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Abstract

Direct microscopic examination with potassium hydroxide is generally used as a screening

method for diagnosing superficial fungal infections. Although this type of examination is

faster than other diagnostic methods, it can still be time-consuming to evaluate a complete

sample; additionally, it possesses the disadvantage of inconsistent reliability as the accu-

racy of the reading may differ depending on the performer’s skill. This study aims at detect-

ing hyphae more quickly, conveniently, and consistently through deep learning using

images obtained from microscopy used in real-world practice. An object detection convolu-

tional neural network, YOLO v4, was trained on microscopy images with magnifications of

100×, 40×, and (100+40)×. The study was conducted at the Department of Dermatology at

Veterans Health Service Medical Center, Seoul, Korea between January 1, 2019 and

December 31, 2019, using 3,707 images (1,255 images for training, 1,645 images for test-

ing). The average precision was used to evaluate the accuracy of object detection. Precision

recall curve analysis was performed for the hyphal location determination, and receiver

operating characteristic curve analysis was performed on the image classification. The F1

score, sensitivity, and specificity values were used as measures of the overall performance.

The sensitivity and specificity were, respectively, 95.2% and 100% in the 100× data model,

and 99% and 86.6% in the 40× data model; the sensitivity and specificity in the combined

(100+40)× data model were 93.2% and 89%, respectively. The performance of our model

had high sensitivity and specificity, indicating that hyphae can be detected with reliable

accuracy. Thus, our deep learning-based autodetection model can detect hyphae in micro-

scopic images obtained from real-world practice. We aim to develop an automatic hyphae

detection system that can be utilized in real-world practice through continuous research.

Introduction

Superficial fungal infections are dermatophyte infections of keratinized tissues, such as skin,

hair, and nails. They are among the most common skin diseases with a global prevalence of
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more than 25%, and the incidence rate is constantly increasing [1]. Clinical detections are

helpful in diagnosing superficial fungal infections; however, confirmation through laboratory

testing is important for avoiding incorrect diagnosis, unnecessary side effects, and potential

drug interactions. Methods currently used to diagnose fungal infections include direct micros-

copy with potassium hydroxide (KOH) examination, fungal culture, histopathological exami-

nation with periodic-acid-Schiff (PAS) staining, immunofluorescence microscopy with

calcofluor, and polymerase chain reaction. The KOH examination is generally used as a

screening method to diagnose superficial fungal infections because it is relatively convenient,

quick, and inexpensive [2, 3]. Through a KOH examination, superficial fungal infections are

easily diagnosed under the microscope by their long branch-like structures known as hyphae.

To perform a KOH examination of the skin and nails, scales or subungual debris are collected

by scraping the involved area with a No. 15 blade. Scraped scales or subungual debris are then

placed on a glass slide, prepared with 10% KOH, and capped with a cover glass. When clini-

cians observe the specimen on a slide under the microscope, they generally screen the entire

slide with 40-fold magnification (40×) to find the suspected fungal hyphae region and confirm

the hyphae at 100-fold magnification (100×).

Although KOH examination is faster than other diagnostic methods, it still is time-consum-

ing to evaluate a complete sample. Furthermore, KOH examination possesses the disadvantage

of inconsistent reliability, i.e., the accuracy of the reading may differ depending on the clini-

cian’s skill. In addition, diagnosing multiple samples at once is tedious and can lead to classifi-

cation errors and increased inter-observer variability. To overcome these conventional

limitations, some studies on detecting fungal infections using computer automation tech-

niques are available [3–9]. For example, Mader et al. [6] used multiple image-processing steps

to preprocess, segment, and parameterize images obtained using an automated fluorescence

imaging system. It is difficult to diagnose fungal infections in real images with conventional

computer vision methods because microscopic images contain several other substances apart

from dermatophytes. Consequently, previous studies have detected dermatophytes only in

images acquired under certain image-processing conditions [6, 8, 9]. To the best of our knowl-

edge, no study has used microscopic images for diagnosing fungal infections.

Therefore, the purpose of this study is to detect hyphae more quickly, conveniently, and

consistently through deep learning, a computer automation technology, using images obtained

from microscopy used in real-world practice. The deep learning-based autodetection model

developed in this study achieved this purpose. Based on our result, we are developing an auto-

matic hyphae detection system that can be utilized in real-world practice through continuous

research.

Materials and methods

This study was conducted in the Department of Dermatology at Veterans Health Service Med-

ical Center and was approved and monitored by the Institutional Review Board (IRB) of Veter-

ans Health Service Medical Center, Seoul, Korea (IRB No. 2020-02-013-001). All image data

were obtained from January 1, 2019, to December 31, 2019. Our study did not require patients’

personal information, and the IRB approved the exemption of patients’ consent.

Deep learning-based image analysis system

We developed a deep learning-based automatic detection model that detect hyphae in micro-

scopic images obtained from real-world practice through the processes of “sampling and prep-

aration,” “data generation,” and “test and evaluation” (Fig 1).
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Sampling and preparation

To perform KOH examination of the skin and nail, scales were collected by scraping the target

area outward from the advancing margins with a no. 15 blade. The scraped scales were then

placed on a glass slide and covered with a cover slide. Subsequently, several drops of KOH

were placed on the slide adjacent to the edge of the cover slide, allowing capillary action to

wick the fluid under the cover slide. Two dermatologists read the samples and assigned them

to positive and negative classes. The objective of the study is to apply this process in clinical

practice by adding a simple device to an existing microscope without expensive equipment

such as a digital slide scanner. Therefore, slide images of both magnifications (40× and 100×)

were generated as in real-world clinical practice. Image data were acquired through a video

captured using a microscope camera (Microscope: NIKON1 ECLIPSE E600, Microscope

camera: NIKON1, DS-F12), and videos were recorded using a microscope software

(iWorks1). To acquire more images of hyphae of various shapes, the images were recorded

with 360˚ rotation of the slide where the hyphae were observed. We converted the recorded

videos into individual images to label the location of the hyphae.

Dataset generation

We generated Dataset-100, Dataset-40, and Dataset-all with the captured microscopic images

of 100×, 40×, and both 100× and 40×, respectively. In the case of lower magnifications, i.e.,

Dataset-40, it was possible to observe the overall field quickly. However, the detection accuracy

could be low because the observed hyphae are small. At the same time, when observing at

higher magnifications, i.e., Dataset-100, multiple scanning jobs were required to check the

entire field. However, Dataset-100 has a higher accuracy because the size of the detected

hyphae are larger than that in Dataset-40. During both magnifications (40× and 100×), images

were constructed and trained on the model. A total of 38 samples were collected from 38

patients, of which 10 positive cases (6 skins, 4 nails), 10 negative cases were at 40× magnifica-

tion, 8 positive cases (6 skins, 2 nails), and 10 negative cases were at 100× magnification. The

Fig 1. Workflow for developing a deep learning-based autodetection model that detect hyphae in microscopic images obtained from real-world practice.

https://doi.org/10.1371/journal.pone.0256290.g001
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positive samples were divided into two groups—training and testing datasets (6 training sam-

ples and 4 testing samples were at 40× magnification; 5 training samples and 3 testing samples

were at 100× magnification). For the positive data (images with hyphae), a practicing derma-

tologist labeled the location of the hyphae (bounding box) for the entire dataset using “Label-

ing box” and “YOLO label.” We split the labeled image dataset into training and test sets at a

6:4 ratio. As presented in Table 1, each training and testing data images were acquired from

the sample obtained in this way. We also created dataset-N (100, 40, all), which included

microscopic images without dermatophyte hyphae, for testing. Table 1 summarizes the data

used in this study. The fungus hyphae data presented in this study are openly available in Fig-

Share at https://doi.org/10.6084/m9.figshare.14678514.v1.

Autodetection model using deep learning

The primary objective of automating the KOH examination process is to determine whether a

provided microscopy image contains a hyphae object. The following are the two approaches

used for determining the image class: image classification and object detection. In the image

classification approach, the system determines the class of the provided image as a whole. If

the microscopy image contains hyphae, the image classification system returns a positive; if

not, it returns a negative. In the object detection approach, the system finds hyphae-like objects

and evaluates the similarity of the found objects. If the microscopy image is provided, the

object detection system returns the hyphae-like objects with a bounding box that contains the

location and size. Thereafter, an additional discriminator determines whether the sample is

positive or negative by considering the existence of hyphae-like objects or the probability of

hyphae-like objects.

The image classification approach is simpler and more straightforward than object detec-

tion. However, it provides only class information: positive or negative. The object detection

approach is more sophisticated and complex than the classification approach, and it provides

more detailed information about the location and size of the hyphae-like object. Furthermore,

differences exist in the databases used by the two approaches. The database for image classifi-

cation requires only the class of a specific image: positive or negative. However, the database of

the object classification approach requires the bounding box information of hyphae objects in

the specific microscopic image along with the class. It is more challenging to prepare a data-

base for the object detection system. In this study, the object detection approach was applied.

A recently published object detection system, the YOLO v4 network, was applied to obtain a

more accurate detection performance.

When a microscopic image is provided, a trained YOLO v4 network analyzes the provided

image and outputs each candidate location of hyphae by generating a bounding box within the

image. We set a trained YOLO v4 network to extract candidate locations with a reliability of

25% or higher to eliminate insignificant detection results. The intersection over union (IOU)

Table 1. Summary of fungus hyphae dataset.

Dataset Optical Magnification Ratio (×) Samples Image dataset

Total Positive Case Negative Case Total Positive Case Negative Case

Training Testing Testing Training Testing Testing

Skin Nail Skin Nail Skin Nail

Dataset-100 100 18 4 1 2 1 5 5 1279 660 440 179

Dataset-40 40 20 4 2 2 2 5 5 1621 595 398 628

All dataset 100+40 38 8 3 4 3 10 10 2900 1255 838 807

https://doi.org/10.1371/journal.pone.0256290.t001
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was used as a cutoff value to determine whether detected locations match with ground truth. If

the microscopic image contains a positive object, its IOU will exceed the threshold. The pro-

vided image can be described as a bounding box along with its probability. Thereafter, the

final decision rule determines whether the microscopic image is positive or negative. When

the provided image I has n hyphae objects with probability Pk, k = 1,� � �,n. we can calculate the

minimum, maximum, and average probabilities as follows.

Pmax ¼ max
k¼1;���;n

Pk ð1Þ

Pmin ¼ min
k¼1;���;n

Pk ð2Þ

Pavg ¼
1

n
Pn

k¼1
Pk ð3Þ

In this study, Pmax, Pmin, and Pavg were applied as the final probability separately and evalu-

ated as to which value showed the highest performance. If the final probability is greater than

the final detection threshold, it is classified as positive. If n is zero or if the final probability is

smaller than the final detection threshold, it is classified as negative. The probability threshold

proposed in our study is the result obtained by analyzing the ROC value using the MATLAB

perfcurve function based on the detection result. The perfcurve function calculates the optimal

detection probability threshold by analyzing the ROC curve graph to maximize performance.

Evaluation

In this study, we evaluated our approach in two ways: (1) evaluating the accuracy of detecting

each hyphal object and (2) evaluating the accuracy of the classification results. In the former,

average precision (AP) was used to evaluate the object detection problem. The precision recall

(PR) curve analysis was performed for the object detection design to determine the hyphal

location. F1 scores were derived as a measure to evaluate and compare the overall perfor-

mance. In the latter, the problem of determining the presence of hyphae in a given microscope

slide image is considered a binary classification problem. Thus, a receiver operating character-

istic (ROC) curve analysis was performed on the image classification to determine the presence

of hyphae in the entire image. In this study, three types of final probabilities (Pmax, Pmin, and

Pavg) were used to determine the final class. To check the difference in each probability, we

performed ROC analysis using different Pmax, Pmin, and Pavg. Finally, we attempted to evaluate

and compare the performance of the model to the sensitivity and specificity values of each

magnification training type (100×, 40×, and 100×+40×).

Results

In terms of object detection, performance was obtained through values of the PR curve,

F1-score, and AP (Fig 2, Table 1). In general, the three IOU values of 0.25, 0.5, or 0.75 are

used as cutoff values in object detection studies. Our study evaluated the performance of all

three values since we first applied the object detection algorithm for hyphae. Our model

detects hyphae only in the form of a box, but the hyphae have a characteristic form that cannot

be displayed in accordance with the shape of the box because of its curved linear structure.

Importantly, to reduce the false-negative rate, the model should be able to detect as many

hyphae suspect areas as possible. Therefore, in this study, to increase the search rate, the IOU

value was set to the lowest, 0.25. When the IOU was set to 0.25, the recall value of the 100×
data model was the highest at 0.93, and the F1-score and AP values were 0.84 and 92.08,
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Fig 2. Precision-recall (PR) curves and receiver operating characteristic (ROC) curves with test datasets.

https://doi.org/10.1371/journal.pone.0256290.g002
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respectively. Further, the 40× data model exhibited the excellent performance with the recall,

F1-score, and AP values of 0.83, 0.83, and 88.07, respectively. The (100+40)× magnification

model exhibited a significantly lower performance than the other two magnification models.

The performance of classification, which determines the microscopic image as positive or neg-

ative, was evaluated using the ROC curve and area under curve (AUC) values under the setting

of the IOU value at 0.25. Between the three types of final probabilities (Pmax, Pmin, and Pavg),

the highest performance was achieved when the final probability was set to Pmax. Conse-

quently, the maximum value of AUC in the 40× data model was the highest at 0.9987, and that

in the 100× data model was 0.9966 (Fig 2, Table 2). The classification performance of all mag-

nification-type models exhibited good performance. The threshold value was calculated as

0.244 by analyzing the ROC curve. We use perfcurve function in MATLAB for ROC curve

analyzing. The result of applying the model set in this way to the test data is shown in Fig 3.

The sensitivity and specificity of the model were respectively 95.2% and 100% in the 100× data

model, and 99% and 86.6% in the 40× data model. In the (100+40)× data model, the sensitivity

and specificity were 93.2% and 89%, respectively (Fig 4).

Discussion

We developed an autodetection model using deep learning-based computer vision techniques

that detect hyphae in microscopic images obtained from real-world practice with high accu-

racy. Object detection has been an active research area in several fields and aims to determine

whether there are any instances of objects from given categories in an image and, if present, to

return the spatial location. Recently, deep learning systems have emerged as powerful methods

for learning feature representations automatically from data. In particular, these methods have

made significant advancements in object detection [3–13]. The object detection technique can

be categorized into one-stage and two-stage detectors. The one-stage detector solves image fea-

ture extraction and bounding box regression simultaneously, e.g., YOLO [14], SSD [15], and

RetinaNet [16]. The two-stage detector is composed of two stages of determining a candidate

region based on features and analyzing the bounding box based on the derived region, specifi-

cally R-FCN [17], Masked R-CNN [18], and Faster R-CNN [19]. Generally, a one-stage detec-

tor has a faster calculation time, whereas a two-stage detector has higher performance. In this

study, hyphae objects were detected using the recently published YOLO v4 network, which is a

Table 2. Summary of the IOU, TP, FP, FN, precision, recall, F1-score, AP, and AUC values of our model.

Dataset Hyper-detection Accuracy Analysis ROC Analysis

(IOU = 0.25)

IOU TP FP FN Precision Recall F1-Score AP(%) P_k AUC

Dataset-100 0.25 3182 970 227 0.77 0.93 0.84 92.08 Max 0.9966

0.5 2966 1186 443 0.71 0.87 0.78 85.11 Min 0.8776

0.75 2041 2111 1368 0.49 0.6 0.54 52.48 Avg 0.8073

Dataset-40 0.25 1279 256 263 0.83 0.83 0.83 88.07 Max 0.9987

0.5 1192 343 350 0.78 0.77 0.77 78.8 Min 0.9938

0.75 530 1105 1012 0.35 0.34 0.34 22.24 Avg 0.9730

All Datasets 0.25 1997 799 3281 0.71 0.4 0.52 50.18 Max 0.9650

0.5 1670 11226 3281 0.6 0.34 0.43 35.97 Min 0.9579

0.75 668 2128 4283 0.24 0.13 0.17 9.23 Avg 0.9638

IOU: intersection over union, TP: True positives, FP: False positives, FN: False negatives, AP: Average precision, AUC: Area under curve, ROC: Receiver operating

characteristics.

https://doi.org/10.1371/journal.pone.0256290.t002

PLOS ONE Automated detection of fungal hyphae from microscopic images

PLOS ONE | https://doi.org/10.1371/journal.pone.0256290 August 17, 2021 7 / 11

https://doi.org/10.1371/journal.pone.0256290.t002
https://doi.org/10.1371/journal.pone.0256290


Fig 3. Example images of the autodetection of hyphae with bounding box. ¥ (A) positive case with 100× magnification, (B) positive case with 40× magnification, (C)

negative case with 100× magnification, and (D) negative case (false detection) with 40× magnification. ¥The ground truth were marked with a green box in positive case

(A, B).

https://doi.org/10.1371/journal.pone.0256290.g003

Fig 4. Confusion matrix box for (A) Dataset-100, (B) Dataset-40, and (C) all datasets.

https://doi.org/10.1371/journal.pone.0256290.g004
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one-stage detector. This technique possesses several advantages that make it suitable for fungal

hyphal detection. First, YOLO v4 is very fast and exhibits higher performance than its previous

versions. In particular, its AP and frames per second (FPS) have increased by 10% and 1%,

respectively, compared with those of the existing YOLO v3 [14]. Second, YOLO v4 can use a

lightweight network structure to apply embedded systems. It is crucial to apply this method to

real-world clinical practice. Third, it has sufficient stability because the practicality of the

YOLO network has been verified through various applications.

The detection model obtained through our study achieved the sensitivities of 95.2% and

99% in the 100× and 40× data models, respectively. The specificity values of the 100× and 40×
datasets were 100% and 86.6%, respectively.

In real-world practice, KOH examination and fungal culture are commonly used to diag-

nose superficial fungal infections. However, the accuracy of these tests is not as high as

expected. In 2010, Jacob et al. reported that the sensitivities for the KOH examination and cul-

ture were 73.3% and 41.7%, respectively, and the specificities for those were 42.5% and 77.7%,

respectively [20]. The KOH examination has low specificity, and the fungal culture has low

sensitivity; thus, accurate diagnosis may be difficult with a single test. Therefore, if our model

is applied in real-world medical practice, the diagnosis of superficial fungal infections will be

very convenient and have high sensitivity, specificity, and consistent accuracy. Our model pro-

vides the classification (positive/negative) of the image, as well as the location and probability

of the hyphae object. Accordingly, the clinician can quickly read whether the object boxed by

the model are hyphae or not and reduce the entire slide scanning time in the process of KOH

examination.

We focused on ensuring that the model has a small false negative value when used as a

screening method. If the model returns negative results (no hyphae in the slide), depending on

the false negative value, the clinician may have to check all the fields under a microscope to

ensure that there are indeed no hyphae. Therefore, it is particularly important that the specific-

ity is high, and the false negative rate is low in the performance of the automatic detection

technique system for detecting hyphae. The specificity of our model was high, and the false

negative rate was 0% for the 100× data model and 24% for the 40× data model when the IOU

value was 0.25.

This study has some limitations. First, our model used 1000 levels of data to obtain results.

Although high accuracy has been achieved with 1000 levels of learning, we believe that if more

data are collected, more reliable results could be obtained. Second, since our model was devel-

oped using image data that was obtained from a setting of single clinic, there is a possibility of

performance decrease in different settings of various clinics. The significance of the proposed

study is that hyphae can be identified through deep learning techniques. We will continue to

train the autodetection model with more data from various clinics. Third, to compare the diag-

nostic performance of our model with that of experts, we used known expert accuracy. The

KOH examination is a commonly used diagnostic method with well-established accuracy that

has been previously reported in the literature. This leads us to propose that the accuracies of

the autodetection model and the known expert would be comparable.

Although several artificial intelligence (AI) technologies have been studied in connection

with medical diagnosis, they are difficult to apply in practice because doctors cannot

completely trust the decision made by AI. Our model is valuable in that it attempted an

explainable AI approach that provides not only classification, positive or negative, but also

object detection: the model finds and displays the location of each hypha as a bounding box.

Using our detection model, the doctor could spend more time with patients. Our model has

the significant advantage of being able to find hyphae quickly and is reliable owing to its high

accuracy. Although heavy multi-GPU machine is required in the training process, a smaller
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mobile device is sufficient for the final system that is equipped with the autodetection model

obtained through training. A recent study showed that the YOLOv4 model used in our study

can be attached to a mobile device [21]. Based on these results, we plan to develop a final sys-

tem equipped with our autodetection model.

In summary, we developed a deep learning-based autodetection model that detect hyphae

in microscopic images obtained from real-world practice. The performance of our model had

high sensitivity and specificity, indicating that it is possible to detect hyphae with reliable accu-

racy. Accordingly, diagnosis can be made more efficiently and in a more straightforward man-

ner. Furthermore, the clinician can quickly check only the hyphae found by the model and

confirm it, so that the time spent on microscopic observation can be used for other treatments.
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