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Background: Because enzymes can control several metabolic pathways and regulate the production of
free radicals, their simultaneous use with nanoplatforms showing protective and combinational proper-
ties is of great interest in the development of therapeutic nano-based platforms. However, enzyme
immobilization on nanomaterials is not straightforward due to the toxic and unpredictable properties
of nanoparticles in medical practice.
Aim of review: In fact, because of the ability to load enzymes on nano-based supports and increase their
renewability, scientific groups have been tempted to create potential therapeutic enzymes in this field.
Therefore, this study not only pays attention to the therapeutic and diagnostic applications of diseases
by enzyme–nanoparticle (NP) bio-conjugate (abbreviated as: ENB), but also considers the importance
i).
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Therapy
Biosensing
Drug delivery
of nanoplatforms used based on their toxicity, ease of application and lack of significant adverse effects
on loaded enzymes. In the following, based on the published reports, we explained that the immobiliza-
tion of enzymes on polymers, inorganic metal oxide and hybrid compounds provide hopes for potential
use of ENBs in medical activities. Then, the use of ENBs in bioassay activities such as paper-based or wear-
ing biosensors and lab-on-chip/microfluidic biosensors were evaluated. Finally, this review addresses the
current challenges and future perspective of ENBs in biomedical applications.
Key scientific concepts of review: This literature may provide useful information regarding the application
of ENBs in biosensing and therapeutic platforms.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Enzymes, based on catalytic activities, are considered as a key
part of the development of health systems [1]. Indeed, the ability
of the enzyme to perform catalytic reactions has made these com-
pounds inevitably the most important cause of biological reactions
over the past decades [1]. However, due to the lack of long- and
medium-term stability in various environmental and biological
conditions, the complexity of enzyme production processes, the
presence of impurities, and the limited activity range (low rate of
recovery and reproducibility) led the researchers to focus on pro-
ducing alternative materials showing catalytic activity. Enzyme
stabilization by covalent/non-covalent attachment on modified
matrices using different chemical activation strategies [2] is sur-
prisingly valuable because we will be able to reuse the enzymes
after applying them during a particular process, and thus we can
see a longer half-life and less degradability during the specific reac-
tions [3–5]. Not only their diffusing and kinetic parameters are
changed [6–8], but the rate, at which the reactions take place, as
well as the onset of a series of reactions and their activation/inhi-
bition, can be controlled, both in terms of time and type of com-
plete reaction [9–12]. Enzyme immobilization also prevents
contamination of protein/enzyme substrates and other compounds
[13,14], which also reduces the cost of purification [15,16]. Immo-
bilization of the enzyme increases the stability and half-life of the
enzyme [17–19], but at the same time allows the enzymes to oper-
ate on a larger scale and larger ecosystem ranges and possibly
interact with other enzymes [20–22]. The stabilization of enzymes
requires the formation of an environment in which the enzymatic
activity in terms of temperature and the corresponding pH is sim-
ilar to the initial environment of its function in the biological sys-
tem [23,24].

Recent advances in industrial and medical biotechnology have
made the use of stabilized enzymes in a variety of biomedical
and manufacturing applications [25,26]. This increase in commer-
cial applications of enzymes that are consistent with their stabi-
lization has a wide variety of research areas in the field of
enzyme loading on different solid supports [27]. Recently, special
researches have been conducted on the development of more fea-
sible and applicable methods for enzyme stabilization, which has
led to the formation of more potential methods for the production
or decomposition of a number of compounds by biocatalytic reac-
tions [28,29]. There are also several reports on the potential appli-
cation of immobilized enzymes for target delivery [30,31], anti-
tumoral effect [32,33] and biosensors [34–36].

Indeed, the development of enzyme immobilization in biotech-
nological [11,37] and clinical platforms [38] has received a great
deal of attention in many applications in the field of drug delivery
[39] to various biological systems and anticancer activities [40,41].
They are also used as sensors [42] to control some diseases like dia-
betes [43] and cancer [44]. Indeed, enzyme immobilization is
widely used in the design and development of degradable biosen-
sors [45].
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With the development of nanotechnology, researchers are
increasingly paying attention to the technology of enzyme–
nanoparticle (NP) bio-conjugate (abbreviated as: ENB), and also
development of nanozymes [46]. Although ENB is a potential strat-
egy for application of enzymes in biomedical platforms [47], the
complex processes of development, cost, and loss of enzymatic
activity due to lack of proper interaction upon immobilization on
nanomaterial-based matrixes have led to a limited development
of this method compared to nanozymes [4,48–54]. Of course,
ENB has some potential advantages such as increased stability of
different enzymes under harsh environmental and biological con-
ditions, targeted enzyme transfer to tissues [55,56], reduced
inflammation induced by antioxidant activities of NPs [57], and
induction of growth in tissues due to optimal effects of NPs
[58,59]. Given the importance of using enzymes with high stability
and catalytic activity, this review article focuses on the develop-
ment and application of ENB for therapeutic, drug delivery and
biosensing approaches.
Different methods of ENB preparation

Despite the expanded immobilization of enzymes on nanoma-
terials in the industry, their use in biomedical applications encoun-
ters some limitations due to the toxic nature of some NPs.
Nevertheless, the use of ENB for drug delivery and therapeutic
applications is under development. In this regard, in addition to
the toxicity of NPs, which can be moderated according to the type
of coatings and materials used, enzyme activity with high effi-
ciency is another major challenge. Advantages and disadvantages
of the different methods of enzyme loading on the nano-based
platforms are summarized in Table 1. It was revealed that the
adsorption method can show the highest efficiency and the cova-
lent or cross-linking methods provide the highest stability on the
enzyme structure [23,60]. Therefore, the type of target and materi-
als used in the matrix are effective on the final efficiency of ENB
development.
Material used in matrix

Despite the wide range of NPs, the applications of many of these
supports are limited in biomedical activities for enzyme loading
due to their toxicity and type of application. For example, despite
providing sufficient space for enzymes loading on porous silica
(SiO2) NPs [61] and carbon nanostructures [62,63], they are not
being widely used in biomedical applications because of the cyto-
toxicity stimulated via apoptosis. Hence, providing sufficient space
for loading and improving the stability of enzymes is not the main
criteria for application of NPs in therapeutic activities. The most
important NPs used to transfer enzymes to target tissues, including
synthetic and natural polymers, inorganic metal oxides and hybrid
compounds.

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
Advantages and disadvantages of different enzyme immobilization techniques.

Immobilization
methods

Advantages Disadvantages

Adsorption Simple production, no
need for functionalization
of support, inexpensive,
lack of conformational
changes of the enzyme,
high catalytic activity,
Minor changes of the
active site of the enzyme.

The formation of weak
bonds with solid support,
low stability and high
leakage.

Entrapment/
Encapsulation

High stability, minimal
conformational changes of
the enzyme, continuous
reaction, easy downstream
process, co-
immobilization of
different enzymes.

Low apparent activity of
the enzyme, limitation of
mass transfer, low loading
percent, complicated
experimental process.

Covalent
attachment

Lack of enzyme leaching,
strong interaction with the
solid support, high
stability, high operational
consistency.

Mobility limitation of
enzymes, low enzyme
activity, structural
restriction, most
complicated and
expensive, use of toxic
chemicals.

Cross-linking Strong bonding, lack of
enzyme leakage, reusable,
low release rate,

Decrease in enzymatic
activity, decrease in
diffusion rate, transfer
limitations
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Polymers

Each member of the polymers includes natural (collagen, fibrin,
cellulose, chitin, chitosan, alginate, and creatine), synthesized [poly
(ethylene glycol)(PEG), poly(lactic-co-glycolic acid) (PLGA), poly
(lactic acid) (PLA), poly(vinyl pyrrolidone) (PVP), poly(acrylic acid)
(PAA)and poly(caprolactone acid) (PCL)], and their combination
have unique chemical and physical properties in biomedical activ-
ities that make them as potential and versatile agents in different
biomedical applications such as drug delivery, tissue engineering,
imaging, and diagnostic activities [24,64]. These compounds show
outstanding features such as biocompatibility, cost-effectiveness,
biodegradability, safety, porosity, high surface area for enzymes
loading, and finally reusability in multiple cycles [65,66]. For
instance, in a mice model, Salvalaio et al. [67] for the treatment
of lysosomal storage disorders, one of the metabolic syndromes
in the brain, using PLGA-NPs modified with albumin and loading
lysosomal enzyme not only were able to pass the enzyme through
the blood–brain barrier and improve disease by providing enzyme
in the tissue, but also revealed that PLGA with significant biocom-
patibility and biodegradability in the target tissue had no side
effect on cell viability. However, there are some disadvantages
such as unwanted impurities in natural polymers that increase
the immunogenicity at the time of decomposition, the highly vari-
able mechanical structures due to the type of bonds and com-
pounds in the polymers, and the production of acidic compounds
during degradation [24,68].

Inorganic metal oxidase

Metal and metal oxide NPs comprise a wide range of nanoma-
terials. These compounds are highly regarded because of their
unique chemical or physical properties such as high stability, high
availability, simple modifiability, optimal to excellent biocompati-
bility, crossing physiological barriers, imaging capability, and aux-
iliary activities such as photothermal therapy (PTT), antioxidant
activities, tunable size and level [69–74]. Moreover, high enzyme
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loading [75], unusual redox properties [76] and regulation of enzy-
matic activities through conformational induction [77–79] can be
other prominent features of these NPs. However, these nanomate-
rials show some disadvantages that depend on their physical and
chemical nature and methods selected for NPs production. For
example, the toxicity of inorganic metal oxide NPs increases as
the surface-to-volume ratio of NPs enhances, whereas the toxicity
reduces as their dimensions decrease below 10–15 nm due to the
detoxification of NPs [80]. While, Gao et al. [81] and Chen et al. [82]
reported that iron oxide NPs (IONPs) and copper oxide (CuO) NPs
inherently have peroxidase- and oxidase-like activities respec-
tively, which by decreasing the size of NPs from 300 to 30 nm
and 30 to 6 nm, their enzymatic-like activity increases. Therefore,
the toxicity of the nanomaterials is consistent with their catalytic
activities. Also, active sites on metal or metal oxide NPs that have
inducible effects on cell death cause high toxicity through DNA
degradation, destruction of mitochondrial electron transfer activi-
ties, reactive oxygen induction, denaturation of vital intracellular
proteins, and increased expression of inflammatory proteins
[83,84]. In addition, the cost of manufacturing methods and high
toxicity of NPs-forming materials are other challenges of this group
[85]. Nevertheless, the toxicity reported in metal and metal oxide
NPs are confusing and generally challenging due to the variety of
cells used in the articles as well as the diverse conditions of the
examined NPs. However, the most toxic inorganic metal oxide
NPs appear to be CuO and zinc oxide (ZnO) and the most compat-
ible NPs seem to be IONPs and titanium oxide (TiO2) [84,86].
Among the metal NPs, gold (Au) and Fe exhibited the minimum
toxicity [84,87,88].

Hybrid compounds

Sometimes the combination of polymer compounds with
inorganic metal oxide is used to increase the efficiency of
nanoplatforms. Each of the polymers and metal or metal oxide
NPs show some merits and drawbacks that their optimization
can reduce their side effects. Moreover, platforms produced
can display properties that cannot be observed in individual
materials. Synthesized hybrids are divided into three parts
based on the type of ingredients: organic-organic hybrids,
organic-metal oxide hybrids and metal oxide-metal oxide
hybrids (Table 2). Combining an inorganic metal oxide with
potential mechanical stability and the ability to perform auxil-
iary therapeutic activities with a biocompatible polymer pro-
duces a suitable ENB for enzymatic activities in medical
application. In addition, by using different hydrophilic and
hydrophobic compounds, a nanoplatform can be prepared
which, in addition to increasing solubility and reducing
immunogenicity in the physiological condition, increases the
chemical bonds between the enzyme and the nano-based sup-
port and high enzyme efficiency under physiological states
[89]. Also, Liu et al. [90] showed that the use of different poly-
mers in the synthesis of nanoplatforms provides the possibility
of creating higher porosity along with increasing the ability of
chemical bonding. For example, Li et al. [91] by comparing the
ENB and free enzyme with the platform derived from propyl-
methyl ammonium chloride as a polymer and IONPs as a
matrix, not only improved the lipase loading, but also
increased the enzyme activity 1.5 fold and its recovery by
147.7%. Similarly, it was shown that the integration of poly-
vinyl alcohol with IONPs increased the catalytic efficiency of
the lipase and its stability compared to the individual state
of the NPs and the free enzyme [92]. In addition to polymers,
protein compounds such as amyloid fibrils can be used to pro-
duce hybrid NPs to further transfer NPs into the target cell or
tissue [93].



Table 2
Summary of hybrid nanoplatforms applied for enzymes immobilization.

Nanoplatforms Immobilization type Binding group Immobilize enzyme Ref.

Graphene oxide-Fe3O4 Covalent binding –OH, C = O Glucoamylase [151]
Cellulose-Polyacrylic acid Covalent binding –OH, COOH Horseradish peroxidase [152]
Chitosan-Alginate Entrapment –NH2, –OH Amyl glucosidase [153]
ZnO-SiO2 Cross-linking –OH Horseradish peroxidase [154]
Silica-Lignin Adsorption –OH, C = O glucose oxidase [155]
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Applications of ENB in medical activities

Therapeutic platforms

Therapeutic enzymes like other enzymes can be loaded onto
nanomaterials and applied as a platform in different applications
(Table 3). In this regard, it was shown that a magnetic carrier could
handover streptokinase to the arterial thrombosis of the dog with
high efficiency and high concentration [94]. In another study,
Kempe and Kempe [95] exhibited that with the covalent bonding
of magnetic NPs (10–30 nm) to the plasminogen activator as a pro-
tease, in addition to enhancing the enzyme stability, successful
treatment of anti-thrombosis could be performed. On the other
hand, it has been shown that the use of liposomes coated with
PEG for entrapping tissue plasminogen activator results in greater
stability of the enzyme in the blood up to 9 h versus the free
enzyme with one hour due to preventing plasma clearance and
enhancing the activity of the enzyme [96]. Moreover, Piras et al.
[97] developed the enriched urokinase loading onto polymeric
NPs based on a hydrophobic absorption gradient with 83% initial
activity of the enzyme for thrombolysis treatment.

The use of microporous fibrin nanocomposites as a potential
scaffold in entrapping the alkaline phosphatase with a covalent
bond for bone regeneration resulted in a complete recovery of bone
repair in vitro [58]. Researchers also used DNA and AuNP scaffolds
to stabilize and improve the activity of alcohol oxidase for alcohol
detoxification, which received reliable responses on clinical trials
in vivo [98]. Furthermore, despite the high variation in the loading
of the tyrosinase on nanomaterials in the medical field, such as ZnO
nanorods [99], carbon nanotubes (CNTs) [100], magnetic nano-
beads, [101] and chitosan [102], it has been recently shown that
the nanocapsules of the polyhemoglobin–tyrosinase complex
reduced the activity of the melanoma cells in the murine tumor
model [103]. In another study, Yun et al. [104] were able to reduce
the brain inflammation, reperfusion injury, and the possibility of
Table 3
Therapeutic enzymes immobilized on nanomaterials.

Enzyme Nanomaterials Application Ref.

Bilirubin oxidase Albumin aggregate Treatment of
neonatal jaundice

[156]

Chymotrypsin Magnetic Pancreatic
insufficiency

[157]

Serine endopeptidase Antithrombotic
therapy

Thrombolytic
activities

[158]

Chymotrypsin Electrospinning
nanofibers

Pancreatic
insufficiency

[159]

Beta-Galactosidase Magnetic Lactose intolerance [160]
Tyrosinase Treatment of

melanoma cancer
Polylactic-acid
nanocapsules

[103]

Lysozyme Antimicrobial
therapies

Nanofiber mats [161]

Asparginase PEGylated Acute
lymphoblastic
leukemia

[162]

Glucose-6-phosphate
dehydrogenase

SiO2-based matrix Jaundice [163]
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stroke with the superoxide dismutase (SOD) encapsulated by lipo-
some and polymer PLGA to increase stability, higher passage and
higher enzyme accumulation in the damaged area. Meanwhile,
the use of targeted polymeric NPs containing SOD and catalase
after 30 min of injecting could provide strong protection from lung
inflammation of the mouse due to the prevention of endotoxin pro-
duction (Fig. 1A) [105]. Also, Martinez et al. [106] developed a der-
mal patch of the keratinase along with enrofloxacin antibiotic by
the nano-gel from alcohol and pectin, which enzyme activity in
this nano-composite was 100% of its initial enzyme activity with
a higher stability and performance on the skin.

Drug delivery

Enzymes can be used as agents in the drug delivery systems
based on controlled release of drugs via enzyme reaction under
specific conditions. In other words, targeting ligands in drug carri-
ers are activated by enzymes to enter the selective cell to release
the drug. The most important enzymes studied in this field are pro-
teases, lipases and glycosidases. In this way, the NPs are assembled
simultaneously with decomposed units, which, the drug is released
after the digestion of the NP in the presence of the enzyme. This
method can be very effective in reducing the secondary effects
and toxicity due to the partial accumulation of drugs in non-
target tissue due to the absence of required enzymes. Accordingly,
Law et al. [107] designed a sequence of peptides that can diffuse
the therapeutic factors by interaction with the protease.

In the cellular model, it was shown that with the use of den-
drimers containing Gly-Phe-Leu-Gly peptide-sequences linked to
doxorubicin (Dox), the cell death process increases with the pres-
ence of cathepsin B enzymes (Fig. 1B) [108]. Furthermore, Kang
et al. [109] developed peptide nano-polymers for gene delivery
that were activated in the presence of protein kinase or protease
and induced drug transfer to the cells in vitro and in vivo. Similarly,
it has been shown that the application of a peptide sequence
containing a glycine-glycine bond attached to a nano-polymer
(N-(2-hydroxypropyl) methacrylamide) and Dox that is degraded
by protease, in addition to increasing the targeted release of drug
in breast cancer, it can produce a higher stability and lower toxicity
[110].

In the animal model, Singh et al. [111] and Liu et al. [112]
reported that the Dox attached to the mesoporous SiO2 NP by
peptide-sequence in response to the activity of the protease accu-
mulated in the tumor tissue, led to cell apoptosis. In this line, the
researchers showed that an antitumor ether lipids drug delivery
based on the phospholipase A2 activity, which reduced drug toxi-
city, the increase of membrane permeability and drug performance
[113]. In some cases, a linker susceptible to two or more enzymes
can be established to improve the response of a developed plat-
form to enzyme activity. For example, it was determined that the
cyclodextrin caps of the cavities of the SiO2 NPs would be degraded
by both lipase and amylase [114]. Since in the cancer cells, the
emalase level is 85 times higher than that of normal cells [115],
Ferguson and Duncan [116] described that sugar NPs provide drug
delivery to the tumor site without cytotoxicity against normal
cells. Also, this drug delivery system can be used as a potential



Fig. 1. (A): a; Endothelial targeted antioxidant NPs formation scheme by controlled precipitation, b; Binding of Ab-PAC to cultured endothelial cells. 125I- labeled PACs
incubated with cells at 37 �C, rinsed, lysed and measured for radioactivity, c; Tissue distribution of intravenous injected PACs into mice after 30 min circulation time.
Protection by endothelial-targeted catalase PACs from oxidative stress in vitro (d) and in vivo based on brochoalveolar lavage (BAL) protein (e-f) [105]. (B): a; transmission
electron micrograph of DendGDP NPs, b; Release of Dox from the NPs in the absence or presence of cathepsin (50 U), c; near-infrared fluorescence images for CT26-bearing
male nude BALB/c mice. Dox itself or Dox-conjugated dendrimer NPs (5 mg/kg) were injected into the tail vein of each mouse. The major organs were removed from each
mouse 48 h after injection [108].
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platform in increasing drug stability by transporting drugs to can-
cer cells as well as decomposing glycosidic linkages by the
amylase.

Biological assays

The real time monitoring of the biological events and simulta-
neously developing therapeutic approaches is known to be possi-
ble via examining chemical compounds such as glucose or urea
[117]. Therefore, the use of enzymes as biosensors has received a
great deal of interest in the control of diseases or physiological
activities [118]. The use of ENB as a biosensor for diagnostic and
therapeutic activities not only requires complete assurance of the
biosensors’ functional parameters, it is important to ensure that
the sensor system does not present a hazard to the patient. Never-
theless, in vivo biosensors based on ENBs have attracted a number
of researchers because of their important role in controlling some
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diseases, especially diabetes which is a global problem [119]. For
instance, Chen et al. [120] in a short-term (21-d) and Luo et al.
[121] in a long-term (295-d) period by designing a glucose oxidase
(GOx)-based biosensing platform loaded on poly[2-
(dimethylamino)ethyl methacrylate] containing insulin were able
to control blood glucose levels in the both non-fasting and fasting
models by implanting the designed nanobiosensor in the animal’s
arm. As blood glucose increases, the GOx is activated in ENB which
converts peripheral glucose to glucuronic acid. Changes in environ-
mental acidity caused by glucuronic acid accumulation alter the
structure of the polymer and result in release of insulin [120]. Like-
wise, Chu et al. [122] by providing an albumin-based membrane
containing GOx, catalase, and manganese NPs were able to control
glucose in blood based on insulin release in diabetic rats over a 7-
day period by altering the environmental acidity via GOx activity.
Moreover, in the animal model, Gu et al. [123] designed a nano-
network of alginate and chitosan containing insulin capsules which
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insulin released by increasing blood glucose levels due to the activ-
ity of the GOx in the network and the bond breaking of polymer
and insulin.

It has also been shown that insulin can be used to control blood
glucose based on solving insulin-containing polymeric vesicles due
to the hydrophilic-hydrophobic balance change. In this regard, Hu
et al. [124] were able to control the blood glucose of diabetic rats at
20, 30, and 50 min based on concentrations of 268, 330, and
450 mg/dL, respectively, by designing vesicles made of H2O2-
sensitive copolymers [PEG and phenylboronic ester (PBE)-
conjugated polyserine] containing insulin and GOx. With activa-
tion of the GOx and H2O2 generation, the vesicles components
breakdown which releases insulin. Based on this structure and
enzymatic activity, drugs can be delivered to the target tissue or
released into the body. Recently, to accelerate responsiveness to
a platform containing insulin, Mohammadpour et al. [125] using
PLGA and chitosan polymers and loading of both catalase and
GOx were able to respond rapidly to any changes in blood glucose
based on copolymer degradation induced by gluconic acid accumu-
lation to alter the platform acidity under diabetic rat skin. How-
ever, any response to blood glucose variation without the burst
release of insulin from the nanoplatform is a major challenge.
Indeed, the simultaneous use of two enzymes can provide a rapid
response to any changes in blood glucose. While, the use of copoly-
mers that provide greater rigidity of the platform can guarantee
the duration of solid support integrity. In this regard, it was deter-
mined that the presence of catalase and GOx in the copolymer syn-
thesized from dextran with a high cyclic acetyl content, not only
alters the kinetics of insulin release in diabetic rats, but also
enhances the rate of response to glucose variation by immobilized
enzymes [126].

On the other hand, there are reports of the use of inorganic NPs
such as SiO2 to increase the stability of the platform for regulating
blood glucose level [127–129]. In this technique, mesoporous NPs
containing GOx and catalase coated with polymers linked to micro-
needles are generally sensitive to any changes in blood glucose. In
this context, Jiang et al. [130] by designing ENB located on skin
including polyethyleneimine with catalase and GOx on insulin-
containing mesoporous bioactive glass NPs, were able to control
the blood glucose changes of diabetic rats by prolonging polymer
degradation induced by enzymes activation and insulin release
(Fig. 2).

Taken together, these reports indicate that drug delivery sys-
tems based on biosensing activities of GOx or catalase is a promis-
ing strategy for the treatment of wide range diseases.

Enzymatic nanobiosensors

An enzymatic nanobiosensor is a valuable method for analyzing
various types of biomaterials in medicine, pathology, pharmacy,
and so on. In the clinical field, enzymatic nanobiosensors can accel-
erate laboratory processes at a lower cost [118], whereas a limited
number of them are available in the laboratory. The enzymatic
nanobiosensors are essentially designed based on the existence
of a specific catalyst for binding to an analyte that can increase
selectivity, sensitivity, and analytical signaling of the sensors
[131]. Because of the wide variation in enzymatic nanobiosensors
[132–134] and the presence of numerous reviews in this field
[23,24,135], this paper focuses on the nanostructure of paper-
based biosensors, wearable biosensing tools, and lab-on-a-chip or
microfluidic instruments.

Paper-based enzymatic nanobiosensors for medical detection

Paper-based enzymatic nanobiosensors that were introduced in
2007 are a powerful detection (Table 4) and portable instrument
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which greatly reduces production and maintenance costs. To
increase the sensitivity and selectivity of paper sensors that are
almost fabricated by photolithography, laser, and screen printing,
the use of nanomaterials in its layers was also used. Enzymatic
agents, cofactors and colorimetric dyes were also immobilized on
nanomaterials in addition to the paper substrate. In this regard,
Ornatska et al. [136] reported that ceria NPs along with the GOx
onto filter paper in the presence of urinary glucose could change
the color of the paper sensor from white to yellow. They declined
the glucose limit of detection to 0.5 mM and linear range up to
100 mM. Analogously, Cho et al. [137] developed a paper enzy-
matic nanobiosensor with a GOx capable of detecting a level of glu-
cose from a sweat with a range of 0.02–1.0 mg glucose mL�1

(Fig. 3A). Also, another study showed that electrochemical paper
nanosensors based on AgNPs decorated boron-doped diamond
onto paper with cholesterol oxidase could detect cholesterol
[138]. In addition, with the application of GO in paper-based elec-
trochemical nanobiosensors along with acetylthiocholine chloride,
Panraksa et al. [139] provided diagnosis of acetylcholinesterase in
the blood at a detection limit of 0.1 U/mL in range of 0.1–15 U/mL.

Wearable biosensing devices

Integrating smart tools such as mobile phones, tablets, watches
and flexible electronic devices with biosensing techniques can in
addition to instantaneous medical monitoring and easy transport,
provide quick collection of real-time biometric data at single way
[140]. The best practical example in this scope is the continuous
and extensive control of blood glucose levels among diabetics
and athletes in periodic competitions. In this regard, Kudo et al.
[141] and Iguchi et al. [142] produced a wearable enzymatic
nanobiosensor with flexible oxygen and hydrogen peroxide elec-
trodes, respectively, that could detect glucose level in tears with
a range of 0.025–1.475 mM and a range of 0.06 to 2.00 mM. Simi-
larly, in another study, a combination of sol–gel as a contact lens
with GOx was used to determine the level of glucose with rapid
rate and high precision (0.1–0.6 mM) [143]. Also, Jia et al. [144]
demonstrated a wearable enzymatic nanobiosensor to determine
the level of lactate with lactate oxidase in the sweat of cyclist
sports with linearity up to 20 mM. Meanwhile, another study
showed that the determination of alcohol level by alcohol dehy-
drogenase immobilized on the wearable nanobiosensor through
sweat is possible (Fig. 3B) [145].

Lab-on-a-chip or microfluidic devices

Lab-on-a-chip and microfluidics are tools for analyzing samples
with small volume, whereas designed to integrate multiple exper-
iments. The main purpose of these tools is access to high precision
and selection, and the lack of manual preparation of samples. In
this line, Chikkaveeraiah et al. [146] identified the products of tis-
sue culture by integrating cell culture into microfluidic reservoirs
and using Horseradish peroxidase (HRP) deposited on AuNPs in
canals. Furthermore, Wisitsoraat et al. [147] were able to measure
the cholesterol levels of 60 specimens per hour by using choles-
terol oxidase immobilized on CNTs based on amperometric sensors
in microfluidic channels. In an experimental, the concentration of
glucose, lactate, chloride, and pH of the secreted fluid derived from
the sweat glands cultured in the microfluidic reservoirs was deter-
mined by immobilizing the enzymes like a peroxidase, Keratinase
and oxidase in the channels (Fig. 3C) [148]. The change in the color
of the fluid introduced into the channels caused by the enzyme
activity indicated the concentration of the desired products. As
well as, Backer et al. [149] developed a lab-on-a-chip microfluidic
system based on amperometric sensor to measure glucose, gluta-
mate and glutamine by inserting enzymes of GOx, glutamate oxi-



Fig. 2. (A): a; Schematic representation of the glucose-sensitive insulin delivery system using glucose-sensitive BGNs, b; The glucose-sensitive insulin released from the MNs
in vivo, c; Profiles of insulin release in different pH, d; SEM images of BGNs-GOx/CAT MNs, e; Profiles of blood glucose levels after Ins-BGNs-GOx/CAT MNs injection of insulin
treated with diabetic rats, f; Fluorescence and bright-field histological of FITC-labeled insulin-loaded MNs attached on diabetes rats, g; Histological sections of spleen, lung,
and kidney of diabetic rat after treated [130].

Table 4
Paper-based enzymatic nanobiosensors.

Enzyme Nanostructure Analyte Method Detection limit Ref.

GOx Tungsten disulfide nanosheets Blood glucose Colorimetric method 2.9 mM [164]
GOx MFe2O4

(M = Mg, Ni, Cu)
Glucose in the urine Colorimetric biosensing 4.5 � 10-7 M [165]

Glucose
dehydrogenase

AuNPs Dihydronicotinamide
adenine dinucleotide

Colorimetric readout 12.5 mM [166]

HRP AuNPs Nucleic acid Lateral flow strip 0.3 pM [167]
Cholesterol

oxidase
AgNPs Cholesterol Amperometric detection 0.25 mg/dL [138]

Acetyl thiocholine esterase AuNPs acetylthiocholine Colorimetric method 0.5 mM [168]
Acetylcholinesterase CNTs nerve agents Lateral flow strip 0.02 nM [169]
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dase and glutaminase onto platinum NPs with a detection limit of
0.05 mM for glucose and glutamate and 0.1 mM for glutamine.
Besides, Ali et al. [150] using a microfluidic system based on lab
on chip and cholesterol esterase and oxidase immobilized on nickel
NPs and CNTs in canals, were able to detect cholesterol levels in
body fluids with a sensitivity of 2.2 mA/mM/cm2.

Challenges and future perspective

Despite the benefits of using ENB in biomedical activities, these
compounds still face serious challenges, most notably:

1- One of the major challenges in enzyme loading on porous
NPs such as porous SiO2, scaffolds and even porous inor-
ganic metal oxides, is the blockage of pores in tanks embed-
ded in the platform. Increasing the enzymatic layers on the
platform as well as the presence of enzymes that have not
been fully incorporated into the tank can reduce the embed-
233
ded gap diameter, which adversely affects the performance
of the ENB. Moreover, because most designed ENBs are sat-
urated with enzyme layer-by-layer aggregation, excessive
enzyme accumulation on the support or part of it can impair
the overall performance of the enzymes. Therefore, by creat-
ing specific sites on the NPs for binding to the enzyme, in
addition to reducing the consumption of enzyme, it can pre-
vent the reduction of the unwanted enzyme activity.

2- Despite increasing enzyme stability and reproducibility
upon ENB, a decrease in the content of enzyme loading is
observed due to changes in the enzyme active site resulted
from the conformational effects induced by the nanomateri-
als or the unfavorable binding of the enzyme to the nanoma-
terials. Since the developed NPs do not have a complete
uniformity, so the size and shape of the NPs can strongly
influence the structure of the enzymes. For this purpose, bio-
logical methods that produce more uniform NPs can be used
as an alternative for fabrication of potential NPs.



Fig. 3. A: a-b; Power outputs and polarization curves with varying concentration of glucose in artificial sweat; (a) 0.02 mg/mL (~100 mM); (b) 0.2 mg/mL (~1 mM), c; The
glucose levels in sweat were monitored immediately 30 min after the beginning of the exercise [137]. B: (a) Schematic diagram of a wireless operation of the iontophoretic-
sensing tattoo device for transdermal alcohol sensing. In the diagrams of the tattoo-base device, blue and red highlights show the active zones during iontophoresis and
amperometric detection, respectively, b; Control experiments without drinking, c; Experiments with consumption of 12 oz of beer measured from two different human
subjects, before and after drinking alcohol beverage [145]. C: a; Pictures demonstrating NFC between a sweat monitoring device and a smartphone to launch software for
image capture and analysis, b; Results of stress distribution associated with the devices on phantom skin and respective optical images under bending with 5 cm radius, c;
colorimetric detection reservoirs that enable determination of total water loss and concentrations of lactate, glucose, creatinine, pH, and chloride ions in sweat, d; images of
two different types of sweat patches (small and large harvesting areas) applied to the lower back and volar forearm collected at various times during the study [148].
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3- Another major challenge in development of ENB is the
incompatibility of nanomaterials with biological activities
that require surface modification. Surface modification
sometimes reduces the performance of nanomaterials in
enzyme transfer to the targeted tissue due to the lack of tar-
geted ligands. On the other hand, the presence of ligands
along with the enzymes can provide an unfavorable binding
of the enzyme-ligand, which reduces the enzyme activity.
Although targeting by entrapment/encapsulation may result
only in partial structural changes of enzymes, it was found
that enzyme function was reduced by creating rigid struc-
tures in the enzyme by NPs modification. The development
of a promising strategy is difficult because of the lack of suf-
ficient information on NPs-enzyme, enzyme-ligand and
enzyme-enzyme interactions after immobilization of
enzymes into the solid supports.

4- Next challenge is the lack of confidence in the advantages of
inorganic substrates such as inorganic metal oxide in
biosensing activities in vivo, due to the long-term stability
234
and also the unintended catalytic effects resulting from
removal of the surface enzyme. According to the reported
literature, the use of polymers or inorganic NPs less than
10 nm can greatly reduce this problem. However, the use
of ENB in biosensing has generally been used in implants
or skin attachments.

5- Despite the widespread use of ENB in therapeutic activities
and drug delivery to cancer cells due to the possibility of cor-
ona protein formation on inorganic NPs such as metal oxi-
dize in blood and non-target cells, the risk of unwanted
toxicity increases. However, with the change of nanomateri-
als used in the platform, the limitation caused by the pres-
ence of corona proteins has been partially controlled.

Taken together, the use of ENB instead of free enzyme in
biomedical activities not only increases the targeting, sustainabil-
ity, and reduces the therapeutic costs, but also enables the syn-
chronization of therapeutic activities such as PTT or magnetic
therapy based on the presence of metal oxide NPs.
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Summary and outlook

Although free enzymes have higher enzymatic activity than
enzymes loaded on objects, ENBs have received a great deal of
attention in biomedical activities due to increased stability of
enzymes and even improved enzymatic activity at inappropriate
temperature and pH. Achieving the method of isolating and purify-
ing proteins in solution proves that by using NPs, it is possible to
remove certain enzymes from raw solutions. One of the future
fields of research in the field of using NPs is the preparation of
adsorbents with special functional groups to facilitate the specific
or selective extraction of enzymes from different samples for
biomedical applications. The use of ENB in the biomedical applica-
tion can result in the development of simple, fast and sensitive
methods for drug targeting, anticancer and biosensing platforms.
This integration in the future can lead to a set-up of more potential
and rapid methods for promising development of biomedical
modalities based on immobilized enzymes. There are many chal-
lenges before the practical application of ENB in the biomedical
applications. First, the potential dangers of ENB to human health
must be fully assessed. Another issue is the use of coatings that
do not have a health grade and can lead to health risks. Therefore,
one of the important areas of research is the development of ENB
that can be used in a safe aspect in the development of biomedical
platforms.
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