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RGS1 regulates myeloid cell accumulation in
atherosclerosis and aortic aneurysm rupture
through altered chemokine signalling
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Chemokine signalling drives monocyte recruitment in atherosclerosis and aortic aneurysms.

The mechanisms that lead to retention and accumulation of macrophages in the vascular wall

remain unclear. Regulator of G-Protein Signalling-1 (RGS1) deactivates G-protein signalling,

reducing the response to sustained chemokine stimulation. Here we show that Rgs1 is

upregulated in atherosclerotic plaque and aortic aneurysms. Rgs1 reduces macrophage

chemotaxis and desensitizes chemokine receptor signalling. In early atherosclerotic lesions,

Rgs1 regulates macrophage accumulation and is required for the formation and rupture of

Angiotensin II-induced aortic aneurysms, through effects on leukocyte retention. Collectively,

these data reveal a role for Rgs1 in leukocyte trafficking and vascular inflammation and identify

Rgs1, and inhibition of chemokine receptor signalling as potential therapeutic targets in

vascular disease.
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C
hemokine signalling plays a key role in leukocyte
trafficking in the pathogenesis of vascular inflammation,
the underlying cause of cardiovascular diseases such as

atherosclerosis and abdominal aortic aneurysms (AAA). Leuko-
cyte activation and chemotaxis is mediated by chemokines
binding to multiple G-protein-coupled receptors (GPCRs).
Genetic or pharmacological inhibition of chemokines or
chemokine receptors results in reduced atherosclerotic plaque
formation1–4 and inhibits AAA formation5,6. Deletion of either
Ccr2 or Ccr5 decreases plaque formation in mouse models of
atherosclerosis that is accompanied by reduced macrophages1,2,
and deletion of Ccr2 inhibits aortic aneurysm formation6,7.
Although the roles for chemokines and chemokine receptors are
well defined in the recruitment of leukocytes to the vascular wall
in driving disease progression8, it remains less clear how recruited
leukocytes accumulate or emigrate in the presence of ongoing
chemokine stimulation.

Elucidating these cellular mechanisms would provide strategies
targeted at reducing macrophage accumulation or promoting
macrophage emigration in the inflamed vasculature. Chemokine
receptors couple to Gai subunits that have an intrinsic GTPase
activity, which can be enhanced by RGS proteins, leading to
GPCR desensitization. Of the RGS proteins, Regulator of
G-Protein Signalling-1 (RGS1) accelerates Gai GTPase activity
and acts to downregulate the response to sustained chemokine
activation9,10. Genome-wide association studies have speculated a
link between Rgs1 and polymorphisms associated with the risk of
several chronic inflammatory diseases such as celiac disease,
multiple sclerosis and type I diabetes11–13. Other studies have
identified a role for RGS1 in the control of lymphocyte
homeostasis10,14, but to date no studies have investigated the
function of RGS1 in macrophages in vascular inflammation.

Here we report a previously unknown role for RGS1 in
monocyte–macrophage trafficking in the development of vascular
inflammation. We identified Rgs1 as a novel candidate gene in
atherosclerosis and AAA, and tested the hypothesis that RGS1 is a
key modulator of chemokine receptor activity, with critical roles
in regulating the vascular inflammatory response by affecting
macrophage function. We investigated the effects of Rgs1 deletion
on macrophage recruitment and retention in the artery wall, and
elucidate a new requirement for RGS1 in leukocyte accumulation
in atherosclerosis and AAA rupture.

Results
Vascular inflammation increases Rgs1 expression. To identify
genes that are specifically regulated with atherosclerosis pro-
gression, we used a whole mouse genome array to profile the
gene expression in the thoracic aortas from ApoE� /� mice,
comparing older atherosclerotic ApoE� /� mice with young
littermate animals before plaque development (Supplementary
Table 1). Among a number of genes already known to play major
roles in the development of atherosclerosis such as Ccl2 (MCP-1),
Rgs1 was identified as one of the novel candidate genes with
higher expression in aortas from older ApoE� /� mice than in
aortas from younger ApoE� /� mice. We confirmed that Rgs1
mRNA was upregulated in aortas from atherosclerotic ApoE� /�

mice compared with younger ApoE� /� mice (8 weeks, male
mice) or wild-type C57BL/6 mice of the same age (16 weeks, male
mice) by quantitative reverse transcriptase-PCR (qRT–PCR)
(Fig. 1a). The high expression of Rgs1 was associated with the
high expression of the macrophage marker Cd68 in individual
animals, suggesting that macrophages may be the source of RGS1
in atherosclerotic plaques (Fig. 1b). To test this hypothesis, we
quantified Rgs1 expression in different primary cells isolated from
ApoE� /� mice and found high Rgs1 mRNA levels in CD68

positive macrophages compared with B cells where Rgs1 is known
to have a non-redundant role (Fig. 1c). In contrast, we did not
detect Rgs1 mRNA in either vascular smooth muscle cells
(VSMCs) or endothelial cells, which are also known to be
involved in atherosclerotic plaque progression (Fig. 1c).

To extend these findings in the mouse atherosclerosis model to
human disease, we first evaluated Rgs1 expression in macrophages
isolated from human carotid artery plaques obtained at
endarterectomy. Rgs1 mRNA levels were detectable in macro-
phages derived from atherosclerotic plaque (Fig. 1d), compared
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Figure 1 | Rgs1 is upregulated by inflammatory stimuli in activated

monocytes. (a) Confirmation of Rgs1 mRNA changes in thoracic aortas of

ApoE� /� mice and wild-type controls on a high-fat diet (n¼ 5 per group)

by qRT–PCR. (b) Rgs1 expression is correlated with the expression of

the macrophage marker Cd68 in thoracic aortas of ApoE� /� mice and

wild-type controls on a high-fat diet. Each symbol represents an individual

mouse (n¼ 5 per group) by qRT–PCR. (c) qRT–PCR analysis of Rgs1 mRNA

in primary cells isolated from ApoE� /� mice (n¼ 5–6; BC, B cells;

BM, bone marrow cells; EC, endothelial cells; MF, macrophages;

S, splenocytes). (d) qRT-PCR analysis of Rgs1 expression in human tissue

and cells. (Mo; Blood monocytes, plaque macrophages from carotid

endarterectomies (n¼ 3), SV; Saphenous vein and IMA; internal mammary
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aneurysm from AAA repair patients (n¼8–11)). (e) SV and IMA are from
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with blood monocytes. Because of the associations between aortic
atherosclerosis, vascular inflammation and the pathogenesis of
AAA15, we next sought to determine whether Rgs1 is related to
human aneurysms. We analysed the tissue samples of AAA from
patients undergoing surgical AAA repair, in comparison with
non-diseased control samples of omental artery from the same
patients, and to internal mammary artery and saphenous vein
samples from patients undergoing coronary artery bypass graft
surgery (CABG). We also measured Rgs1 in CD14-positive blood
monocytes from the same AAA patients. Rgs1 was highly
expressed in human AAA tissue compared with non-
aneurysmal vascular tissues and blood monocytes (Fig. 1d),
suggesting that RGS1 is specifically upregulated in recruited
monocytes during vascular inflammation. To test the notion that
induction of Rgs1 might occur during monocyte–macrophage
activation and recruitment, we compared Rgs1 expression during
the differentiation of murine M0 to M1 ‘inflammatory’
macrophages, and between bone marrow monocytes and
peritoneal monocytes recruited in a model of sterile peritonitis.
Rgs1 was significantly higher in recruited peritoneal monocytes
than bone marrow monocytes (Fig. 1e), and upregulated in
macrophages during early M1 macrophage differentiation
(Fig. 1f). We also confirmed that Rgs1 was abundant in M1-
polarized macrophages differentiated from healthy human
peripheral blood mononuclear cells (Supplementary Fig. 1).

RGS1 reduces macrophage chemotaxis and desensitization.
Since Rgs1 expression in macrophages is high and upregulated
with activation, we reasoned that RGS1 would inhibit the
migration of macrophages to atherogenic chemokines. We com-
pared the chemotactic responses between ApoE� /� and Rgs1� /

�ApoE� /� peritoneal macrophages in vitro. Rgs1� /�ApoE� /
� macrophage chemotaxis was significantly increased in
response to CCL2, CCL3 and CCL5 (Fig. 2a–c) suggesting a broad
specificity for RGS1 to Gai-coupled chemokine receptors. We
also confirmed the role of RGS1 in lymphocyte chemotaxis, by
showing increased migration of Rgs1� /�ApoE� /� splenocytes
to the homeostatic chemokine CXCL12 (Supplementary Fig. 2) at
a similar magnitude to published studies10. Because RGS1
promotes the formation of the inactive G-protein heterotrimer
and accelerates the termination of chemokine signalling, we
tested the effect of RGS1 on chemokine receptor desensitization
in macrophages. We observed that RGS1 reduced the migration
to sustained CCL5 stimulation of macrophages. Pretreatment of
peritoneal macrophages with increasing doses of CCL5 before
chemotaxis to 1 nM CCL5 markedly impaired chemotaxis in
ApoE� /� macrophages, whereas Rgs1-deficient macrophages
continued to migrate, regardless of previous exposure to
chemokine (Fig. 2d). To further address the role of RGS1 in
myeloid cell chemotaxis, we used a chemokine-dependent model
of sterile inflammation—zymosan-induced peritonitis16 to assess
cellular recruitment in vivo. At an early time point after zymosan
administration, coinciding with the phase of cellular recruitment
to the peritoneum, we observed that the number of monocytes in
the peritoneum was significantly increased in Rgs1� /�ApoE� /�

mice (Fig. 2e). However, at 16 h after zymosan administration,
when cellular recruitment has plateaued and the resolution phase
is beginning, we observed a significant decrease in the numbers of
monocytes in Rgs1� /�ApoE� /� mice (Fig. 2f) suggesting that
an early increase in cell number in Rgs1� /�ApoE� /� mice is
then followed by reduced accumulation. To address if there were
any alterations in chemokine receptor signalling that may be
crucial for trafficking, we assessed CCR5 and CCR2 surface
expression on circulating monocytes in mice treated with
zymosan. At 4 h, coinciding with the increase in monocytes in

the peritoneum of Rgs1� /�ApoE� /� mice, there was an
increase in CCR5 on the circulating monocytes compared with
monocytes in ApoE� /� mice. In contrast, at 16 h, there was no
difference in the cell surface level of CCR5 between Rgs1� /�

ApoE� /� and ApoE� /� monocytes (Fig. 2g). However, CCR2
surface expression was not detectable on circulating monocytes
from either Rgs1� /�ApoE� /� and ApoE� /� mice after 4 h of
zymosan.

RGS1 modulates macrophage trafficking into the aortic wall.
Since macrophage recruitment is a critical step in atherogenesis,
and given that Rgs1-deficient macrophages showed an increased
migratory response to atherogenic chemokines in vitro, we
hypothesized that Rgs1� /�ApoE� /� mice would develop larger
atherosclerotic lesions than ApoE� /� mice as a result of
enhanced leukocyte recruitment. To test this hypothesis, we
quantified atherosclerotic plaque in Rgs1� /�ApoE� /� and
ApoE� /� mice at two anatomical sites—the aortic root and the
descending aorta. However, in contrast to our hypothesis, the
absence of Rgs1 significantly reduced both atherosclerotic plaque
formation in the aortic root of ApoE� /� mice (Fig. 3a) and
reduced plaque macrophage content, quantified by Galectin-3-
positive macrophage immunostaining (Fig. 3b) in 9-week-old
animals. Similar results were observed by en face analysis of the
descending aorta, where plaques develop later in 16-week-old
animals. Rgs1� /�ApoE� /� mice had smaller lesions in com-
parison with ApoE� /� littermates (Fig. 3c). No differences in
lesion size or macrophage content were observed in the aortic
root in mice fed a chow diet for 16 weeks or mice on a western-
type diet (Supplementary Fig. 3). In addition, no CD3
T-lymphocyte infiltration in the aortic root was observed at any
time point (Supplementary Fig. 4). Since Rgs1 has been reported
to contribute to T-cell migration17, we also characterized Treg
cells and antigen-specific cytokine responses of Th1 and Th17
cells in Rgs1� /�ApoE� /� and ApoE� /� mice after co-
stimulation with anti-CD3/CD28, and found no significant
difference between groups (Supplementary Figs 5 and 6). No
difference in total serum cholesterol levels or circulating
monocyte numbers were found between Rgs1� /�ApoE� /�

and ApoE� /� mice, indicating that the observed effect was
not due to a change in plasma lipids or monocyte numbers,
respectively (Supplementary Table 2). In addition, no differences
in in vitro foam cell formation were observed between Rgs1� /�

ApoE� /� and ApoE� /� macrophages treated with acLDL over
24 h (Supplementary Fig. 7).

To determine the effect of Rgs1 deficiency on the early influx of
myeloid cells into the aortic wall during inflammation, we infused
Angiotensin II (Ang II) at 0.8 mg kg� 1 per day using sub-
cutaneous mini pumps in ApoE� /� mice, a model known to
induce acute aortic leukocyte recruitment and increase blood
pressure. Leukocyte content in the thoracic aortas of Rgs1� /�

ApoE� /� and ApoE� /� mice following Ang II infusion was
quantified by enzymatic digestion and flow cytometry
(Fig. 4a,b)18,19. In Rgs1-deficient mice, CD45þ leukocytes and
CD11bþ myeloid cells in aortas were reduced more than 10-fold
compared with ApoE� /� mice after 5 days of Ang II infusion
(Fig. 4c–e). These cells were CD14þCCR2þ , indicative of
recruited monocyte–macrophages. Since Ang II mediates
monocyte recruitment to the aorta, and AAA formation is
largely driven by CCR2 in contrast to CCR5 (refs 6,18,19), we
assessed CCR2 expression on these cells. We found that CCR2
surface expression on macrophages in the aortas was significantly
decreased following Ang II treatment in ApoE� /� mice (Fig. 4f).
However, no reduction in cell surface CCR2 was observed in
macrophages from Rgs1� /�ApoE� /� mice, indicating a lack
of receptor desensitization in Rgs1� /�ApoE� /� mice.
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Furthermore, between days 3 and 5 of Ang II infusion, two out of
six ApoE� /� mice died from aneurysm rupture, but no deaths
occurred in Rgs1� /�ApoE� /� mice, indicating that Rgs1
deficiency confers protection from Ang II-induced aortic
aneurysm rupture.

To further investigate the contribution of RGS1 to Ang II-
induced aortic aneurysm formation, we performed 14-day Ang II
infusions in Rgs1� /�ApoE� /� and ApoE� /� mice, since most
aortic ruptures occur within the first 7 days20. ApoE� /� mice
were significantly more susceptible to aortic aneurysm rupture in
comparison with Rgs1� /�ApoE� /� mice, with 56% survival in
ApoE� /� mice versus 94% in the Rgs1� /�ApoE� /�group
(Fig. 5a,b). We also noted aneurysms at the study end point in
surviving ApoE� /� mice, which were absent in Rgs1� /�

ApoE� /� mice (Fig. 5c). No difference in circulating, bone
marrow and spleen monocyte numbers were found between
Rgs1� /�ApoE� /� and ApoE� /� mice, indicating that the
observed effect was not due to a change in monocyte numbers
elsewhere (Supplementary Fig. 8). Previous studies have
demonstrated that Ang II infusion increases systolic blood
pressure in mice7. Therefore, to determine whether Rgs1
deficiency affects Ang II-mediated increases in blood pressure,
we measured the systolic blood pressure in both groups. Between
days 2 and 10, Ang II treatment increased systolic blood pressure
in Rgs1� /�ApoE� /� mice more than in ApoE� /� mice
(Fig. 5d), demonstrating that protection from aneurysm
formation in Rgs1� /�ApoE� /� mice occurs despite a greater
rise in blood pressure and through mechanisms that are
independent of Ang II-induced hypertension.

Leukocyte Rgs1 deficiency protects against aneurysm rupture.
Evidence suggests that chemokines are involved in the modula-
tion of Ang II-accelerated leukocyte recruitment to the vessel
wall21. It is well known that macrophages are the predominant
leukocyte in Ang II ascending aneurysms and AAAs19,22 and
mediate extracellular matrix breakdown that leads to aneurysm
formation. We hypothesized that RGS1 may regulate macrophage
recruitment and retention via chemokine receptor desensitization
and limit macrophage egress and thus augment Ang II-induced
AAA development and rupture.

To test this hypothesis, we performed Rgs1� /�ApoE� /�

and ApoE� /� bone marrow transplantation into irradiated
ApoE� /� mice, to generate bone marrow chimeric animals. Four
weeks after transplantation, we tested for Rgs1 and ApoE DNA by
PCR in blood from irradiated mice, to confirm complete
engraftment. At 6 weeks after engraftment, mice were infused
with Ang II for 14 days at 3 mg kg� 1 per day. We chose this dose
as Ang II at 0.8 mg kg� 1 per day was not sufficient to induce
aortic aneurysms in irradiated ApoE� /� mice in comparison
with non-irradiated mice receiving this dose, despite being
sufficient to induce hypertension (Fig. 5g).

We observed that recipient mice transplanted with ApoE� /�

bone marrow were more prone to aortic aneurysm rupture in
comparison with mice receiving Rgs1� /�ApoE� /� bone
marrow (Fig. 5e,f). Over 14 days of Ang II infusion, we found
similar survival of ApoE� /� recipient mice with ApoE� /�

donor marrow when compared with that in non-chimeric
ApoE� /� mice from our original study. In contrast, ApoE� /�

recipient mice receiving Rgs1� /�ApoE� /� donor marrow were
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protected from Ang II-induced AAA formation. Consistent with
our earlier findings, there was a significant difference in systolic
blood pressure between ApoE� /� mice transplanted with
ApoE� /� bone marrow and Rgs1� /�ApoE� /� mice trans-
planted with ApoE� /� bone marrow (Fig. 5g), revealing a role
for vascular wall RGS1 in the control of Ang II-induced blood
pressure. Taken together, these results suggest that Rgs1
expression in bone marrow-derived cells, rather than vascular
cells, is crucial for aortic aneurysm rupture.

RGS1 promotes leukocyte accumulation in aneurysms. To
specifically address the role of Rgs1 in the accumulation or emi-
gration of monocyte-derived cells in the aortic wall during
aneurysm development, we used a pulse-chase approach to track
bead-labelled monocytes in aortas following Ang II infusion.
Inflammatory 7/4hi monocytes were labelled in vivo with fluor-
escent latex microbeads and administered intravenously (i.v.) at
the time of osmotic mini pump implantation23,24. Aortic cell
numbers were quantified by flow cytometry at days 3 and 5 after
bead injection (Fig. 6a). At 3 days post Ang II infusion, the time
of peak monocyte recruitment from the bloodstream,

bead-positive leukocyte content in aortas was similar between
ApoE� /� and Rgs1� /�ApoE� /� mice, implying that
monocyte recruitment was similar between the groups (Fig. 6b).
However, by day 5 after the initiation of Ang II infusion, bead-
positive CD45þ cells were significantly higher in ApoE� /�

aortas compared with Rgs1� /�ApoE� /� mice, suggesting that
RGS1 promotes the accumulation of ApoE� /� monocytes
in aortic tissue, rather than emigration. Importantly, these
findings likely underestimate the magnitude of accumulation
of bead-labelled monocytes, since we found several ApoE� /�

mice with aneurysms at the time of harvest, which were
excluded from the analysis because of the confounding effect of
blood cells trapped in aneurysms, to the flow cytometric analysis
of aortic cells. Bead-labelled monocytes localized to areas of the
subintimal space of the vessel wall and were 7/4 and Ly6C
positive (Fig. 6c). In contrast to the difference in bead-labelled
cells in the aortic wall, there was no difference in the number of
circulating bead-labelled inflammatory monocytes between
ApoE� /� and Rgs1� /�ApoE� /� mice at day 3 or 5
(Supplementary Fig. 9). Together these data suggest that RGS1
is a mediator of inflammatory monocyte accumulation in aortic
aneurysms.

0.06

ApoE –/– Rgs1–/– ApoE –/–

Rgs1–/– ApoE –/–

Rgs1–/– ApoE –/–

ApoE –/–

ApoE –/–

0.04

0.02

0.00

0.020

0.015

0.010

0.005

0.000

1.6

1.2

0.8

0.4

0.0

O
il 

re
d 

O
st

ai
ne

d 
ar

ea
 (

%
)

**

*

G
al

ec
tin

-3
st

ai
ne

d 
ar

ea
 (

m
m

2 )

***

ApoE –/–

ApoE –/–

Rgs1–/– ApoE –/–

ApoE –/– Rgs1–/– ApoE –/–

ApoE –/– Rgs1–/–
M

ea
n 

le
si

on
 a

re
a 

(m
m

2 )

Figure 3 | Rgs1 deficiency reduces atherosclerosis and macrophage content in ApoE� /�mice. (a) Atherosclerotic plaque in the aortic roots of

9-week-old mice on a chow diet. Microscopy of massons trichrome stained aortic root lesions. (b) Galectin-3-positive macrophage content in the

aortic roots of 9-week-old mice on a chow diet. Microscopy of Galectin-3-stained aortic root lesions. (c) En face atherosclerotic plaque in the aortas of

16-week-old mice on a chow diet. Microscopy of en face Oil Red O staining of aortic arches of descending aortas. Each symbol represents an individual

mouse (n¼ 7–8 per group). Scale bars indicate 0.25 mm for aortic roots and 1 mm for aortas. Arrows indicate atherosclerotic lesions. Values are expressed

as mean±s.e.m. ***Po0.001, **Po0.01, *Po0.05 calculated using the Student’s t-test.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms7614 ARTICLE

NATURE COMMUNICATIONS | 6:6614 | DOI: 10.1038/ncomms7614 | www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Discussion
Leukocyte recruitment and accumulation leading to vascular
inflammation are critical components of major vascular
diseases such as atherosclerosis and AAA. Thus, the signals
that regulate these processes are crucial for understanding
the underlying causes of inflammatory diseases and to
identifying novel therapies. Chemokines and their receptors
are rational therapeutic targets in vascular inflammation
as indicated by several gene targeting6,25 and inhibition
studies4,5. However, functional redundancy within chemokines
and chemokine receptors confers limited potential as
therapeutic targets. Targeting downstream pathways that
modulate chemokine receptor signalling is an alternative
strategy but the mechanisms behind this regulation are not
fully elucidated.

For the first time, we provide new evidence for a role for RGS1,
a downstream mediator of GPCR signalling, in the recruitment
and accumulation of leukocytes to the aorta during vascular
inflammation in atherosclerosis, aortic aneurysm formation and
aneurysm rupture. The major findings of this study are, first, that
Rgs1 is upregulated in atherosclerotic vessels and in AAA, is low
in circulating monocytes but is greatly upregulated in response to
activation and macrophage differentiation (Fig. 7); second, that
Rgs1 deficiency increases macrophage chemotaxis and reduces
chemokine receptor homologous desensitization; and third, Rgs1
deficiency protects against early atherosclerotic plaque and aortic
aneurysm rupture in ApoE� /� mice, due to reduced accumula-
tion of leukocytes in the artery wall. Thus, RGS1 contributes to
the persistence of macrophages in the initial stages of athero-
sclerosis and promotes aortic aneurysm formation and rupture.
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Figure 4 | Rgs1 deficiency reduces aortic inflammatory cell trafficking in Ang II-treated ApoE� /� mice via CCR2. Flow cytometric analysis of
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Our identification of Rgs1 in a gene expression analysis in
atherosclerotic vessels from older ApoE� /� mice compared with
younger ApoE� /� mice, and in macrophages from human
plaques, is in keeping with other studies in human atherosclerotic
arteries. Such studies have reported Rgs1 upregulation in
advanced calcified aortic valve stenosis26, atherosclerotic
coronary arteries27 and unstable carotid artery plaques28.
Plaque instability can lead to rupture, the underlying cause of
myocardial infarction. Our study now reveals that Rgs1 is
specifically upregulated in monocytes and macrophages by
inflammatory stimuli, indicating that Rgs1 expression is high in
the recruited cells that contribute to plaque formation and/or is
further upregulated in the cells within the fatty-streak lesions or
aneurysms of ApoE� /� mice, and in human aneurysms. The
more complex plaque lesions characteristic of more advanced

atherosclerosis are influenced by multiple processes such as
cholesterol cleft formation, VSMC proliferation, cellular
apoptosis and non-cellular lipid accumulation, rather than the
more dominant effect of monocyte recruitment and macrophage
accumulation that dominate early lesion formation. Our finding
supports the notion that RGS1 expression acts to reduce ongoing
chemokine signalling in recruited cells, leading to accumulation at
sites of inflammation, such that in Rgs1� /�ApoE� /� mice,
inflammatory cell accumulation is significantly reduced.

The functional role of RGS1 has previously been limited to
lymphocytes and the control of lymphocyte migration to
lymphoid homing chemokines. Several studies have suggested
both atheroprotective29–31 and proatherogenic32–34 roles for the
different B-cell and T-cell subsets. Hypercholesterolemic
Rag1� /� mice have reduced atherosclerosis at 16 weeks on a
chow diet, but no differences on a western-type diet35. The
functional roles of lymphocytes in AAA are less clear. Both B cells
and T cells have been detected within AAA36 but are thought to
have minor roles given that Rag1� /� mice show modest
protection from AAA formation37. Rgs1� /� B and T cells
show increased migration to CXCL12 (refs 10,14) and Rgs1� /�

B cells still retain this exaggerated response after pre-exposure
due to impaired desensitization9,10. In addition, when Rgs1� /�

and wild-type T cells are transferred in the inflammatory colitis
model in Rag2-deficient mice, wild-type mice were more
susceptible to colitis, presumably through RGS1 repressing
T-cell egress from the gut14 associating RGS1 in having a key
role in leukocyte accumulation. We examined both the T-cell and
B-cell phenotype in of Rgs1� /�ApoE� /� mice and found no
significant alterations, suggesting RGS1 in lymphocytes in the
context of atherosclerosis and AAA has a less significant role to
that in myeloid cells in vascular inflammation.

Although the findings of this study implicate RGS1 in the
formation of fatty-streak lesions and aortic aneurysm rupture,
identification of the downstream signalling pathways by which
macrophages accumulate remains to be determined. Monocyte–
macrophage trafficking to and from the inflamed vasculature is
regulated by a number of different mechanisms, such as adhesion,
differentiation, retention, proliferation, apoptosis and egress
which are also regulated by chemokines. We observed that
RGS1 deletion increased macrophage migration to CCL2 and
CCL5. Both of these chemokines are involved in monocyte
recruitment to atherosclerotic lesions1,23,25 and their respective
receptors are high on inflammatory Ly6Chi monocytes23, which
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were the cells recruited in our bead-tracking studies in aortic
aneurysms, suggesting RGS1 acts as a ‘stop’ signal downstream of
these receptors to reduce signalling and migration. A minor role
for RGS1 in reducing integrin-dependent adhesion through the

N-formyl-methionine-leucine-phenylalanine receptor has been
reported in a transfected B-cell line L1.2, although the response
was less sensitive to RGS1 action on chemotaxis38.
Atherosclerotic plaque regression and pro-resolution pathways
are expected to act via inhibiting macrophage accumulation, by
promoting macrophage egression or by recruiting patrolling
Ly6Clo monocytes in reparative processes. Studies in models of
atherosclerosis regression suggest that macrophages exhibit a
dendritic cell-like state and emigrate from lesions to lymph nodes
in a CCR7-dependent manner39. RGS1 has been reported to
regulate CCR7-mediated T-cell chemotaxis to CCL19 (ref. 14), a
chemokine receptor pairing not explored in this study, but a
process that could bring about resolution of inflammation.
Neuronal guidance molecules such as Netrin-1 and Semaphorin
3E inhibit macrophage chemotaxis and promote the persistence
of inflammation by retaining macrophages in the plaque40,41.
These molecules like RGS1, have immunomodulatory functions
in the migration and activation of macrophages, indicating the
significance of negative regulators in chronic inflammatory
diseases.

Our study identifies therapeutic targeting of RGS1 to reduce
local vascular inflammation as a new rational strategy for the
treatment of cardiovascular diseases. RGS proteins have pre-
viously been identified as drug targets, but further understanding
on their regulation is needed42,43. Current strategies have focused
on altering RGS protein interactions with Ga protein subunits or
the localization or expression of a particular RGS protein in a
defined cell44. The structure of RGS1 and its binding sites to Gai
protein is known45 and so it is logical to propose that an agent to
prevent RGS1 binding to its Gai protein in macrophages, in
chronic inflammation may have therapeutic potential. In
summary, we have demonstrated a new requirement for RGS1
as a key regulator of chemokine receptor signalling and leukocyte
trafficking in vascular inflammation. This provides new insights
into the mechanisms and importance underlying the recruitment
and retention of leukocytes in vascular inflammation and presents
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Figure 7 | Schematic outline of the regulation of RGS1 in monocyte–
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new strategies in targeting RGS1 in limiting atherogenesis and
AAA formation.

Methods
Mice. The generation of Rgs1� /� mice has been previously described10. Rgs1� /�

mice were crossed onto an ApoE� /� background (Charles River, UK) to generate
matched litters of Rgs1� /�ApoE� /� and ApoE� /� mice. Mice were housed in
individually ventilated cages with 12-h light/dark cycle and controlled temperature
(20–22 �C). Standard chow (B & K Universal Ltd, UK) and water were available ad
libitum. All animal studies were conducted with ethical approval from the Local
Ethical Review Committee and in accordance with the UK Home Office Animals
(Scientific Procedures) Act 1986.

Human blood and tissue sampling. Subjects undergoing open AAA repair
were prospectively recruited from the Oxford Abdominal Aortic Aneurysm study.
Baseline characteristics of each participant were recorded. For each subject, per-
ipheral venous blood was collected after overnight fasting, before commencement
of the surgery. During the surgery, a wedge of abdominal omentum containing a
segment of omental artery was identified and biopsied en bloc. Isolation of omental
artery was performed immediately in the operating theatre. The omental artery
segment was cleared of perivascular tissue and snapped frozen. Before incision of
the aortic aneurysm, a marker pen was used to denote the cross-section of maximal
dilatation according to visual inspection. A longitudinal strip of the aneurysm wall
along the incision was then excised. The aneurysm tissue was stripped off peri-
vascular tissue and mural thrombus. The tissue at the maximal dilatation was
isolated, divided into smaller segments and snap frozen for subsequent analysis.
The study was approved by the Oxford regional ethics committee (Ethics
Reference: 13/SC/0250). All subjects gave written informed consent before the
study procedure. Human carotid artery plaque macrophages from endarterectomy
specimens were isolated following enzymatic digestion of intimal artery segments
and ex vivo culture46. Human saphenous vein and internal mammary artery
samples from coronary artery bypass graft surgery patients were dissected, excess
adventitia removed and the lumen flushed gently using an insulin syringe to
remove blood, before snap freezing for RNA47.

Gene expression profiling. Thoracic aortas from either 8- or 16-week-old
ApoE� /� mice fed a high-fat diet were homogenized in TRIzol reagent
(Sigma-Aldrich, UK) and total RNA isolated using RNeasy kits (Qiagen, UK) and
reverse transcribed to complementary DNA (cDNA) using SuperScript II Reverse
Transcriptase (Invitrogen, UK). Gene expression was measured using a custom-
built whole mouse gene array (12,000 genes) with 70mer probes, analysed using the
Lucidea system using the Wellcome Trust Centre for Human Genetics Core
Genomics Facility. Each sample was arrayed across six slides with two-colour
analysis, with reference samples and included a dye-swap. Data analysis was
performed using GeneSpring software. The microarray data have been deposited in
the NCBI Gene Expression Omnibus under the accession code GSE65494.

Quantitative real-time RT–PCR. Total RNA was isolated using RNeasy kits
(Qiagen) and reverse transcribed to cDNA using SuperScript II Reverse Tran-
scriptase (Invitrogen). Quantitative real-time PCR was performed with 10–50 ng of
cDNA on an iCycler IQ real-time detection system (Bio-Rad Laboratories, UK).
Gene expression was determined using TaqMan Gene Expression Assays (Applied
Biosystems, UK; Supplementary Table 3) relative to the level of the house keeping
genes b-actin for mouse, and GAPDH for human using real-time RT–PCR.
Relative quantitation of gene expression was performed using the comparative
Ct method (DDCt).

Primary cell isolation and culture. Primary cells and whole thoracic aortas were
obtained from 8–16-week-old ApoE� /� and Rgs1� /�ApoE� /� mice. Mouse
peritoneal macrophages were isolated by peritoneal lavage 4 days after an intra-
peritoneal (i.p.) injection of 2% BioGel polyacrylamide beads (Bio-Rad Labora-
tories). Cells were washed in PBS and used for chemotaxis assays or adhered for 2 h
in OptiMEM (0.2% bovine serum albumin, BSA) before washing and cell lysis.
Mouse splenocytes were isolated by passing spleen pieces through a 70-mm cell
strainer. The cell suspension was resuspended in hypotonic lysis buffer (one part
Tris-HCl 0.17 M, pH 7.2 to nine parts NH4Cl) to lyse red blood cells and washed
before lysis for RNA. Purification of B cells was performed by magnetic cell sorting
(Miltenyi Biotec, UK) of splenocytes and confirmed by flow cytometry. B cells
(490% pure) were isolated by positive selection using anti-B220 microbeads
(Miltenyi Biotec). Bone marrow cells were isolated by flushing the femur and tibia
with PBS and a single-cell suspension prepared by passing through a 70-mm cell
strainer before lysis. For bone marrow-derived macrophages, bone marrow cells
were isolated and the cell suspension plated into Petri dishes with DMEM-F12
(supplemented with 1% penicillin–streptomycin, 1% L-glutamine, 10% fetal bovine
serum and 15% L929-cell-conditioned media). Cells were cultured for 7 days in a
humidified atmosphere at 37 �C with 5% CO2 and then harvested and polarized to
M1 inflammatory macrophages with lipopolysaccharide (100 ng ml� 1; Sigma-

Aldrich) and interferon-g (20 ng ml� 1; Peprotech EC) for 24 h, compared with
untreated (M0).

Primary endothelial cells were isolated from PBS-perfused lung tissue. Lungs
were finely minced and digested in an enzyme solution of DMEM containing
0.18 U ml� 1 Liberase Blendzyme 3 (130 ml; Roche, UK) and 0.1 mg ml� 1 DNase I
(100 ml; Roche) for 1 h at 37 �C with gentle agitation. Purification of endothelial
cells was performed by magnetic cell sorting (Miltenyi Biotec) by positive selection
using anti-CD31 microbeads (Miltenyi Biotec). Primary VSMCs were isolated by
the aortic explant method. Aortas were cut into small segments following
endothelial cell denudation and adhered onto 2% gelatin-coated wells and cultured
in DMEM complete growth media for 2 weeks. Outgrowing VSMCs from explants
of aortic tissue were harvested using Trypsin/EDTA and pelleted for RNA. Mouse
peritoneal monocytes were isolated by peritoneal lavage 24 h after i.p. injection of
10 mg Zymosan A (Sigma-Aldrich) and then purified by magnetic cell sorting
(Miltenyi Biotec) and confirmed by flow cytometry. Monocytes (490% pure)
were isolated by positive selection using anti-7/4 microbeads (Miltenyi Biotec).
Peripheral blood human mononuclear cells were isolated by density-gradient
centrifugation (MP Biochemicals, UK). Purification of monocytes was performed
by magnetic cell sorting (Miltenyi Biotec) and confirmed by flow cytometry.
Monocytes (490% pure) were isolated by positive selection using anti-CD14
microbeads (Miltenyi Biotec).

Chemotaxis assays. Cells were resuspended in RPMI (25 mM HEPES and 0.1%
BSA) to a cell density of 5� 106 cells ml� 1. Eighty ml of the cell suspension was
placed on top of 96-well Neuroprobe ChemoTx membranes (5.7 mm diameter,
8 mm pore size; Receptor Technologies, UK) and allowed to migrate towards
recombinant murine CCL2, CCL3 or CCL5 (Peprotech EC) or RPMI in lower
chambers (320 ml per well) for 4 h at 37 �C, 5% CO2. To assess desensitization,
macrophages were prestimulated with 0, 0.1, 1 or 10 nM CCL5 for 10 min followed
by washing to remove chemokine and then allowed to migrate towards 1 nM CCL5.
Cell migration was quantified from fluorescent microscopic images of cells on the
underside of the membranes, with a minimum of three replicate wells per
treatment.

Zymosan-induced peritonitis. Mice were injected i.p. with 100mg of zymosan A
(Sigma-Aldrich) diluted in 0.5 ml of PBS or PBS alone. Four or 16 h later, the mice
were killed and the peritoneal cavity was lavaged with 5 ml of PBSþ 2 mM EDTA.
Peritoneal exudate cells were stained with antibodies against Ly6G (BD
Biosciences) and 7/4 (AbD Serotec, UK) and analysed by flow cytometry to
assess monocyte recruitment.

Atherosclerosis analysis. Mice were fed a normal mouse chow (B & K Universal,
UK) and harvested at 9 or 16 weeks of age. For the high-fat diet cohort, 8-week-old
mice were fed a western-type diet for 8 weeks and harvested at 16 weeks of age.
Atherosclerotic lesion size was assessed in paraffin-embedded aortic root sections
stained with Masson-Goldner trichrome (Merck, Germany). The average lesion
size was calculated from three sections taken at 100-mm intervals starting from the
section showing all three aortic cusps. The infiltration of macrophages into aortic
lesions was analysed using anti-Galectin-3 (BD Pharmingen, UK) immunostaining
(Supplementary Table 4). Aortic lipid deposition was assessed in fixed aortas
stained with Oil red O (Sigma-Aldrich) from mice fed a chow diet for 16 weeks.
Aortic roots were visualized and imaged (coolSNAP-pro camera, Roper Scientific,
Leica DMRBE microscope and the lesion area and Galectin-3-positive areas were
quantified from digitized microscopic images using Image-Pro Plus (Media
Cybernetics, USA).

Ang II infusion and blood pressure recordings. Eight- to 16-week-old male mice
were anaesthetized with isoflurane by inhalation and osmotic mini pumps (Alza
Corp, USA) delivering saline or Ang II (0.8 or 3 mg kg� 1 per day; Sigma-Aldrich)
for 3, 5 or 14 days were implanted subcutaneously. Systolic blood pressure was
measured using a non-invasive computerized tail-cuff system in 16-week-old
conscious mice following a 1 week training period (Visitech BP2000, Visitech
Systems Inc., USA).

Flow cytometry. Descending aortas from the aortic arch to femoral bifurcations
were microdissected and digested in an enzyme solution containing 60 U ml� 1

DNase I, 60 U ml� 1 Hyalronidase, 450 U ml� 1 Collagenase I and 125 U ml� 1

Collagenase XI (all enzymes from Sigma-Aldrich) at 37 �C (ref. 18). A single-cell
suspension was prepared by passing aortic pieces through a strainer for subsequent
flow cytometry staining. Isolated aortic cells were antibody stained for the surface
markers PE-Cy7-conjugated CD45 (BD Pharmingen), total PerCP-conjugated
CD11b (BD Pharmingen), PE-conjugated CD14 (eBioscience, UK),
APC-conjugated CCR2 (R&D Systems, UK) with appropriate isotype controls19

(Supplementary Table 5). Absolute cell counts were performed by ratio to a known
quantity of calibration beads added to each sample (CaliBrite, BD Pharmingen).
Data were acquired using a CyAn Analyser flow cytometer (Beckman Coulter, UK)
and then analysed using Summit (Dako, UK) and FlowJo (Tree Star Inc, USA)
software.
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Bone marrow transplantation. Ten-week-old male mice received a lethal dose of
whole-body irradiation (2� 5 Gy) followed by an i.v. injection of 5� 106 bone
marrow cells from male ApoE� /� and Rgs1� /�ApoE� /� mice. As a control for
the efficiency of the irradiation procedure and bone marrow transfer, bone marrow
from CD45.1 antigen-expressing mice was transplanted to CD45.2 antigen-
expressing mice and blood samples taken 4 weeks after engraftment and then
antibody stained for the presence of the donor CD45.1 or recipient CD45.2 allele by
flow cytometry. More than 95% blood cells expressed the donor CD45.1 antigen
confirming successful reconstitution. Bone marrow transplantation resulted in a
significant reduction in the incidence of aneurysms at 0.8 mg kg� 1 per day Ang II.
To achieve a similar degree of aneurysm to that of non-bone marrow-transplanted
mice, we increased the dose of Ang II to 3 mg kg� 1 per day after dosing studies.

Inflammatory blood monocyte tracking. Inflammatory 7/4hi monocytes were
labelled in vivo by i.v. injection of 1 mm Fluoresbrite green fluorescent plain
microspheres (Polysciences Inc., Germany) diluted 1:4 in saline, 18 h post i.v.
injection of 200 ml clodronate liposomes (Clodronate Liposomes Org,
Amsterdam)23,24. Labelling efficiency was confirmed by flow cytometry. Mice were
then implanted with Ang II osmotic mini pumps (0.8 mg kg� 1 per day). Flow
cytometry was performed after 3 days (during the recruitment and clearance phase
from the blood) and 5 days (during influx into aortic tissue) for quantification of
bead-labelled cells in the aorta and blood.

Immunofluorescence staining. Abdominal aortas from bead-injected mice were
sectioned (10 mm) and blocked for 2 h in 5% goat serum, 1% BSA, 0.2% gelatin,
0.2% Triton-X-100 in PBS. Thereafter, the sections were incubated for 2 h with
primary antibodies against Ly6C (BD Pharmingen) and 7/4 (AbD Serotec)
followed by incubation with the secondary antibody Alexa Fluor 568 (Invitrogen;
Supplementary Table 4). Sections were washed and mounted with mowial
mounting medium with 40,6-diamidino-2-phenylindole. Images were obtained with
a Zeiss 510 MetaHead confocal fluorescence microscope.

Statistical analysis. Between-group comparisons of normally distributed
measurements were assessed by Student’s t-test. One-way analysis of variance was
used to compare more than two data groups and Dunnett’s post-test was used
to compare each group with a control (untreated) group. Two-way analysis of
variance was used to compare multiple data groups affected by two independent
variables, with a Bonferroni correction to compare groups with each other.
Differences were considered statistically significant at Po0.05.
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