions of special interest on the

target genome have a sufficient coverage of probes. This is to

ensure that no important genomic region goes un-probed due to

some nucleotide composition abnormality.

Here we present a novel method that enables detection novel short

(,60 nts) intergenic transcripts by custom made tiling arrays. To

ensure sufficient intergenic coverage, overlapping tiling of probes was

used in all intergenic regions (as far as the probe quality thresholds

allowed). For the E. coli genome, a feature number of 386,000 is

needed for a complete non-overlapping tiling. Since the array feature

number (,280,000) was below 386,000 non-equidistant probing was

applied. This probing strategy, which is considered dense, gives a very

high intergenic coverage (up to 7 nt resolution), On the other hand, it

gives sufficient coverage within regions of known genes. This probe

density trade-off is balanced between the feature number and the

biological questions asked. With our strict definition of coding and

non-coding regions (see above) the applied design solution was

considered optimal in terms of the biological aims. During the

analysis of the arrays we have reconsidered this and would

recommend equidistant coverage of coding regions combined with

overlapping tiling of regions of special interest, if the total feature

number does not allow dense coverage of the entire genome. In our

existing case, the equal probe coverage of each known ORF implies

equal data material for each gene to base the statistical analysis on

and potentially enables the discovery of more individual gene features

[31]. In the suggested case, probes should be tiled as densely as the

feature number and the probe quality prediction allows.

Furthermore, by randomly distributing the control probes rather

than grouping them in blocks as done here, one might obtain even

better assessments of spatial bias. In the end it is the biological

question underlying the design that decides where probes are of most

efficient use. We still consider ‘‘selective tiling’’ better than a plain

Figure 9. Probe nucleotide composition bias. Mean bias for each nucleotide type at each position along the probe for all probes within known
annotated regions of the genome, illustrating the basis of the sequence dependence of individual probe biases.
doi:10.1371/journal.pone.0005943.g009
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equidistant tiling approach, as high or low affinity probes would have

to be heavily adjusted or thrown away during background predictions

or normalisation procedures anyway. Additionally, a somewhat

surprising increased transcription detected, and biologically validated,

in regions opposite to some known genes indicate that, if the feature

number allows, such regions should be prioritized with denser

coverage

One may also think of experimenting with even more similar

custom made control probes to find the ‘‘optimal similarity’’ when

assessing background noise.

It should be noted that although OligoWiz 2.0 strives to obtain

uniform probe affinities. Therefore, probe designers should be

observant when designing probes for genomes with GC-content

far higher or lower than 50%, as OligoWiz 2.0 has no GC-specific

scoring filter. The GC-content is closely related to the Tm score

and OligoWiz 2.0 would still select probes with uniform binding

affinities but the optimal hybridisation temperature would be

different and there are possibilities of a decrease or increase of

cross-hybridisation due to the GC-content.

Since the actual array design several novel design algorithms and

software have been introduced to the research community and are

elegantly reviewed and compared in a recent study by Lemoine et al.

[31]. Lemoine et al. show that OligoWiz 2.0 stand out as one of the

best choices, as long as the studied organism is found in the

OligoWiz 2.0 database. Of the competitors, CommOligo [20] could

be considered if the target organism has a non-regular GC content

or higher organisms with low-complexity regions. And ArrayOli-

goSelector [44] or OligoTiler (http://tiling.gersteinlab.org) should

be considered when designing tiling arrays with feature numbers

sufficient to provide equidistantly spacing of probes combined with

sufficient coverage to answer the biological question asked.

Even though the tiling array technology has been around for

several years now there is still no ‘‘all-in-one’’ programs and little

‘‘how-to’’ information are available. A few programs/algorithms

have been developed for creating oligonucleotide tiling arrays

[23,45,46] but none of these have the multi functionality that a

chip-designer ideally would hope for. Also, as the interest in

specific bacteria differs, one design algorithm might not give good

results for two different species without modification.

The annotation based analysis method is a simple and

straightforward method for the analysis of the coding parts of

tiling experiments. But one should be aware that this method relies

on known annotations. The sliding window approach, on the other

hand, is novel but independent of previous annotations. This

method is somewhat more complicated and time consuming. The

array design, normalisation and data analysis methods presented

here have produced a mass of biologically relevant results

(manuscript in progress). This shows that the strategy from this

work can be implemented on bacterial genomes, and on

eukaryotic genomes after applying the minor changes suggested.

Additional information
The array definition and the datasets from the E. coli study has

been submitted to the Gene Expression Omnibus [47] with

accession number GSE 13829 and 13830 (data) and GPL 7714

(array). All computer programs made by the authors have been

written in Python and MATLAB and can be obtained on request.
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