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Abstract
The cholinergic neurons in the nucleus basalis ofMeynert (NBM) are among the first group of neurons known to become degenerated
in Alzheimer’s disease, and thus the NBM is proposed to be involved in learning and memory. The marginal division (MrD) of the
striatum is a newly discovered subdivision at the ventromedial border of the mammalian striatum and is considered to be one part of
the ventral striatum involved in learning and memory. The present study provided evidence to support the hypothesis that the MrD
and theNBMwere structurally connected at cellular and subcellular levels with functional implications in learning andmemory. First,
when wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) was stereotaxically injected into the NBM, fusiform
neurons in the MrD were retrogradely labeled with WGA-HRP gray-blue particles and some of them were double stained in brown
color by AchE staining method. Thus, cholinergic neurons of the MrD were shown to project to the neurons in the NBM. Second, in
anterograde tract-tracing experiments where WGA-HRP was injected to the MrD, the labeled WGA-HRP was found to be
anterogradely transported in axons from the MrD to the synaptic terminals with dendrites, axons, and perikaryons of the cholinergic
neurons in the NBM when observed under an electronic microscope, indicating reciprocal structural connections between the MrD
and the NBM. Third, when bilateral lesions of theMrDwere injured with kainic acid in rats, degenerative terminals were observed in
synapses of the NBM by an electronic microscope and severe learning andmemory deficiency was found in these rats by the Y-maze
behavioral test. Our results suggest reciprocal cholinergic connections between the MrD of the ventral striatum and the NBM, and
implicate a role of the MrD-NBM pathway in learning and memory. The efferent fibers of cholinergic neurons in the NBM mainly
project to the cortex, and severe reduction of the cholinergic innervation in the cortex is the common feature of Alzheimer’s patients.
The newly discovered cholinergic neural pathway between theMrD of the ventral striatum and the NBM is supposed involved in the
memory circuitries of the brain and probably might play a role in the pathogenesis of the Alzheimer’s disease.
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Introduction

The subcortical striatum is a heterogeneous structure including
the ventral striatum (nucleus accumbens), the dorsolateral stri-
atum, and the dorsomedial striatum, and is believed to be in-
volved in modulation of complex motional [1] and learning-
memory activities [2]. The ventral striatum (nucleus accum-
bens) is known to play a predominant role in association with
reward and motivation [3], whereas the dorsolateral striatum is
able to formulate stimulus-response strategies such as habit
formation [4], body-centered memory including egocentric co-
ordination [5], and unconscious procedural memories that are
strengthened during trial-and-error learning [6]. The
dorsomedial striatum, similar to the caudate nucleus in humans,
is associated with goal-directed learning [7]. Neuropathological
evidence indicates decreases of cholinergic interneurons with
reduced choline acetyltransferase (ChAT) activities in the stri-
atum of patients with Alzheimer’s disease [8]. Some recent
studies have provided behavioral and anatomical evidence to
support the notion that associations exist between different
brain regions including the striatum and the hippocampus
[9–11], the striatum and the prefrontal cortex [12], the striatum
and the thalamus [13], the striatum and the amygdala [14], the
hippocampus and the prefrontal cortex [15], the hippocampus
and the thalamus [16], the prefrontal cortex and the thalamus
[17], the hippocampus and the amygdala [18], the nucleus
basalis of Meynert (NBM) and the medial temporal lobe sys-
tem [19], and the amygdala and the thalamus [20], but obser-
vations on the direct anatomical connection between the stria-
tum and the NBM are still absent [21, 22].

Previous studies identified a new brain area, the marginal
division (MrD), at the ventromedial border of the striatum in
the rat, cat, monkey, and human [23–25]. The MrD is distin-
guished from the rest of the striatum by its spindle-shaped
neurons, specific connections, and dense immunoreactivities
of neuropeptides and monoamines in fibers, terminals, and
neuronal somata [23–26] (Fig. 1). The 5′-nucleotidase activity
is densely expressed in the developing rodent MrD [27],
whereas the a2-adrenergic receptors are expressed more
strongly in the MrD than in the rest of the rat striatum [28].
Furthermore, it has been shown that the pedunculopontine
nucleus sends to massive afferents to the MrD of the squirrel
monkey [29], and that the MrD is connected to the interstitial
nucleus of the posterior limb of the anterior commissure [30].
TheMrD has been suggested to be one of the five components
of the ventral striatum [31]. Behavioral tests and physiological
experiments showed that the MrD contributes to learning and
memory or pain reception in the rat [32, 33]. Reduction in the

capacity of learning and memory was observed in the Y-maze
test after chemically induced bilateral lesions of the MrD of
the rat [32]. The c-Fos protein was expressed in the hippocam-
pus, dentate gyrus, amygdala, and the forebrain cortex after
injection of kainic acid into the MrD, demonstrating the func-
tional connections between the MrD and these structures [34].
In addition, theMrDwas found to have fiber connections with
the amygdaloid nucleus [35] and the bed nucleus of the stria-
tum terminals [36]. Moreover, it was also found that the effer-
ent fibers from the MrD projected to the most caudal part of
the globus pallidus, where the NBM was located. In the hu-
man brain, the association of theMrDwith learning and mem-
ory has been demonstrated with both pathological case reports
and functional MRI analyses [25], thus leading to the sugges-
tion that the MrD of the neostriatum is a subcortical memory
center and a new component of the limbic system [37].
Substance P which was expressed in the MrD was found to
play a role in learning and memory and mediated through the
neurokinin 1 receptor in rats [38]. Interactions between the
hippocampus and the striatum were reported during episodic
encoding [39]. Immunohistochemical study found that the
distribution of muopioid receptor in the MrD was different
from those in other parts of the neostriatum [40]. Different
expression patterns of microRNAs were also observed in the
MrD and the hippocampus of the rat [41]. Previous studies
suggested that the MrD and the hippocampus may play dif-
ferent roles in learning and memory through different neuro-
transmission mechanism [42]. New functional and structural
pathways related to learning and memory through the hippo-
campus, the amygdala, and the MrD in rats have been dem-
onstrated [43].

Unlike the aforementioned relations between the striatum
and various brain structures, less attention has been paid to the
connection between the striatum and the NBM. The NBM as
the major source of cholinergic innervation of the cerebral
neocortex belongs to the basal forebrain cholinergic system
[44]. As the degeneration of the cholinergic projections from
the basal forebrain to the neocortex and the hippocampus has
been found to be correlated with memory decline in
Alzheimer’s disease [45], it is proposed that the striatum
may also be associated with the NBM during the process of
learning and memory [46]. Although cognitive deficits are
usually considered to be attributed by the loss or degeneration
of cholinergic neurons in the NBM [46, 47], some reports
have cast doubt on this proposition [48, 49]. Hence, both
associations between the striatum and the NBM and the cog-
nitive deficits and loss of synapses in the NBM need to be
further examined.
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In the present study, we carefully dissected detailed anatom-
ical connections between the MrD and the NBM with wheat
germ agglutinin-conjugated horseradish peroxidase (WGA-
HRP) tract-tracing, histochemical staining, electronic microsco-
py, and immunoelectronic microscopic techniques. The mech-
anism underlying the learning-memory process associated with
the connections between the MrD and the NBMwas also dem-
onstrated through lesions of the MrD followed by studies in the
Y-maze behavioral test with tract-tracing, electronic microsco-
py, and immunoelectronic microscopic techniques.

Materials and Methods

Animals

A total of 100 male Sprague-Dawley rats weighing 200–250 g
were obtained from Beijing Research Center for Experiment
Animals, Beijing, China, and used in this study. The rats were
housed individually at a constant temperature of 25 °C with ad
libitum access to food and water in a 12:12-h light/dark cycle.
They were randomly divided into two large groups: behavioral
test group (n = 80) and non-behavioral test group (n = 40). Rats
in the non-behavioral test group were randomly divided into
four subgroups: (1) control group with no treatment (n = 5); (2)
WGA-HRP-treated group with 1% WGA-HRP injected into
the MrD or NBM (n = 15, n = 15); (3) kainic acid (KA)-treated
group with 0.1% KA injected directly into the MrD (n = 10);
and (4) normal saline (NS)-treated group with NS injected into
the MrD (n = 10). For the behavioral test group, after the pre-
test in the Y-maze (see below), rats (n = 53) were randomly

divided into five subgroups: (1) Bilaterally lesionedMrD group
(n = 18); (2) unilaterally lesionedMrD group (n = 10); (3) bilat-
erally lesioned caudoputamen (CPu) group (n = 10); (4) bilat-
erally lesioned NBM group (n = 10) and (5) bilaterally saline-
injected MrD group (n = 5). All experimental procedures on
animals were approved by the Institute for Animal Care of the
Southern Medical University. All efforts were made to mini-
mize the number of animals used and any pain they might
experience during the course of the investigation.

Histochemical and Tract-Tracing Methods

One percent WGA-HRP (Sigma) (0.2 μl) was stereotaxically
injected into the NBM or the MrD of the rat’s brain through a
micropipette as the retrograde and anterograde tracers in the
non-behavioral test group. Two days after WGA-HRP injec-
tions, the rats in the non-behavorial test group were anesthe-
tized with 10% chloral hydrate (3.5 ml/kg, intraperitoneal
(i.p.)). Under deep anesthesia, the rats were perfused through
the aorta with 200 ml 0.9% saline followed by 200 ml fixative
solution containing 3% paraformaldehyde and 0.25% glutar-
aldehyde in 0.02 M sodium phosphate buffer (pH 7.4, 4 °C)
within 1.5 h. After fixation by perfusion, the brains were re-
moved and immersed in the same fixative solution for 4 h
before they were transferred to and immersed in a
phosphate-buffered 20% sucrose (0.02 M sodium phosphate
buffer, pH 7.4, 4 °C) until the brains sank to the bottom of the
solution. Brains were sectioned coronally on a vibratome
(LKB, Sweden) at thickness of 50 μm. The sections were
immersed in 0.01 M phosphate buffer (pH 7.4, 4 °C) for
Nissl staining and acetylcholine esterase (AchE) staining or

Fig. 1 Location and cytoarchitectural characteristics of the MrD in the
ventral portion of the striatum in the rat brain. The diagram on the left side
indicates two frontal sections (A and B) of the rat brain. The upper right
panel shows that the PHA-L-labeled neuronal bodies in the dorsal part of
the striatum (caudoputamen, CPu) are mostly of round or triangular
shape. The lower right panel illustrates the MrD located in the

ventromedial portion of the striatum (CPu) and dorsolateral to the
globus pallidus (GP). The MrD consists of a band of fusiform neurons
labeled by PHA-L, which distinguishes the MrD from the rest of the
striatum (CPu) and the GP. Cpu, caudoputamen of the striatum corpus;
GP, globus pallidus; MrD, marginal division of the striatum
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AchE-TMB (3,3′, 5, 5′-tetramethylbenzidine) double staining.
The WGA-HRP was visualized after reacting with 3,3′,5, 5′-
tetramethylbenzidine (TMB) (Sigma) according to the method
described by Mesulam [50]. The sections were prepared and
examined with a light microscope (Olympus).

Nissl staining was carried out with 0.1% cresyl violet for
examination of the Nissl bodies and morphology of neuronal
bodies in the brain. Cryostat sections were mounted on slides
and stained with 0.1% cresyl violet, then dehydrated, cleared,
and coverslipped. AchE staining was carried out as follows
[51]: after five changes of acetate buffer (1 min each), sections
were treated with 1% ammonium sulfide solution for 1 min
followed by five changes of 0.1 M sodium nitrate (1 min each).
Sections were then exposed to 0.1% silver nitrate for 1 min
followed by five changes of 0.1 M sodium nitrate (1 min each).
Free-floating sections were rinsed in the acetate buffer, mounted
from acetate buffer onto subbed slides, air-dried, dehydrated,
cleared, and coverslipped. Sections were counterstained before
dehydration. AchE-TMB double staining was carried out as
follows [52]: after incubation in AchE staining solution for
60min, sections were rinsed in dH2O for six times (1min each).
Then they were reacted with 1% ethylene diamine tetraacetic
acid (EDTA) solution for 1 min, and further incubated in 1%
H2O2 solution for 20 min, and then glucose saline (GS, 40 mg/
100 ml) and glucose oxidase (GOD, 1 mg/100 ml) were added
to the incubation solution for an additional 20 min. The color
reaction was visualized using 10% potassium ferricyanide after
the sections were rinsed in the acetate buffer for six times
(30 min each). After color development, the sections were air-
dried, dehydrated, cleared, and coverslipped.

Lesion

All rats were anesthetized with an i.p. injection of 10% chloral
hydrate (3.5 ml/kg). After anesthetized, they were subsequently
placed on a stereotaxic platform. Their scalps were opened lon-
gitudinally with a scalpel and three small holes were drilled in
the skull at the coordinates indicated in the bregma system [53].
Glassmicropipettes were introduced through the small holes into
the brain to performmicroinjection of KA,WGA-HRP, or saline
(0.2 μl each). The coordinates were 1.4 mm posterior to the
bregma, 4.2, 5.0, or 3.2 mm lateral to the midline, and 5.3, 5.0,
or 6.6 mm ventral from the skull surface for the MrD, CPu, or
NBM injection, respectively. After each injection, the needlewas
left in place for 10 min before slowly retracted.

Behavioral Test

An electric Y-maze was chosen. This Y-maze uses light as the
conditional visual stimulus combined with the avoidance of
electric foot-shock pain reinforcement to test associative learn-
ing and declarative memory, commonly known as foot shock-
motivated brightness discriminating Y-maze test [54]. The Y-

maze has three arms with metal wires on their bottom to deliver
electric shocks and lights at their ends. When the foot-shock
avoidance test began, one armwith the light on (light zone) was
the shock-free area, whereas the other two arms with the light
off (dark zone) were areas with electric shocks. Electric shocks
were delivered to any of these three arms during the test. Rats
preferred to enter the dark zones at the beginning of the test.
After receiving a foot shock, most of the rats soon learned to
escape from the dark to the light zone to avoid electric shocks.
During the test, the rats were considered to be able to learn and
remember the correct route of escape from the electric shock if
they could run to the light zone within 10 s after the light shifted
from one to another arm of the Y-maze. The number of correct
escapes (running to the light zone within 10 s) in 30 electric
shocks was used to quantify memory. All rats (n = 80) were
tested twice before carrying out the behavioral tests and only
those who passed the first test with at least 10 correct escapes
and passed the second test with at least 15 correct escapes were
used in the subsequent behavioral tests. Two days later after
passing the two preliminary tests, the rats in the above groups
were tested in the foot-shock avoidance Y-maze with simulta-
neous changes in the light stimulus. After this avoidance test,
the rats who were able to learn that the light end was safe were
chosen (n = 53) and divided randomly into five subgroups as
indicated in the “Animals” section. The rats were then stereo-
taxically injected with 0.1% KA (0.2 μl) into the MrD bilater-
ally or unilaterally, the CPu bilaterally, or the NBM bilaterally
to produce the specific lesions. Saline was injected bilaterally
into the MrD of the control animals. The avoidance tests were
carried out again with the Y-maze 2 days after the lesion.

Electron Microscopic Examinations

Small pieces of the NBM were cut from the AchE-
histochemically stained brain sections and WGA-HRP-
stained brain sections under a microscope. After postfixed in
2.5% glutaraldehyde for 2 h, the tissues were washed in phos-
phate buffer and transferred into 0.5% osmium tetroxide at
4 °C for 1 h, and then rinsed in distilled water and dehydrated
through a graded series of ethanol. The tissues were incubated
in 1% uranyl acetate dissolved in 70% ethanol, processed with
propylene oxide, embedded, and then mounted. Ultrathin sec-
tions were cut on a LKB-Nova Ultratome (Sweden), stained
with 1% lead citrate, and examined under a JEM-1200 (Japan)
transmission electron microscope.

Data Analysis

Statistical analyses were performed with SPSS 17.0 software by
SPSS, Inc. All data were presented as means ± SD. Multiple
samples were compared using analysis of variance (ANOVA).
Multiple means were assessed statistically with paired-samples t
test. Significant differences were set at p < 0.05.
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Results

Efferent Projections from the MrD to the NBM Shown
by WGA-HRP Retrograde Tracing Method

WGA-HRP technique is a valuable tract-tracing reagent for
studying the nervous connections in the central nervous sys-
tem. The WGA-HRP could be transported within nerve fibers
both anteriorly and retrogradely. TMB staining is a very sen-
sitive method to show the transportedWGA-HRP. TheWGA-
HRP was stained in gray-blue color particles within the plas-
ma of the neuronal cell body or in the nervous fiber terminals
by TMB staining. We used the WGA-HRP to trace the con-
nection between the MrD and NBM. Following the stereotax-
ic injection of WGA-HRP into the NBM, little WGA-HRP
detected as the gray-blue substance was observed at or near
the injection site (Fig. 2a), whereas the retrogradely
transported WGA-HRP which appeared as gray-blue particles
was found prominently in some fusiform neurons in the MrD
(Fig. 2b) suggesting thatWGA-HRP present at theMrD site is
not due to non-specific uptake of the injected WGA-HRP
tracer but due to a direct projection pathway between NBM
and MrD. The retrogradely transported WGA-HRP-labeled
fusiform neurons were observed in all five rats. There are eight
retrogradely transported WGA-HRP-labeled neurons in the
MrD of the striatum in the boxed area in one rat as shown in
Fig. 3. The retrogradely transported WGA-HRP-labeled neu-
rons in brain sections of the other four rats were 12, 9, 7, or 10,

respectively. Thus, the mean ± SD ofWGA-HRP-labeled neu-
rons is 9.2 ± 1.92. Some of WGA-HRP-labeled neurons are
also labeled with AchE. The ratio of AchE-WGA-HRP
double-labeled neurons to Total WGA-HRP-labeled neurons
was 0.500, 0.417, 0.444, 0.429, and 0.500 with the mean ± SD
as mean 0.458 ± 0.040 (Table 1). A dot plot showing the ratio
as percentage of AchE-WGA-HRP double-labeled neurons to
Total WGA-HRP-labeled neurons is shown in Fig. 4. The
result showed definitely the presence of efferent projections
from the MrD to the NBM. The brown substrate was stained
by AchE method to demonstrate the cholinergic containing
neurons and nerve fibers. The results demonstrated that the
MrD contains cholinergic neurons and some of these cholin-
ergic neurons projected to NBM.

Loss of Fusiform Neurons in the MrD After KA
Injection Shown by Nissl Staining

The KA is a toxin to neurons in the brain. We stereotaxically
injected 0.1% KA (0.2 μl) into the MrD bilaterally or unilat-
erally, the CPu bilaterally, or the NBM bilaterally to produce
the specific lesions. Only 5 out of 15 KA-injected rats were
injected right in bilateral MrD and 8 of 15 rats were injected in
NBM precisely. The saline as a control reagent was injected
bilaterally into the MrD in the control animals. The fusiform
neurons which were parallel in the ventromedial border of the
striatum were lost and were replaced with a large number of
infiltrated microglia in the sections through the KA injection

Fig. 2 Determination of the projection from the MrD to the NBM by
WGA-HRP retrograde tracing method. a The WGA-HRP injecting site
in the NBM is marked (arrow a) where little WGA-HRP tracer shown as
blue substance could be detected. Two cholinergic neurons of NBMwere
observed at the right lower corner (arrow b). b WGA-HRP stained as
gray-blue particles retrogradely labeled fusiform somata of neurons in

the MrD of the ventral striatum (arrow c) in the rat brain. Some of the
WGA-HRP-labeled neurons were stained with brown color background,
which were AchE-WGA-HRP double-labeled neurons (arrow d). The
AchE-WGA-HRP double-labeled neurons were cholinergic neurons in
MrD, which projected to the NBM. MrD, marginal division of the
striatum; NBM, basal nucleus of Meynert. Magnification = ×400
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site in the MrD, while the morphology of neurons in the ad-
jacent striatum and globus pallidus was still normal (Fig. 5).
The neurons of the CPu and the NBM were lost as well in the
KA-injected group. No obvious histopathological changes
were found in the sections of the rats brains in the saline-
injected group. The results indicate that the KA injections
had injured the neurons in the MrD or CPu or NBM of the
rat brains, respectively.

Identification of AchE-Containing Neurons
and Substrate in the MrD, Striatum, and NBM

The cholinergic neurons in sections of the brain were stained
in brown or dark brown color by the AchEmethod. The dorsal
and lateral striatum in the rat brain was heavily stained in
brown color fully by AchE staining method of the saline-
injected group, and the staining was so heavy that individual
neurons were not easily discernible (Fig. 6). Some large multi-
angular cholinergic neurons in the NBM were also heavily
stained with AchE method. A band of medium-size AchE
positives-stained cholinergic fusiform neurons was observed
in the MrD with their long axes arranged in parallel to the
ventromedial border of the striatum (Fig. 6). The results indi-
cated that both MrD of the striatum and NBM contain cholin-
ergic neurons and nervous fibers.

Demonstration of Degenerated Terminals in the NBM
Identified by the Electron Microscope After KA
Injected into the MrD

The small pieces of the NBM were cut from sections of the
KA-injuredMrD of the rat brain to investigate the degenerated
terminal in the synapses of the NBM. These small pieces of
tissues were incubated in 1% uranyl acetate dissolved in 70%
ethanol, processed with propylene oxide, embedded, and then
mounted. The embedded and mounted tissues were cut as
ultrathin sections by a LKB-Nova Ultratome (Sweden). The
ultrathin sections were examined under a JEM-1200 (Japan)
transmission electron microscope for investigating the
degenerating terminals projected from the MrD synapsed on
the AchE-positive neurons of NBM. Under the transmission
electron microscope, iron sulfide products with high electron
densities from the AchE staining reaction were found
scattered in the neurons, suggesting that these neurons were
cholinergic neurons. Some axon terminals which showed sub-
stances with high electron densities and round synaptic vesi-
cles were observed in the synapses of AchE neurons in the
NBM. The degenerated terminals from the MrD which exhib-
ited decreased numbers of synaptic vesicles, increased elec-
tron densities, and mitochondrial deformation or aggregation
were observed in the synapses of the NBM (Fig. 7). These
terminals formed the axo-somatic, axo-dendritic, axo-axonic,

Fig. 3 The projection from the MrD to the NBM by WGA-HRP
retrograde tracing method. The conditions were the same as in Fig. 2. a
WGA-HRP stained as gray-blue particles retrogradely labeled fusiform
somata of neurons (arrows) in the MrD of the ventral striatum in the rat
brain. b High magnification of the boxed area in a. Some fusiform

neurons were double-stained in brown color with some blue particles in
their cell bodies. This AchE-WGA-HRP double-stained neurons were
cholinergic neurons in the MrD which project to NBM. GP, globus
pallidus; MrD, marginal division of the striatum; St, striatum; scale bar
= 400 μm (a) and 100 μm (b)

Table 1 Ratio of AchE-WGA-HRP double-labeled neurons to Total WGA-HRP-labeled neurons in the MrD of the striatum. Ratio of AchE-WGA-
HRP double-labeled neurons to Total WGA-HRP-labeled neurons in percent

Total WGA-HRP-labeled neurons in the box
Number of animals: 5

AchE-WGA-HRP
double-labeled neurons

Ratio of AchE-WGA-HRP double-labeled
neurons to Total WGA-HRP-labeled neurons (%)

Animal 1—8 4 50.0

Animal 2—12 5 41.7

Animal 3—9 4 44.4

Animal 4—7 3 42.9

Animal 5—10 5 50.0

The mean ± SD as mean 0.458 ± 0.040
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or complex synapses with cholinergic neuronal bodies, den-
drites, and axons. Since these degenerated terminals were ob-
served in the NBM after injection of KA to the MrD, this
observation suggested that the degenerated terminals were
projected from the KA damaged MrD to the NBM.

Demonstration of WGA-HRP Anterogradely Labeled
Neural Terminals from MrD to NBM by Electron
Microscopy

The WGA-HRP could be transport within nerve fibers both
anteriorly and retrogradely. TMB staining is a very sensitive
method to show the transported WGA-HRP. The WGA-HRP
was stained in gray-blue color particles within the plasma of
the neuronal cell body or in the nervous fiber terminals. The
WGA-HRP anterogradely transported in the terminals of
NBM from the axons of MrD. The TMB-stained WGA-
HRP displayed as dark rod-like crystals in the labeled axonal

terminals under the transmission electron microscope, which
were observed in synapses of the NBM after WGA-HRP was
injected into MrD. These anterogradely labeled neural termi-
nals formed symmetric axo-somatic synapses with cholinergic
neurons of the NBM under the electron microscope (Fig. 8).

Behavioral Tests

We used an electric Y-maze to test the behavioral ability of the
rat. This Y-maze uses light as the conditional visual stimulus
combined with the avoidance of electric foot-shock pain rein-
forcement to test associative learning and declarative memory,
commonly known as foot shock-motivated brightness dis-
criminating Y-maze test [54]. The light-foot shock avoidance
reaction is based on the memory-related conditional reflex,
and used to test the memory function of the animal. The Y-
maze has three arms with metal wires on their bottom to de-
liver electric shocks and lights at their ends. When the foot-
shock avoidance test began, one arm with the light on (light
zone) was the shock-free area, whereas the other two arms
with the light off (dark zone) were areas with electric shocks.
Electric shocks were delivered to any of these three arms
during the test. Rats all preferred to enter the dark zones at
the beginning of the test. After receiving a foot shock, most of
the rats soon learned to escape from the dark to the light zone
to avoid electric shocks. After several shocks, rats learned and
remembered that the light zone was a safe area and hence they
ran directly to the light zone whenever the light was shifted
from one area to the other. During the test, the rats were con-
sidered to be able to learn and remember the correct route of

Fig. 6 Identification of AchE-containing neurons and neuronal processes
in the MrD, striatum, and the NBM. The cholinergic neurons and nerve
fibers were stained in dark brown color by AchE staining method. A row
of cholinergic medium-size fusiform neurons stained by AchE method in
brown color was observed in the MrD of the striatum (black arrow on the
left). The large multi-angular cholinergic neurons in the NBM were
heavily stained by AchE method in brown color (black arrow on the
right). The rest portion of the striatum (St) is fully filled with AchE-
positive substrates. MrD, marginal division of the striatum; NBM,
nucleus basalis of Meynert; St, striatum; scale bar = 400 μm

Fig. 5 Loss of fusiform neurons in the MrD after KA injection shown by
Nissl staining. At the injection site, fusiform neurons in the MrD (upper
longer arrow) were lost (pointed by two shorter parallel arrows), while the
morphology of neurons in the adjacent striatum (caudoputamen, CPu)
and globus pallidus (GP) is still normal. Scale bar = 100 μm
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Fig. 4 A dot plot showing the ratio as percentage of AchE-WGA-HRP
double-labeled neurons to Total WGA-HRP-labeled neurons
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escape from the electric shock if they could run to the light
zone within 10 s after the light shifted from one to another arm
of the Y-maze. The number of correct escapes (running to the
light zone within 10 s) in 30 electric shocks was used to quan-
tify memory. The behavioral test was performed with the Y-
maze in the preliminary tests and also 2 days after the treat-
ment with KA. The learning and memory scores of the rats
were expressed by the total numbers of shocks required for
rats to choose correctly 9 out of 10 times. No significant dif-
ferences in the learning and memory scores among rats of
different treatment groups were observed before the treatment
(p > 0.05). The total number of shocks required for the 90%
positive response was increased significantly after bilateral
KA lesions of the MrD (n = 12) or NBM (n = 6) (p < 0.05),
from 15.58 ± 2.02 to 28.58 ± 2.02 or 15.00 ± 1.41 to 26.83 ±
1.33, respectively (Table 2). No significant differences were
found between these two groups (p > 0.05). Furthermore, no
differences in the number of total shocks required for the 90%
positive response before and after lesions in the groups of

bilateral KA lesions of the caudoputamen (neostriatum) or
unilateral KA lesions of the MrD as observed in the saline-
injected control group (p > 0.05) (Table 2). These results sug-
gested that bilateral lesions of the MrD or NBM led to the
decrease of learning and memory ability.

Discussion

The results of the present study demonstrated that the MrD and
the NBM were structurally connected at both cellular and sub-
cellular levels using a combination of histochemical localiza-
tion, tract-tracing, electron microscopy, and immunoelectronic
microscopy techniques. WGA-HRP was employed to identify
the direct connections between neurons, because it could be
transported both anterogradely and retrogradely between the
neuronal somata and their terminals. Following WGA-HRP
injection to the NBM, positive gray-blue particles of WGA-

Fig. 8 Electron photomicrography showing anterograde WGA-HRP-
labeled terminals projected from the MrD to the NBM after WGA-HRP
injection in to the MrD. Following WGA-HRP injection to the MrD,
anterogradely transported WGA-HRP, which appeared as rod-like
electron dense substances, labeled axon terminals (a) from the MrD to
form symmetric axo-somatic synapses (arrows) with a cholinergic neuron
(cn) of the NBM. MrD, marginal division of the striatum; NBM, nucleus
basalis of Meynert; scale bar = 0.5 μm

Fig. 7 Demonstration of degenerated terminals in the NBM after KA
injection into the MrD—electron microscopic analysis. Anterograde
degenerative axon terminals are observed in the NBM following KA
injection to the MrD of the rat brain. A terminal (a) with synaptic
vesicles and swollen mitochondria is found to form an asymmetric axo-
dendritic synapse (arrow) on a dendrite (d). A completely damaged axon
(a1, black triangle) with decreased numbers of synaptic vesicles and a
disrupted axon membrane is found just above the dendrite (d). A
cholinergic neuron with a big nucleus in the NBM is occupied the right
panel of the figure.MrD,marginal division of the striatum; NBM, nucleus
basalis of Meynert; scale bar = 0.5 μm
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HRP were retrogradely transported within fusiform neurons in
the MrD, demonstrating efferent projections from the MrD to
the NBM. Conversely, after WGA-HRP injection to the MrD,
WGA-HRP labeling of axon terminals was found in the synap-
ses of cholinergic neurons in the NBM under an electron mi-
croscope, lending support to the notion that the MrD and the
NBM were reciprocally connected.

The Y-maze test has been widely used for identification of
discrimination learning, spatial alternation tasks, and working
and reference memory [55, 56]. With this method, spatial mem-
ory performances and various exploratory behaviors could be
assessed quickly [57]. Our previous studies have also shown that
when theMrDwas stimulated by KA [34], the c-Fos protein was

Table 2 Total number of shocks required for attaining a 90% correct
rate in the Y-maze test before and after the KA treatment

Total number of shocksa

Group N Before treatment After treatment p value

Bi-MrD lesion 12 15.58 ± 2.02 28.58 ± 2.02 < 0.05

MrD lesion 7 15.08 ± 1.29 16.57 ± 0.98 > 0.05

Bi-CPu lesion 8 15.88 ± 1.25 16.25 ± 1.39 > 0.05

Bi-NBM lesion 6 15.00 ± 1.41 26.83 ± 1.33 < 0.05

Control 4 15.75 ± 1.26 16.00 ± 1.15 > 0.05

a Values are expressed as mean ± SD

Fig. 9 Summary of the neuronal connections from the MrD to the NBM
using the WGA-HRP tracing method. Schematic summary of the
connection from the fusiform neuron (red) in the marginal division
(MrD) of the ventral striatum to the nucleus basalis of Meynert (NBM).
The axons of round-shaped neurons (blue) in the other parts of the
striatum (St) project to the globus pallidus (GP). b Following WGA-
HRP injection to the NBM, retrogradely transported WGA-HRP, which
are stained as black-blue particles, labeled some fusiform neurons in the
MrD of the ventral striatum. MrD, marginal division of the striatum;
NBM, nucleus basalis of Meynert. Scale bar = 100 μm. c The efferent

projections (white lines) from theMrD to the NBM are observed in a dark
field under a light microscope at low magnification. MrD, marginal
division of the striatum; NBM, nucleus basalis of Meynert. Scale bar =
800 μm. d Following WGA-HRP injection to the MrD, anterogradely
transported WGA-HRP, which appeared as rod-like electron dense
substances in axon terminals from the MrD, were found in the axon-
somatic synapses(arrows) of cholinergic neurons in the NBM. MrD,
marginal division of the striatum; NBM, nucleus basalis of Meynert.
Scare bar = 1 μm
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expressed in various parts of the limbic system [58] including
hippocampus, dentate gyrus, amygdala, and the forebrain cortex.
These results indicated the functional connection between the
MrD and the limbic system. In addition, we have also observed
the structural connections between the MrD and some areas of
the limbic system [24, 35, 59–61]. In the present study, after KA
injection to the MrD, anterograde degenerating axon terminals
were found in the synapses of cholinergic neurons in the NBM
under the electron microscope. No differences among learning
and memory scores in rats of different treatment groups were
found before stereotactic injections in the MrD or NBM, but
the total number of shocks required for the 90%positive response
was increased significantly after bilateral KA lesions of the MrD
or NBM, and no significant differences were found between the
MrD-lesioned and the NBM-lesioned groups. These results sug-
gested that the bilateral lesions of the MrD led to the decrease of
learning and memory ability, which supports the proposition that
the structural connection between theMrD and the NBM plays a
role in the learning and memory function.

The brain constitutes about 2% of the bodyweight, requires
about 17% of the normal cardiac output, and consumes about
20% of the oxygen utilized by the entire body. The striatum is
located in the central position of the brain which is supplied by
branches of lenticulostriate arteries arising directly from the
proximal portion of the middle cerebral artery [62]. Thus, the
ventral striatum derives its blood and oxygen supply more
quickly and directly from the heart in comparison to other
portions of the brain, and probably carries out important func-
tions of the brain including learning and memory. Based on
the findings in the present study and other observations [14,
27, 28, 35], the afferent and efferent signals could be
transported from the MrD to all its connected areas. For in-
stance, the efferent striatonigral fibers from the MrD terminat-
ed at the caudal border of the substantia nigra, the pars retic-
ulate [60]. The afferent fibers from the amygdaloid nucleus
and the bed nucleus of the stria terminated to the MrD [35,
61]. The MrD and the hippocampus have been proposed to
have different roles in learning and memory [42], partly based
on the finding on the new pathways among the hippocampus,
the amygdala, and the ventromedial region of the striatum in
rats [43]. The results obtained from the present study with tract
tracing and immunoelectronic microscopy showed a new
pathway where neurons of the MrD projected to the NBM
and their axon terminals had synaptic connections with the
cholinergic neurons of the NBM. Lesion of the new pathway
from the MrD to the NBM in rats resulted in severe learning
and memory deficiency in behavioral tests. Our results also
provided evidence to support the proposition that the MrD of
the ventral striatum may also join the neural circuitries of the
NBM in processing learning and memory signals. Since the
cholinergic neurons in the basal forebrain complex are among
the first group of neurons known to become degenerated in
Alzheimer’s disease, the role of the new pathway between the

MrD and the NBM cholinergic neurons in learning and mem-
ory may provide further insights into the pathological mecha-
nism of Alzheimer’s disease.

Conclusions

The results of this study demonstrated a new neural pathway
from the MrD of the ventral striatum to the NBM at the cellular
and subcellular levels and its role in learning and memory as
revealed by WGA-HRP tract tracing, histochemical staining,
immunoelectronic microscopy, and Y-maze behavioral test after
lesions of the MrD. Following WGA-HRP injection into the
NBM, positive stained dark-blue particles of WGA-HRP were
retrogradely transported to label fusiform neurons in the MrD.
TheWGA-HRP-labeled terminals of axons from the MrD made
synaptic connections with cholinergic neurons in the NBM as
demonstrated by WGA-HRP anterograde tract tracing and
immunoelectronic microscopy. These results showed fusiform
neurons of the MrD, some of them were cholinergic neurons,
projected to the NBM and their axon terminals had synaptic
connections with the cholinergic neurons of the NBM (Fig. 9).
The rats with bilateral MrDs lesions showed degenerated axon
terminals in synapses of the cholinergic neurons in the NBM of
the rat brain under an electronic microscope and severe learning
and memory deficiency of rats in the Y-maze test. The results
suggested that the new neural pathway (some of them were
cholinergic) from theMrD to the NBM played an important role
in learning and memory. This new pathway might regulate the
excitability of the NBM in the cognitive processes and probably
might be involved in the complexmemory networks of the brain.
The new cholinergic neural pathway between the MrD and the
NBM is also proposed to be potentially involved in the patho-
logical mechanism of Alzheimer’s disease.
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