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Abstract

Expanding populations of North American midcontinent lesser snow geese (Anser caerules-

cens caerulescens) have potential to alter ecosystems throughout the Arctic and subarctic

where they breed. Efforts to understand origins of harvested lesser snow geese to better

inform management decisions have traditionally required mark-recapture approaches, while

aerial photographic surveys have typically been used to identify breeding distributions. As a

potential alternative, isotopic patterns that are metabolically fixed within newly grown flight

feathers following summer molting could provide inferences regarding geographic breeding

origin of individuals, without the need for prior capture. Our objective was to assess potential

to use four stable isotopes (δ13C, δ15N, δ34S, δ2H) from feather material to determine breed-

ing origins. We obtained newly grown flight feathers from individuals during summer banding

at three Arctic and two subarctic breeding colonies in 2014 (n = 56) and 2016 (n = 45). We

used linear discriminant analyses to predict breeding origins from models using combina-

tions of stable isotopes as predictors and evaluated model accuracy when predicting colony,

subregion, or subpopulation levels. We found a strong inverse relationship between δ2H val-

ues and increasing latitude (R2 = 0.83), resulting in differences (F4, 51 = 90.41, P < 0.0001)

among sampled colonies. No differences in δ13C or δ15N were detected among colonies,

although δ34S in Akimiski Island, Baffin Island, and Karrak Lake were more enriched (F4, 51

= 11.25, P < 0.0001). Using δ2H values as a predictor, discriminant analyses improved accu-

racy in classification level as precision decreased [model accuracy = 67% (colony), 88%

(subregion), 94% (subpopulation)]. Application of the isotopic methods we describe could

be used to provide an alternative monitoring method of population metrics, such as overall

breeding population distribution, region-specific productivity and migratory connectivity that
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are informative to management decision makers and provide insight into cross-seasonal

effects that may influence migratory behavior.

Introduction

North American midcontinent lesser snow geese (Anser caerulescens caerulescens) are long-

distant migrants that predominately winter in temperate Arkansas and coastal Texas and Loui-

siana along the Gulf of Mexico [1–2]. Breeding distribution of midcontinent lesser snow geese

ranges from 52˚ N to 85˚ N and spans an approximate 33˚ range in longitude. The extensive

breeding range of lesser snow goose has resulted in numerous dispersed breeding colonies and

the classification of northern and southern subpopulations (henceforth referred to as Arctic
and subarctic subpopulations). Midcontinent lesser snow geese have been considered an over-

abundant species since 1999, based on explosive population growth facilitated by increasing

agricultural production [3–4]. Efforts to understand the life history of lesser snow geese and

their response to population reduction actions have been multifaceted; however, management

actions taken to reduce the population have been deemed largely unsuccessful [5–6]. As the

midcontinent population persists above desired levels, continued monitoring of metrics such

as productivity, immigration / emigration rates among colonies, links between breeding and

non-breeding areas (i.e., migratory connectivity) [7–8] and harvest demographics are impor-

tant for tracking population change and informing future management decisions [5].

Estimation of age-specific annual survival and harvest rates among colony or subpopulation

groups are important monitoring metrics and rely on long-term, annual banding efforts, in

conjunction with band-recovery analysis [9]. To determine subpopulation affiliation, capture

and marking of individuals must occur on the breeding grounds. Due to the large geographic

breeding range of the population, general inaccessibility of the region, and relatively short

molting period (i.e., when mass capture is possible), banding occurs at 5 distinct regions in the

Arctic and subarctic, and indices of productivity (age ratios) at this time are assumed to be rep-

resentative of the mid-continent population [10]. As an alternative, differentiation in stable

isotope ratios across the wide geographic breeding range of lesser snow geese may provide a

method to identify subpopulation or colony association of individuals of unknown origin, and

provide annual indices of region-specific productivity that are likely less biased than those cur-

rently derived from the banded sample. Such a technique could also enable more frequent and

cost-efficient assessments of breeding distribution, which have previously only been available

through aerial photographic surveys.

Stable isotopes of light elements such as carbon (δ13C), nitrogen (δ15N), oxygen (δ18O),

hydrogen (δ2H), and sulfur (δ34S) can serve as endogenous markers that allow inference to

prior life history locations without requiring previous capture and recapture [11–12]. Briefly,

food-webs differ regionally in isotopic signatures of light elements, and consumers incorporate

and reflect tissue isotopic values specific to the food-web they inhabit [13]. These isotopic pat-

terns can become fixed in metabolically inactive tissues such as feathers, claws, or hair [14] or

exist in dynamic equilibrium in metabolically active tissues (e.g. blood, muscle) of an organism

that moves among isotopically different food-webs [13, 15–16]. Therefore, isotopic analysis of

select animal tissues has the capacity to reveal information on prior discrete events at both spa-

tial and temporal scales.

Lesser snow geese undergo a complete flight feather molt in mid-summer, usually after

breeding. Therefore, values of stable isotopes of newly grown flight feathers are representative

Stable isotopes for migratory connectivity
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of local source materials consumed at the time of flight feather growth (but see Fox et al. [17]).

If individual breeding colonies produce unique feather isotopic signatures, then data confer-

ring an individual’s previous year’s breeding / molt location (collected via harvest) could pro-

vide an alternative means of elucidating migratory connectivity and metrics of spatial

population productivity. For example, Hobson et al. [18] used δ2H from flight feathers of

hunter-harvested lesser scaup (Aytha affinis) to identify variation in breeding productivity of

unique geographic regions. Similarly, isotopic analysis of muscle tissue has proven particularly

useful in lesser snow geese to identify geographic wintering locations [19]. Consequently, joint

application of these methods could provide insight into cross-seasonal effects that may exist

within or among species that influence migratory behavior [20–21]. For instance, Paxton and

Moore [22] assessed δ13C and δ2H values of red blood cells and feathers, respectively, from

black-and-white warblers (Mniotilta varia) and found that quality of available winter habitats

established differential body condition and proximate cues for spring migration and influ-

enced individual migration movements.

To test the utility of stable isotope ratios in predicting geographic breeding origin of lesser

snow geese, we collected newly grown flight feathers of adult female lesser snow geese at three

Arctic and two subarctic breeding colonies in 2014. We evaluated stable isotope ratios expected

to vary across latitude (δ2H) [23], diet (δ13C and δ15N) [24] and proximity to marine coastal

environments (δ34S) [25] to provide for a wide potential variation in isotopic differentiation

across colonies.

Materials and methods

Collection

To ensure certainty of isotope values originating from specific breeding locations, we collected

newly grown flight feathers (P1 feather) of adult female lesser snow geese during routine mid-

summer banding operations at three Arctic and two subarctic breeding colonies (Fig 1) in July

2014. Arctic breeding colonies included Southampton Island (63˚ 48’ 30.67", -85˚ 41’ 50.71")

(n = 12), Baffin Island (66˚ 42’ 46.04", -72˚ 33’ 26.32") (n = 8) and Karrak Lake (67˚ 15’ 37.30",

-100˚ 16’ 25.10") (n = 7). Subarctic breeding colonies included Akimiski Island (53˚ 06’ 17.42",

-80˚ 57’ 28.73") (n = 11) and La Pérouse Bay (58˚ 43’ 5.62", -93˚ 53’ 21.54") (n = 18) (Fig 1).

Upon removal, feathers were stored dry in paper envelopes until processing. All feathers from

breeding colonies were collected in accordance with Environment Canada Animal Care Com-

mittee permit number #16JL01. Whole specimens during spring migration were collected

under the University of Missouri’s Animal Care and Use Committee permit number 8191 and

the United States Fish and Wildlife Service scientific collection permit number MB47969B-1.

Collected feathers were cleaned of surface oils in chloroform:methanol (2:1 v/v) solvent

rinse. Stable hydrogen isotope measurements were performed on H2 gas derived from high-

temperature flash pyrolysis of 350 ± 20 μg feather subsamples from the distal section of feather

vanes (packed in silver capsules) using continuous-flow isotope-ratio mass spectrometry.

Briefly, pyrolytic combustion (1350˚C) was on a reactor with glassy carbon chips under helium

flow in a Eurovector (Milan, Italy– www.eurovector.it) elemental analyzer interfaced with an

Isoprime (Manchester, UK) continuous flow isotope ratio mass spectrometer (IRMS). Esti-

mates of the nonexchangeable H in samples were derived from two keratin hydrogen-isotope

reference materials (CNS: -197 ‰; KHS: -54.1 ‰) following the comparative equilibration

approach of Wasssenaar and Hobson [26]. All δ2H results are reported for nonexchangeable H

in delta notation, in units of per mil (‰), and normalized on the Vienna Standard Mean

Ocean Water (VSMOW) standard scale. Based on within-run replicate (n = 8) measurements

of keratin reference materials, we estimated measurement error (SD) to be ~ ± 2 ‰.

Stable isotopes for migratory connectivity
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For δ13C and δ15N analyses, 0.5–1.0 mg of feather material (packed in tin capsules) was

combusted online using a Eurovector 3000 elemental analyzer. The resulting CO2 was sepa-

rated by gas chromatography (GC) and introduced into a Nu Horizon (Nu Instruments,

Wrexham, UK– www.nu-ins.com) triple-collector isotope-ratio mass-spectrometer via an

open split and compared to a pure CO2 or N2 reference gas. Stable nitrogen (15N/14N) and car-

bon (13C/12C) isotope ratios were expressed in δ notation, as parts per thousand (‰) deviation

from the primary standards, atmospheric AIR and Vienna Pee Dee Belemnite (VPDB). Using

previously calibrated internal laboratory standards (powdered keratin [BWB II: δ 13C =

-20.0‰, δ15N = -14.1‰ and gelatin: δ 13C = -13.6‰, δ15N = -4.7‰]) within-run (n = 5), preci-

sion for δ15N and δ13C measurements was ~ ± 0.15‰.

For δ34S analyses, 3500 ± 100 ug of feather material (packed in tin capsules) was combusted

in a Vario Pyro Cube (Elementar, Langenselbold, Germany– www.elementar.de) elemental

analyzer and the resulting SO2 gas was introduced into Isoprime IRMS. Our laboratory

Fig 1. Location of sampled breeding colonies. Newly grown flight feathers of adult female (n = 56) midcontinent lesser snow geese (Anser caerulescens caerulescens)
were collected for quantification of isotope signatures in July 2014. A second year of collections containing flight feathers from both adult males and females (n = 45)

occurred at all colonies except Karrak Lake in July 2016.

https://doi.org/10.1371/journal.pone.0203077.g001
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standard was BWB-3 keratin (δ34S = 13.2‰) and δ values were reported relative to the Canyon

Diablo Triolite (CDT) standard. Measurement precision, based on within-run replicate mea-

surements of the lab standard was ± 0.3‰.

Isotopic segregation of breeding colonies

To determine whether feathers from different breeding areas were isotopically distinct, we cal-

culated mean feather stable isotope values within each breeding colony and ran a multiple

analysis of variance (MANOVA; α< 0.05). Feather values for all four isotopes were normally

distributed (Shapiro test: all P’s> 0.05) and homoscedastic (Levene’s test: all P’s> 0.05). We

used Tukey posthoc tests to determine differences among individual isotope means and spe-

cific breeding colonies. To describe spatial variation in feather stable isotope ratios across the

geographic range of selected breeding colonies, we used simple linear regression analyses to

relate stable isotope values to variation in latitude and longitude.

We used linear discriminant function analyses to develop a suite of candidate models to

predict breeding colony association using combinations of δ2H, δ13C, δ15N, and δ34S values

(Table 1). Based on MANOVA results, we developed a second set of linear discriminant mod-

els in which we grouped individuals from Southampton Island and Baffin Island together as a

subregion based on their similar feather δ2H values (Table 1). Finally, we evaluated a set of lin-

ear discriminant models where colonies were compressed into either Arctic or subarctic sub-

population association (Table 1). We used K-fold cross validation (K = 5) to evaluate the

accuracy of assignment for discriminant functions built to determine colony and subpopula-

tion association using the “lda” function in the MASS package in Program R [27]. We deter-

mined the strength of individual models based on the percent accuracy of individuals from

each breeding colony in 2014 whose isotopic value correctly represented their breeding colony

[28].

As a proof of concept, we collected flight feathers (n = 40) from adult, female snow geese

harvested in Arkansas, Missouri, Nebraska, and South Dakota during spring migration 2015.

In a preliminary investigation, feathers from geese of unknown origins were prepared in iden-

tical manner described above and, based on development of discriminant modeling results,

analyzed for δ2H values. Unknown individuals were then assigned origin based on the greatest

posterior probability of belonging to one of the five colonies (and subpopulation association)

predicted by a linear discriminant model based on δ2H using the “lda” “predict” function in

the MASS package.

Table 1. Models selected for linear discriminant function analysis.

Model

Colony ~ δ2H + δ13C + δ15N + δ34S

Colony ~ δ2H + δ34S

Colony ~ δ2H

Subregion ~ δ2H + δ34S

Subregion ~ δ2H

Subpopulation ~ δ2H + δ34S

Subpopulation ~ δ2H

Models were developed to identify classifications at the individual colony level, subregion, and subpopulation level

based on stable hydrogen (δ2H), nitrogen (δ15N), carbon (δ13C), and sulfur (δ34S) isotope values in feathers collected

from adult female lesser snow geese at Arctic and subarctic breeding colonies during summer banding in 2014.

https://doi.org/10.1371/journal.pone.0203077.t001
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Inter-annual variability in δ2H

The use of feather δ2H values as a reliable marker of goose origin is dependent upon how well

modeled food-web δ2H and corresponding feather δ2H (δ2Hf) matches predictions. Such mod-

els are ultimately based on the long-term dataset provided by the International Atomic Energy

Association (IAEA) Global Network of Isotopes in Precipitation (GNIP). Predicted local pre-

cipitation values are derived from kriged data using actual amount-weighted monthly average

precipitation δ2H (δ2Hp) values from a network of sampling stations. Those data are then typi-

cally transformed into expected δ2Hf values for spatially explicit assignment. Here we relied

instead on describing expected feather isotope values based solely on year-specific, ground-

truthed sampling of feathers. For δ2Hf, some interannual variation can be expected [12, 29–30]

and such uncertainty is propagated in most spatially explicit probabilistic assignments [31]. To

estimate potential interannual variation in lesser snow goose δ2Hf, we obtained additional

lesser snow goose feathers from known colonies in 2016. Here, secondary covert flight feathers

from adult male and female birds were collected at Akimiski Island (n = 9), La Pérouse Bay

(n = 10), Baffin Island (n = 11) and Southampton Island (n = 15) in 2016 and analyzed for

δ2Hf. We compared differences in δ2Hf by colony, year, and the interaction with a two-way

analysis of variance (α = 0.05). We created a discriminant function model using δ2Hf values

based on feathers collected in 2016 and used feathers derived from the same colonies in 2014

as a test group. Similarly, we used the δ2Hf discriminant function model based on 2014 feathers

to obtain model predictions of the known 2016 feathers and compare differences in error rate

between the two years. We used R 3.3.3 (R Core Development Team 2017) for all statistical

analyses.

Results

Comparison of isotopes by breeding colonies

Simple linear regression analysis indicated a strong inverse relationship between δ2Hf values

and increasing latitude (R2 = 0.83; Fig 2). No other isotope showed any detectable relationship

between δ values and latitude. Minor relationships between δ34S and δ15N and longitude

existed as depletion increased slightly in more westerly colonies, although variation in the data

explained by the relationship was low (R2 = 0.12, R2 = 0.07, respectively; Fig 2).

Results from the MANOVA indicated overall differences (F16, 204 = 7.51, P< 0.0001) in

measured isotope values among breeding colonies for feathers of known origin collected in

2014 (Table 2). However, only δ2Hf and δ34S differed among colonies (δ2Hf: F4, 51 = 90.41,

P< 0.0001; δ34S: F4, 51 = 11.25, P< 0.0001) whereas δ13C and δ15N did not (δ13C: F4, 51 = 0.29,

P = .8818; δ15N: F4, 51 = 2.02, P = 0.1047). Post hoc Tukey tests indicated δ2Hf differed sepa-

rately among Akimiski Island, La Pérouse Bay, and Karrak Lake. Feather deuterium values did

not differ between Southampton Island and Baffin Island but were different from remaining

colonies (Table 2). Values of feather δ34S did not differ among Akimiski Island, Baffin Island,

and Karrak Lake but as a group were more enriched than values found at La Pérouse Bay and

Southampton Island (Table 2).

Values of δ2Hf and δ34S most accurately predicted breeding colony association, when using

K-fold cross-validation, compared to the comprehensive model using δ2Hf, δ
13C, δ15N, and

δ34S or δ2Hf alone (overall model accuracy of 80%, 76%, and 67%, respectively; Table 3). When

predicting at the colony level, misclassification was greatest between Baffin Island and South-

ampton Island (Table 3). However, grouping Baffin Island and Southampton Island as a subre-

gion improved overall model accuracies. Prediction for the model using δ2Hf alone was more

accurate (88%) than the model collectively using δ2Hf and δ34S (86%; Table 3). Finally, greatest

Stable isotopes for migratory connectivity
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prediction accuracy was achieved when breeding colonies were classified according to subpop-

ulation. The model using δ2Hf alone was sufficiently accurate to predict subpopulation associa-

tion relative to the δ2Hf and δ34S model (94% accuracy compared with 93%; Table 3). Posterior

Fig 2. Relationships between isotopes (δ2H, δ34S, δ13C, and δ15N) analyzed from feather material to latitude and longitude for adult lesser snow geese collected

July, 2014. The top panel presents relationships between isotope values and latitude. The bottom panel presents relationships between isotope values and longitude.

Breeding colonies are Akimiski Island (closed circle), La Pérouse Bay (open triangle), Southampton Island (closed triangles), Baffin Island (crosses), and Karrak Lake

(closed squares). Linear regression lines are provided only for slopes that were significantly (P< 0.05) different from zero.

https://doi.org/10.1371/journal.pone.0203077.g002

Table 2. Mean and SE of stable hydrogen (δ2H), nitrogen (δ15N), carbon (δ13C), and sulfur (δ34S) isotope values in feathers collected from adult female lesser snow

geese at Arctic and subarctic breeding colonies during summer banding in 2014a.

Sampled Colonies Subpopulation δ2H (‰) δ15N (‰) δ13C (‰) δ34S (‰)

Akimiski Island (n = 11) Subarctic -104.17 (3.84) A 6.98 (0.10) A -24.40 (0.18) A 6.68 (0.39) A

La Pérouse Bay (n = 18) Subarctic -130.81 (1.77) B 6.44 (0.23) A -24.21 (0.09) A -0.33 (0.91) B

Southampton Island (n = 12) Arctic -158.41 (3.30) C 6.99 (0.18) A -24.36 (0.15) A -0.98 (1.07) B

Baffin Island (n = 8) Arctic -161.85 (2.10) C 6.84 (0.23) A -24.24 (0.25) A 5.37 (1.12) A

Karrak Lake (n = 7) Arctic -185.54 (4.98) D 6.31 (0.25) A -24.26 (0.24) A 3.41 (1.76) A

a Means with the same letters within a column are not different (P>0.05).

https://doi.org/10.1371/journal.pone.0203077.t002
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classification probabilities using the δ2Hf model for 40 geese harvested during the 2015 spring

migration increased as classification precision level decreased (S1 Table). Classifying individu-

als to either the subregion or subpopulation level incrementally reduced uncertainty in assign-

ment probabilities without substantially changing the overall proportions of classifications to

other groups (Fig 3).

Inter-annual variability in δ2Hf

Values of δ2Hf differed interactively among colonies and year (F3, 864 = 4.24, P = 0.0076) as

only lesser snow geese collected at Akimiski Island indicated differences in δ2Hf values

between 2014 and 2016 (Table 4). This annual difference in δ2Hf values at Akimiski Island was

reflected by low Akimiski Island prediction accuracies (44%) when predictions of 2016 colony

Table 3. Prediction accuracies by discriminant function models, partitioned across the colony, subregion, and subpopulation level of adult lesser snow geese col-

lected in 2014 using K-fold cross validation.

Colony Accuracy

Model Overall model accuracy Akimiski Island

(n = 11)

La Pérouse Bay (n = 18) Baffin Island

(n = 8)

Southampton Island

(n = 12)

Karrak Lake

(n = 12)

δ2H + δ13C + δ15N + δ34S 76% 91% 89% 50% 58% 86%

δ2H + δ34S 80% 91% 94% 63% 67% 71%

δ2H 67% 91% 94% 0% 42% 86%

Subregion Accuracy

Akimiski Island La Pérouse Bay Baffin / Southampton Islands

(n = 20)

Karrak Lake

δ2H + δ34S 86% 82% 89% 85% 86%

δ2H 88% 91% 89% 85% 86%

Subpopulation Accuracy

Subarctic (n = 29) Arctic (n = 27)

δ2H + δ34S 93% 97% 89%

δ2H 94% 97% 93%

https://doi.org/10.1371/journal.pone.0203077.t003

Fig 3. Breeding origin classification percentages from isotopic signatures of lesser snow geese (n = 40) harvested during spring migration, 2015.

https://doi.org/10.1371/journal.pone.0203077.g003
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classification were made using the δ2Hf discriminant function derived from feathers collected

in 2014 (Table 5). In contrast, δ2Hf discriminant functions derived from each respective year

to predict subregion and subpopulation level increased overall prediction accuracies by 29%

and 40%, respectively (Table 5).

Discussion

The primary goal of this study was to evaluate potential to determine breeding origins of lesser

snow geese using a suite of stable isotopes analyzed from feather material and evaluate the

combination of spatial precision and accuracy achievable under various origin scales. We

found that among the four stable isotopes tested (δ2H, δ13C, δ15N, and δ34S), deuterium (δ2H)

was the most distinct across the sampled breeding colonies. Generally, deuterium values were

more depleted with increasing latitude. The positive relationship between depleted precipita-

tion deuterium and increasing latitude, and the positive relationship between precipitation

deuterium and feather deuterium is well established [23–31]. However, variance in the latter

relationship can vary among taxa [31]. Our study quantified deuterium specifically in feather

material of a large-bodied migratory bird whose breeding range extends across a wide Arctic

and subarctic latitude. In contrast, δ13C and δ15N values did not vary across sampled breeding

colonies and their inclusion in linear discriminant analyses reduced overall prediction accu-

racy slightly. Lack of difference in δ13C and δ15N among colonies may be related to similar

plant foraging material across breeding areas [6].

We found differences in δ34S values among two groups of colonies. Values of δ34S were

more enriched in colonies at Akimiski Island, Baffin Island, and Karrak Lake, in contrast to

Table 4. Comparison of mean and SE of stable hydrogen (δ2H) isotope values in feathers collected from adult lesser snow geese in 2014 and 2016a.

Sampled Colonies Subpopulation δ2H (‰)

2014 2016

Akimiski (2014, n = 11; 2016, n = 9) Subarctic -104.17 (3.84) A -117.73 (1.72) B

La Pérouse Bay (2014, n = 18; 2016, n = 10) Subarctic -130.81 (1.77) A -127.90 (0.78) A

Southampton (2014, n = 12; 2016, n = 15) Arctic -158.41 (3.30) A -156.62 (1.64) A

Baffin (2014, n = 8; 2016, n = 11) Arctic -161.85 (2.10) A -170.36 (4.73) A

a Means with the same letters within a row are not different (P>0.05).

https://doi.org/10.1371/journal.pone.0203077.t004

Table 5. Comparison of prediction accuracies of annually derived discriminant function models, partitioned across the colony, subregion, and subpopulation level

of adult lesser snow geese collected in 2014 and 2016, using K-fold cross-validation.

Colony Accuracy

Model Prediction Group Overall model accuracy Akimiski Island La Pérouse Bay Baffin Island Southampton Island

δ2H Model 2014 (n = 49) 2016 Colony Feathers (n = 45) 69% 44% 100% 73% 60%

δ2H Model 2016 (n = 45) 2014 Colony Feathers (n = 49) 69% 100% 83% 38% 42%

Subregion Accuracy

Akimiski Island La Pérouse Bay Baffin / Southampton Islands

δ2H Model 2014 (n = 49) 2016 Colony Feathers (n = 45) 89% 44% 100% 100%

δ2H Model 2016 (n = 45) 2014 Colony Feathers (n = 49) 90% 100% 83% 90%

Subpopulation Accuracy

Subarctic Arctic

δ2H Model 2014 (n = 49) 2016 Colony Feathers (n = 45) 100% 100% 100%

δ2H Model 2016 (n = 45) 2014 Colony Feathers (n = 49) 94% 97% 90%

https://doi.org/10.1371/journal.pone.0203077.t005
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more depleted values at La Pérouse Bay and Southampton Island. In general, δ34S values are

expected to be enriched in breeding areas in proximity to coastal areas where prevailing winds

transfer sulfates from sea spray onto land [32–33]. Additionally, δ34S in feathers could be

enriched based on the predominant consumption of marine foods over terrestrial resources.

For lesser snow geese breeding at La Pérouse Bay, coastal marsh degradation from heavy graz-

ing forced the colony to shift more inland towards freshwater marshes [34]. This inland shift

and utilization of freshwater wetlands may explain the depleted δ34S values we observed in

feathers from lesser snow geese at La Pérouse Bay in this study. However, lesser snow geese

breeding at higher latitudes are thought to rely more heavily on freshwater wetlands than

southern breeders [35], yet δ34S values from individuals from these areas in our study were

more enriched. Nonetheless, δ34S could be useful as a secondary discriminant predictor of

breeding colonies whose classification is confounded using only δ2Hf because of similar values

among colonies. This was the case for classification of individuals from Baffin Island and

Southampton Island. Using feather δ34S in addition to δ2Hf values improved overall model

prediction accuracy from 67% to 80%. However, while improving prediction between Baffin

Island and Southampton Island, using δ34S in conjunction with δ2Hf increased misclassifica-

tion rates for individuals originating from Karrak Lake.

Selecting to use a discriminant function analysis derived at the colony, subregion, or sub-

population level results in a tradeoff between accuracy and precision. Our discriminant func-

tions based on δ2Hf that classified individuals at the subregion or subpopulation level were

34% and 40% more accurate compared to a model classifying individuals to the colony level;

however, the spatial scope of inference was reduced. Using a discriminate function based on

δ2Hf that classifies an individual to the subregion level may currently be the most appropriate

balance between accuracy of classification and inferential spatial scope.

The ability to isotopically distinguish among origin of individuals, even at the scale of sub-

region, has several useful applications, but the most important may be an improved under-

standing of breeding distribution. Overall population size can be estimated from age-specific

harvest rate estimates using Lincoln’s method [36] obtained from banding data and age-spe-

cific harvest estimates, which are obtained from long-established hunter harvest surveys in

Canada and the USA wherein a portion of hunters submit tail and wing feathers. Lincoln

abundance estimates have become an important metric for monitoring population status for

some populations of North American geese [10]. The components used in Lincoln estimates

are available over long time periods and are thought to be more reliable than other survey

methods (e.g., mid-winter aerial surveys, aerial photo surveys) that may be biased to an

unknown extent by issues related to detection, speciation, and sampling coverage. Although

they account for an unknown proportion of the total population and are conducted infre-

quently, photo-surveys of known nesting colonies have been used to improve the understand-

ing of the breeding distribution of this population [37]. Lincoln estimates have become the

preferred metric for monitoring changes in overall abundance to avoid the need for costly and

logistically challenging photo-surveys [10]. However, Lincoln estimates do not provide infor-

mation about the distribution of the breeding population, thus identifying an alternative

approach to estimating breeding distribution would be an important contribution to popula-

tion management and allow for monitoring migratory connectivity. Isotopic classification of

clipped primary feathers submitted by hunters through hunter harvest surveys would permit

partitioning of Lincoln estimates, at least to the level of subpopulation. Our classification of

forty adult migrants collected during spring migration illustrates the potential to provide an

alternative index that describes spatial distribution of the population. An improved under-

standing of breeding distribution is of management interest because the relationship between

adult survival and harvest differs between northern and southern nesting segments of the

Stable isotopes for migratory connectivity
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population [5]. Thus, course-scale population distribution should be a consideration when

designing monitoring programs, or when determining where to establish or expand research

on population-level management questions.

Another important monitoring metric available from annual banding programs is the

development of a productivity index (i.e., age ratio at banding). However, the degree to which

age ratios at banding reflect overall productivity could be influenced by local weather or preda-

tion pressure [38], age of young at capture (e.g., exposure days) [39], and individual decisions

made by banders (e.g., targeting smaller brood flocks or large groups of non-breeders, removal

of incomplete captures from calculations, focusing on the best areas of production). Determin-

ing isotopic values of a random sample of primary feathers submitted by hunters through the

annual harvest survey would likely yield a more spatially representative index of annual pro-

duction than can be provided by annual banding programs.

Predicting breeding origins of lesser snow geese sampled away from breeding colonies

based on a discriminant analysis derived from δ2Hf values of feathers grown at known colonies

constrains classifications only to those colonies where feathers have been analyzed and

included in the analysis. One drawback to our approach is the potential to misclassify an indi-

vidual to one of the known colonies when true origin was another colony not assessed in this

study. Similarly, we primarily analyzed feathers from individuals who successfully bred and

were molting in July. Because of logistical constraints, banding efforts at Southampton Island

only target failed breeders or those who forego breeding altogether. Therefore, our models are

primarily derived from one cohort of individuals, breeders, and do not account for individuals

who initiate a subsequent migration elsewhere to molt and regrow feathers. Extensive detail

regarding the destination of molt migrants from specific lesser snow goose colonies is limited.

In one study on lesser snow geese at La Pérouse Bay, molt migrants moved north to the

McConnell River, about 250 km away [40]. Additional research identifying additional molt

migrant destinations from other colonies would assist ability to interpret isotopic feather val-

ues. Additionally, we used only adult feathers to derive our linear discriminant functions. Pre-

vious works in other avian guilds (passerines and raptors) have identified more depleted

deuterium values in juveniles compared with adults from the same known origin, potentially

thought to be influenced by differences in diet, feather growth rate and metabolism [41–43].

While we do not have reasons to suspect differences in diet among juvenile and adult lesser

snow geese, evaluating differences in δ2Hf among age classes will be important to ensure pre-

dictive accuracy. We also observed some inter-annual variation of δ2Hf values at Akimiski

Island between sampling in 2014 and 2016 that resulted in misclassification when using one

year as a training set for a model and the other as a test set. These limitations emphasize the

importance of continued multi-year sampling (of newly grown feathers during molt) and an

increase in the number of colonies sampled. Data from additional sampling could be used to

calibrate a functional based map of δ2Hf across the Canadian Arctic and result in increased

accuracy and precision of lesser snow goose breeding origin classification using stable isotope

analysis.

Conclusions

Using isotopic markers found in metabolically active or inactive animal material provides a

pathway to identify heterogeneous breeding origins within harvested populations without

requiring previous capture, marking, and recapture. Our study provides an initial demonstra-

tion of the utility of identifying migratory connectivity through stable isotopes in lesser snow

geese. Yet, our approach could be further developed through the calibration of the long-term

GNIP dataset from lesser snow goose δ2Hf values, resulting in a species-specific breeding
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isoscape. The application of these data could be used to provide a more robust annual estimate

of subregion or subpopulation size based on isotopic partitioning of harvest survey parts. As

lesser snow geese have increased in abundance, juvenile-to-adult age ratios have declined [44]

in response to increasing density-dependence [45]. Using previous techniques demonstrated

to assess productivity [18] and migratory connectivity in harvested gamebirds [46] could be

implemented in midcontinent lesser snow geese and facilitate comprehensive monitoring

informative to future management decisions.
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