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The iBeetle large-scale RNAi screen reveals gene
functions for insect development and physiology
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Genetic screens are powerful tools to identify the genes required for a given biological
process. However, for technical reasons, comprehensive screens have been restricted to very
few model organisms. Therefore, although deep sequencing is revealing the genes of ever
more insect species, the functional studies predominantly focus on candidate genes pre-
viously identified in Drosophila, which is biasing research towards conserved gene functions.
RNAI screens in other organisms promise to reduce this bias. Here we present the results of
the iBeetle screen, a large-scale, unbiased RNAI screen in the red flour beetle, Tribolium
castaneum, which identifies gene functions in embryonic and postembryonic development,
physiology and cell biology. The utility of Tribolium as a screening platform is demonstrated by
the identification of genes involved in insect epithelial adhesion. This work transcends the
restrictions of the candidate gene approach and opens fields of research not accessible in
Drosophila.
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he importance of Drosophila melanogaster as a model

system is in large part due to its amenability to elegant

genetic screens, which allow the comprehensive identifica-
tion of genes required for a given biological process"2. Recently,
unbiased genetic screens have also been performed in a few other
insects, for example, the hymenopteran Nasonia vitripennis and
the beetle Tribolium castaneum>S. However, technical
constraints prohibit saturation screens in these species. Hence,
most of what we know about insect gene function remains based
on Drosophila work. RNA interference (RNAi) has emerged as an
alternative tool to knockdown gene function and has thus far
been used for genome-wide screens in the nematode
Caenorhabditis elegans, in Drosophila and in cell culture’'1.

In recent years, reverse genetics based on deep sequencing and
RNAi has enabled functional investigations in ever more insect
species, broadening the range of biological phenomena that can
be analysed. However, the candidate gene approach still prevails:
genes are selected based on previous findings in Drosophila or
other model systems!?~2!, Consequently, the field of insect
functional genetics suffers from several limitations. First, the
candidate gene approach leads to a bias towards the study of
conserved gene functions. Second, it has remained difficult to
identify genes required for processes that are not represented in
Drosophila. Finally, technical limitations and lineage specific
gene losses or duplications prohibit the identification of
comprehensive gene sets for a particular process in any single
species. An unbiased, large-scale RNAi screen in a non-dipteran
insect species should overcome many of these limitations.

The red flour beetle, T. castaneum, is well suited for this aim. In
many respects its biology is more representative for insects than
Drosophila, as its segmentation proceeds from a posterior growth
zone, the larval head is not involuted and its extraembryonic
tissues are well developed. Further, its modes of oogenesis
and metamorphosis resemble those of other non-dipteran
insects?2~28. Further, Tribolium is a representative of the most
species-rich animal taxon on earth, the coleopterans (beetles),
including many devastating pests?®. Finally, Tribolium research
builds on an expanding transgenic toolkit®3°~32 and a particularly
strong systemic RNAi response. Knockdown phenotypes
can be induced at all life stages through dsRNA injection into
the body cavity, and the RNAI effect spreads throughout the
animal and is transferred to the offspring, often phenocopying
null mutants3-°,

Here we present the results of the iBeetle screen, where we used
RNAI targeting about 5,000 genes to identify novel gene functions
during oogenesis, embryogenesis and metamorphosis in an
unbiased way. We show that this screen has the power of
overcoming the current limitations imposed by the candidate
gene approach by the identification of unexpected novel players
required for long studied processes. For instance, we describe the
first bicaudal phenotype in Tribolium elicited by knockdown of
the homeobox gene Tc-homeobrain; a gene so far not related to
anterior-posterior axis formation. Further, we show that the
unbiased detection of gene function in Tribolium allows opening
new fields of research. For instance, many insects have
odoriferous glands used for communication and defence but
such glands are missing in Drosophila. In the screen, a set of genes
were identified, which are involved in producing the defensive
chemicals of the Tribolium odoriferous glands. Importantly,
many of these genes were not identified in a recent RNA-seq
approach confirming the power of a phenotypic screen. Finally,
we show that Tribolium is an excellent alternative screening
platform, where insect gene functions are efficiently identified.
One example is the gene Tc-Rbm24, which we found to be
required for muscle development in Tribolium. Drosophila does
not have a respective ortholog while the vertebrate ortholog has
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recently been shown to be involved in muscle formation. As
second example, we identified novel genes required for epithelial
adhesion in Tribolium, the orthologs of which are required in
Drosophila as well but had not been discovered in Drosophila
screens.

Results

Design of the iBeetle screen. We developed a procedure that
allowed efficient screening of several biological processes. Two
screens were performed in parallel by injection of different
developmental stages. In the ‘pupal injection screen’, injected
pigl9 transgenic female pupae (somatic muscles marked with
EGEFP) were scored for late metamorphosis phenotypes and, upon
maturation to adults, their offspring embryos were analysed for
muscle and cuticle phenotypes as readouts for defects in
embryogenesis. This treatment knocked down both maternal and
zygotic transcripts in developing embryos. In case of reduced egg
production, ovaries of the injected females were analysed for
oogenesis defects.

In the ‘larval injection screen’, penultimate instar larvae (L6)
were injected. Female larvae were derived from a cross between
D17Xred (adult flight muscles marked with EGFP; X-linked
DsRed marker allowed sexing of larvae) and pearl (white eyed)
strains. Muscle phenotypes were scored during the pupal stage,
and general morphological defects both at pupal and at adult
stages. Ovaries were dissected and analysed whenever egg
production was found to be strongly reduced. Finally, adult
odoriferous glands were scored for alterations in size or colouring
and dissected for closer inspection. Importantly, the larval
injection screen allowed the identification of gene functions
during metamorphosis without affecting essential functions
during embryogenesis that would prevent analysis of later stages.
We screened 5,300 genes in the (ongoing) pupal and 4,480 genes
in the larval injection screen and present analyses of 3,400 genes
included in both screens.

The iBeetle screen was designed as a first pass screen wherein
each experiment was performed once, and off-target controls
were done only for selected genes. We aimed at minimizing false
negative annotations with the trade-off of an increased false
positive rate. The genes to be knocked down were selected
randomly, except that their annotations were based on RNA
sequence data, which may have led to some enrichment of highly
expressed genes (see Supplementary Table 1). Using the DEQOR
prediction algorithm?”, templates were selected for high RNAi
efficiency and a low number of possible off-target sites.

dsRNA fragments with an average length of 479bp were
injected at a concentration of 1pgpl™". Phenotypes were
annotated in an online database according to the EQM system
(entity, quality, modifier)*® and using a controlled vocabulary
based on the Tribolium morphological ontology®. In addition, the
penetrance of phenotypes was recorded, and pictures and free text
fields were used for further documentation (see Methods section
for details). All abovementioned data sets of the larval and pupal
injection screen in addition to sequence and orthology
information of the entire Tribolium gene set are available at
http://ibeetle-base.uni-goettingen.de’

Tests for Sensitivity and Reproducibility. To assess the sensi-
tivity of our screen, roughly 5% of screened genes were positive
controls from a set of 41 different genes (Supplementary Fig. 1).
In addition, 48 previously published genes that happened to be
within our gene set served as additional blind positive controls.
Ninety-three per cent of the selected controls and 95% of the
previously published genes were identified during the screen
(Fig. la,b; Supplementary Table 2), which is similar to the

| 6:7822 | DOI: 10.1038/ncomms8822 | www.nature.com/naturecommunications

© 2015 Macmillan Publishers Limited. All rights reserved.


http://ibeetle-base.uni-goettingen.de
http://www.nature.com/naturecommunications

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8822

ARTICLE

a Recognition of positive controls
o, 9, 0,
100% - 4% o 4/010/ 4/030/
o o o © M Missed
80% 4 15% 1026
Technical
60% 1 lethality
40% 1 Partially
recognized
20%
W Recognized
0% -
Larval Pupal Sum
(196) (201) (397)
c Negative control injections
1% 2% 2%
O/ =
100% 1% 2% 1%
80% M False positive
60% A
Technical
lethali
40% - ethality
W No
20% A phenotype
0% -
Larval Pupal Sum
(124) (127) (251)

b Recognition of genes with known
phenotypes
4% 2%
Y " .
100% -7% 16% -3% M Missed
17%
80% 1 18% —
o M Technical
60% - lethality
40%
Reproducibly
20% - different
phenotype
0%

W Recognized

Larval Pupal Sum
(28) (37) (65)
d Reproducibility

B Reproduced
Strain-specific
Fragment-specific

® Not reproduced

(n=158)

Figure 1| Sensitivity and reproducibility. (a) Recognition rates of 41 different positive controls shown separately for the larval and pupal injection screens
(left and middle bars) and for both together (right bar). About 80% of the positive controls were fully recognized while another 10% were ‘partially
recognized’ (that is, not all phenotypic aspects were annotated). Only 4% of the positive controls were missed. ‘technical lethality": Expected phenotype not
recognized owing to lethality of the animals for example, by injection. (b) Recognition rates for dsRNAs targeting 48 genes with published phenotypes,
which had by chance been included in the screen. Of all, 78% were recognized with the published phenotype while 17% were annotated with a
‘reproducibly different phenotype’; that is, the differing phenotype was reproduced in independent experiments under iBeetle conditions. Hence, these
different phenotypes are biologically meaningful and reflect that the timing and the degree of gene knockdown influences the phenotype. See
Supplementary Note 1 for discussion of these cases. (¢) Only 2% of all buffer injections led to false positive annotations. (d) A total of 158 dsRNAs were
tested in independent injections with non-overlapping fragments. When the phenotype differed from the screening result, we analysed whether it was a
false positive (‘'not reproduced’), or whether the genetic background was the reason for the difference (strain specific). Finally, we tested whether the
outcome depended on the dsRNA fragment used (fragment specific), which indicated off-target effects or splice variant specific knockdown.

findings in a genome-wide RNAi screen in C. elegans'l.

Interestingly, we found reproducibly different or additional
phenotypes for 17% of the published genes, which likely reflects
the dependence of the RNAI effect on injection time and dsRNA
concentration (see Supplementary Note 1). As expected, negative
control injections usually produced no phenotype (Fig. lc;
Supplementary Note 1; Supplementary Fig. 2).

To test for reproducibility, we repeated the screening procedure
for 158 genes with high penetrance phenotypes (Fig. 1d; see
Supplementary Data 1 for details). Seventy-four per cent of the
phenotypes were reproduced (Fig. 1d). Notably, 6% of those
phenotypes turned out to depend on the genetic background.
This is in line with the emerging view that strain specificity of
phenotypes may be more prevalent than appreciated pre-
viously*'#2, Twelve per cent of the re-tested phenotypes turned
out to be false positives, while 14% could be reproduced by the
original dsRNA fragment but not with a non-overlapping
fragment. The latter finding probably reflects off-target effects
but in some cases may reflect biologically meaningful differences
due to the isoform specific nature of RNAi knockdown in
Tribolium*3. Overall, the proportion of off-target effects using
systemic RNAi with long dsRNA fragments in Tribolium was
similar to that observed with short transgenic hairpin constructs
in Drosophila, where 13% (n=9) of the constructs induced
unexpected lethality*4, but it was significantly lower than the 28%

(n=18) or 24% (n=65) found with long hairpin constructs®4°.

Considering 12% of ‘not reproduced’ phenotypes and a
maximum of 14% off-target effects, the maximum false positive
rate in the iBeetle screen is 26%. Hence, the phenotypes detected
in our first pass screen need to be confirmed by a second assay
using non-overlapping fragments.

Reproducibility highly depended on the biological process
scored. For lethality or wing blister phenotypes the reproduci-
bility was >95%, while for L1 cuticle phenotypes it was
about 60% (see Supplementary Fig. 3 for numbers for different
phenotype classes).

To test in how far we missed the strong phenotypes due to
incomplete knockdown, we injected dsRNAs targeting 98 genes at
concentrations of 1 and 3 ugpl ~ !, and compared the phenotypic
quality and strength. We found that phenotype strength was
comparable for 86% of these genes.

Essential genes identified in the larval and pupal screens. Of the
3,400 genes tested in both the larval and pupal screens, 56.3%
gave any phenotype (Fig. 2a), with 49.6% being lethal for at least
one developmental stage (Fig. 2b). In all, 22.9% of the genes
displayed a phenotype in both screens, while almost twice as
many genes showed a phenotype exclusively in the pupal screen
(21.1%) compared with phenotypes restricted to the larval screen
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Figure 2 | Essential and lethal genes. (a) For more than 56% of the injected genes, phenotypes were observed. The pupal injection screen revealed

phenotypes for a larger portion of genes compared with the larval injection screen. (b) Death of the injected animals was scored 22 days post injection
(larval injection; blue circle) and 11 days post injection (pupal and larval injection; dark green and hatched blue circles). Note that embryonic lethality is
based on maternal and zygotic gene knockdown. ‘Parental lethal’: death of the injected animal. (¢) Selected phenotypic categories after pupal injection.
Embryonic lethal injections are further categorized showing that more than half of the embryonic lethal genes lead to abortion of embryogenesis before
cuticle secretion. (d) Phenotypic categories after larval injection. ‘Defects during the process of metamorphosis': metamorphosis not completed or entered

precociously. Insets: relations to the entire data set.

(12.3%; Fig. 2a). Thirteen per cent of the genes showing any
phenotype (including lethality) were beetle specific genes
(Supplementary Table 1), illustrating the importance of screens in
additional model organisms (see Supplementary Table 3 for
definition of phenotype classes and Supplementary Data 2 for lists
of treatments in the respective classes).

Basically, all genes required for survival to adulthood after
pupal injection (5.9% of all genes; Fig. 2b) were also required after
larval injection, likely due to housekeeping functions. The set of
larval lethal genes appeared to be much larger (26% of all genes;

Fig. 2b). However, this difference is in large parts due to low-
penetrance lethal phenotypes, which were more likely to reach the
threshold in the larval screen, where lethality was checked 22 days
post injection instead of 11 days post injection in the pupal
screen.

Embryonic lethality was found for 28.5% of all genes following
knockdown of maternal and zygotic gene function (Fig. 2b,c).
Altogether, 5.5% did not show obvious cuticle defects, while 8.3%
displayed cuticle aberrations (Fig. 2c); 14.8% of all genes did not
develop a cuticle, leading to a so called ‘empty egg phenotype’.
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This phenotypic class comprises genes with diverse essential
functions, including housekeeping, cuticle formation itself or
fertilization; however, some early patterning genes are also known
to result in death before cuticle formation in Tribolium*6~8,
Further analyses using molecular markers are required to
determine which process was affected for a given empty egg
phenotype. Interestingly, 5.6% of all genes in the larval injection
screen led to alterations of adult morphology without affecting
larval survival or fertility, making them interesting candidates for
understanding how adult morphologies develop and how they
evolved (Fig. 2d).

Comparison of embryonic and postembryonic patterning. For
the first time our data allow the systematic comparison of the
gene sets required for embryonic and postembryonic develop-
ment in an insect with typical metamorphosis. Importantly, larval
cells are largely re-used to form the adult epidermis in most
insects, instead of being replaced by imaginal cells as is the case in
Drosophila®*. Nevertheless, the gene sets involved in embryonic
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(larval screen, 340)
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Defects of adult thoracic musculature
(larval screen, 61)

. Defects of larval musculature
(pupal screen, 95)

and postembryonic patterning turned out to be largely non-
overlapping (Fig. 3a). This is true for processes as different as leg
or muscle development (Fig. 3b,c). In the case of oogenesis, the
respective numbers are probably an overestimation because most
genes leading to reduced egg production in the pupal screen were
lethal in the larval screen (Fig. 3d). We assume that many of these
apparent oogenesis phenotypes reflect incomplete knockdown of
genes with basic physiological function because we found that
many animals with reduced oogenesis showed a strongly reduced
fat body. Subtracting these genes (those outside the dashed line in
Fig. 3d), the overlap of genes with defects in both screening
parts increases substantially. Together, these data reveal that
development during typical insect metamorphosis partially relies
on different mechanisms than during embryogenesis.

Essential genes of Tribolium and Drosophila. The classical
genetic screens for embryonic phenotypes in Drosophila revealed
that about 5,000 genes were lethal when mutated (36% of the
Drosophila protein coding genes), and for an additional 1,000

b

Leg defects (104) Y
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Morphological defects of pupae or adults legs
(larval screen, 55)

Morphological defects of larval legs
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d Ovary defects (304) y:
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Figure 3 | Comparison of gene sets involved in embryonic versus postembryonic development. (a) The gene sets required for cuticle morphology (that
is, epidermal patterning) during embryogenesis and typical insect metamorphosis are largely non-overlapping. This indicates that patterning principles may
differ to quite some extent between these two stages of major morphological change. (b,c) This observation also holds true for the subsets affecting leg
morphology (b) and GFP marked somatic muscles (c) indicating that both ectodermal and other patterning processes differ. (d) Gene sets required for
ovary function. Many genes required for egg production in the pupal injection screen (green circle) were lethal in the larval injection screen. Hence, reduced
egg production for these genes was probably due to starvation (green area outside hatched line). When comparing the non-lethal treatments (blue circle
and green circle with hatched blue outline) the number of genes with an ovary phenotype in the pupal and larval injection screen are more similar. Insets:

relations to the entire data set.
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genes non-lethal phenotypes were identified. Hence, mutations in
43% of all loci revealed a phenotype of some kind**~>!. The
respective numbers for Tribolium are very similar (37 and 42%;
all numbers in this paragraph are corrected assuming 26% false
positives; see Methods section for calculations). However, in the
iBeetle screen a much larger portion of the lethal genes is
embryonic lethal compared with the Drosophila genetic screens
(58% versus 20%). This is mainly due to a much higher number
of embryonic lethal genes that show cuticle defects in Tribolium
(81% versus 15% in Drosophila)®®. One likely reason for this
increased lethality is that in our screen we knocked down both
maternal and zygotic gene functions, while in most Drosophila
genetic screens only the maternal or zygotic contribution was
affected®. As a consequence, in many cases zygotic functions
were not detected because maternal contribution of gene products
rescued zygotic mutations throughout Drosophila embryogenesis,
leading to death after cuticle formation.

Overcoming the candidate gene approach. Most Drosophila
segmentation genes have already been tested in Tribolium,
revealing that a different gene set is involved in axis forma-
tion?®>334, Overcoming this exhausted candidate gene approach,
the iBeetle screen indeed identified novel players. For instance,
knockdown of the homeobox gene Tc-homeobrain elicited a
mirror image duplication of the abdomen similar to the

Drosophila bicaudal phenotype and was found to be one of the
earliest anteriorly expressed zygotic genes (Fig. 4a,e,f). No cuticle
phenotype has been described for Drosophila homeobrain, and so
far no Tribolium gene had been found to elicit a bicaudal
phenotype. SoxNeuro is required for Drosophila central nervous
system development®>>°, but was not reported to be involved in
cuticle patterning. In the iBeetle screen, Tc-SoxNeuro knockdown
resulted in a dorsalized phenotype, suggesting that Tc-SoxNeuro
influences early dorsoventral patterning (Fig. 4c). Another
example is Drosophila Dscam, which is a cell adhesion gene
with extensive alternative splicing and which is known to act in
neurogenesis and immunity®”>°. The iBeetle screen identified
potential additional essential roles of Tc-Dscam in sensory organ
formation (Fig. 4d).

New fields of research. Odoriferous stink glands play crucial
roles in insect defence and communication but are not present in
Drosophila®®, In the iBeetle screen, we identified 32 genes
with relevant phenotypes, including the absence of the gland
contents, altered colour and composition of secretions, or
melanosis. Interestingly, only 5 among these 32 genes showed
an enrichment of greater than fourfold in odoriferous gland
transcriptomes compared ~with mid-abdominal tissues®’,
illustrating that a phenotypic screen can only partially be
replaced by transcriptomic approaches (see Supplementary

s> A

/ TN

— S L_Ic:SexN (iB_05549) RNA
e 4 " —,}
.-W;_"‘.“‘ /
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Tc-Rbm24 (iB_00289) RNAI

Figure 4 | Embryonic phenotypes. (a,b) Wild-type L1 cuticles, with head setae marked by circles (b). T1: first thoracic segment; A1: first abdominal segment;
A8: eighth abdominal segment; U: urogomphi; P: pygopods. (€) Unexpectedly, Tc-SoxN RNAI led to a strongly dorsalized cuticle phenotype without clear axes
(embryo: filled arrowheads; vitelline membrane: open arrowhead). (d) Tc-DSCAM RNAI induced the deletion of head setae. (e) Tc-homeobrain RNAI caused a
bicaudal phenotype (mirror image abdomina). This function is not known from Drosophila homeobrain and in Tribolium no bicaudal phenotype has been
described before. (f) Early anterior zygotic expression of Tc-homeobrain. (gh) Tc-Rbm24 RNAI led to detached and shortened body wall muscles (wild type
pattern in g). A muscle function is conserved in vertebrates while the ortholog was lost in Drosophila. Scale bars indicate 100 pm.
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Figure 5 | Postembryonic phenotypes. (a) Wild-type ovary stained for F-actin (red) and DNA (blue). Pro-oocytes (asterisks) become encapsulated by
somatic follicle cells and separated by stalk cells (arrow). (d) Upon Tc-MED24 RNAI, egg chambers are misarranged, not separated by stalk cells (arrow)
and subsequently they fuse (IV). (b,c) After Tc-retained-RNAI the three most distal antennomeres (1-3) of the adult antenna are fused. (e,f) RNAi against
Tc-ATP7 led to strongly reduced odoriferous gland content and partially melanized secretions (white arrowheads; remnant of posterior abdominal cuticle
marked by open arrowhead:). (g-j) The knockdown of iB_04887 led to wing blisters in Tribolium pupae (arrowhead in h). Transgenic RNAI against the

Drosophila ortholog showed the same phenotype, revealing a novel candidate for integrin mediated adhesion (arrowhead in j). Scale bars indicate 100 pum in

(a-f) and Tmm in (g-j).

Fig. 4). For instance, the Tc-copper-transporting-ATPase-I (Tc-
ATP?) is neither upregulated nor downregulated (Supplementary
Fig. 5) but RNAi mediated knockdown (iB_02517) caused a
reduced gland content and melanosis phenotype (Fig. 5f) and a
loss of benzoquinones (Supplementary Fig. 6). Another emerging
field is the shaping of the adult body during typical
holometabolous insect metamorphosis were larval epidermal
cells are reused®*. For instance, Tc-retained led to rounded female
genitalia and the fusion of distal antennal segments (Fig. 5c).
Interestingly, these anatomical features vary in Tenebrionids®!,
making this gene a good candidate for morphological
evolutionary studies. Finally, one difference between Tribolium
telotrophic oogenesis and Drosophila meroistic oogenesis is that
in Tribolium germ line stem cells stop proliferating at larval stages
while the somatic stem cell lineage remains active throughout
life?3. In Drosophila, both lineages remain active and dependent
on each other, making it difficult to study the somatic lineage
independently. In the iBeetle screen we identified several genes
probably required for the somatic lineage, such as Tc-MED24
whose knockdown led to incomplete separation of egg chambers
and a reduced number of follicle cells (Fig. 5d).

Tribolium as a screening platform. Wing blisters indicate the loss
of adhesion between the two epithelial sheets of the wing blade.
This phenotype has been used in Drosophila to identify compo-
nents of integrin mediated adhesion®>%3, We found 49 genes
associated with wing blisters in our screen. Thirty-four were
re-tested with non-overlapping fragments. All were confirmed in
the screening strain but one led to lethality in another genetic
background. Seventeen of these were previously annotated with
GO terms connected to cytoskeletal function or adhesion, but 14
had unrelated functional annotations and 5 did not have any

functional annotation at all®*, We tested 19 genes in Drosophila by

transgenic RNAi knockdown, using two different wing disc driver
lines. Out of seven genes without previous annotations with
respect to cell adhesion or cytoskeletal function in Drosophila, four
uncovered a wing blister or ‘crumbled wing’ phenotype, indicating
an involvement in Drosophila epithelial adhesion (See
Supplementary Table 4). One example is the Tribolium ortholog
of CG8078, which is predicted to be involved in tRNA thio-
modification and was not implicated in cell adhesion before
(Fig. 5h,j). Notably, some wing blister genes known from
Drosophila were not recovered in the iBeetle screen owing to
larval lethality before wing development (see Supplementary
Table 5). Therefore, we injected at a later stage (L7) and indeed,
two additional genes showed the wing blister phenotype. Hence, a
new screen focused on injections at later larval stages is likely to
reveal additional wing blister genes. In summary, the Drosophila
and Tribolium screening platforms appear to reveal different
subsets of genes involved in a common cellular process, suggesting
that the use of Tribolium as alternative screening platform may
reveal novel players relevant for general insect biology.

We identified many known and novel genes required for muscle
development. In Tc-Rbm24 RNAi embryos, for instance, the
muscles form small, round syncytia, which eventually seem to
decay (Fig. 4h). The gene codes for an RNA binding protein of the
RRM superfamily. Of note, it lacks an ortholog in Drosophila but
vertebrate orthologs are active in myogenesis®>°°. Hence, our data
show the conservation of myogenic function of Rbm24 in Bilateria.

Discussion

Here we showed that the iBeetle RNAI screen achieved efficient
and sensitive detection of novel gene functions at four
developmental stages and in several processes in the red flour
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beetle Tribolium. The reproducibility varied depending on the
phenotypic class. Highly penetrant phenotypes with simple
readout (for example, wing blister, lethality) reproduced with
more than 95% while the reproduction rate of embryonic
developmental defects was significantly lower (about 60%). One
reason is that iBeetle was designed as first pass screen without
replicates while in cell based RNAi screens replicates and different
reagents targeting the same gene function are usually used to
minimize the portion of false positive data. Another important
reason is that in Tribolium moderate knockdown of housekeeping
genes during embryogenesis leads to abortion of embryogenesis at
different stages leading to diverse cuticle defects. Hence, any oft-
target effect affecting a housekeeping gene is likely to result in
diverse cuticle defects. Hence, it is advisable to focus on
phenotypes annotated with high penetrance (>50%) and
confirmation of phenotypes using non-overlapping dsRNA
fragments is essential.

Our data show that a significant portion of insect gene
functions becomes apparent when using additional model
systems for several reasons. First, some aspects of insect biology
are more representative in Tribolium compared with Drosophila
like for instance metamorphosis based on the re-use of larval
epidermal cells. Indeed, we identify novel genes associated with
this process, the orthologs of which might have lost their function
in Drosophila due to its derived mode of metamorphosis. Second,
the different characteristics of the screening procedures may lead
to detection of different subsets of the gene set involved in a
conserved process. For instance, we identified novel genes leading
to a wing blister phenotype but not all genes known from
Drosophila were recovered in our screen. This suggests that
neither system appears to have the power of detecting the
comprehensive gene set of a given process. Finally, 13% of the
genes associated with phenotypes in our screen do not have
orthologs in Drosophila and therefore need to be studied in other
model systems.

In summary, the iBeetle screen helps to overcome several
current limitations in insect functional genetics. First, the
candidate gene approach prevailing in emerging model organisms
cannot reveal novel gene functions. This is superseded by the
hypothesis independent identification of genes. Second, new
biological processes can now be investigated, the genetic bases of
which remained obscure because they are too derived or not
present in the fly, or not amenable in the fly due to technical
constraints. Third, we show that Tribolium is a powerful
complementary screening platform for basic processes that are
being studied in other organisms, such as epithelial adhesion.
Importantly, the dsSRNA template library generated in this project
facilitates future screens focused on additional topics. Taken
together, the iBeetle screen aids in bridging the gap between
large-scale gene discovery by next generation sequencing and the
small-scale approaches used for uncovering the function of novel
genes.

Methods

Selection of genes and dsRNA production. The genes to be knocked down were
selected at random. However, we required that the predictions were well supported
by cDNA sequence data. Further, we excluded genes close to neighbouring same-
strand gene predictions to avoid the double injection of genes, which were erro-
neously annotated as two genes. As the coverage by RNA-seq was low at project
start, the gene set may have been enriched in genes expressed above average. This
may explain the higher portion of conserved genes in the set of screened genes
(82% in the iBeetle screen versus 59% in the official gene set; see Supplementary
Table 1).

The target transcript sequences were analysed using the DEQOR algorithm to
identify stretches with highest amount of sequences predicted to be efficiently
recognized by the RNAi machinery and the lowest amount of potential off-target
sites. Fragments within these stretches were amplified by PCR with gene-specific
primers, which were tagged with parts of the T7 (3’ primer) and SP6 (5’ primer)

8

promoter sequences (T7 tag 5'-CTCACTATAGGGAGA-3'; SP6 tag 5'-TGACAC
TATAGAAGTG-3'). The sequences are available at the iBeetle-Base (http://ibeetle-
base.uni-goettingen.de/) and in Supplementary Data 3. The products from these
PCR reactions were used as templates in a second PCR using T7 and SP6-T7
primers to generate templates for bidirectional in vitro transcription using T7-RNA
polymerase. (Note that due to the different tags on 5 and 3’ end of the fragments,
the iBeetle library can be used for the generation of in situ probes as well.) For
quality control, all products of the second PCR were checked on a gel and
sequenced. All dsRNAs were assessed for purity by gel electrophoresis, the
concentration was measured by the Ribogreen Assay (Life Technologies), and
adjusted to 1ugpl ~ ! using injection buffer. Template production was performed
by Eupheria Biotech GmbH (Dresden). Overall, 7,200 in silico defined templates
were channelled into the pipeline leading to the production of 6,147 templates of
which 5,670 dsRNAs were produced and sent to the screening centres. The success
rate was about 85% for template generation and 92% for dsRNA production,
resulting in an overall success rate of about 79%. The average length of the
templates was 479 bp.

The screening procedure. Animals for 24 experiments were reared and processed
in parallel using the equipment developed by Berghammer et al.%’. For the
injections two transgenic lines were used, where EGFP enhancer traps marked
larval (pig19) or adult muscles (D17) in the pupal and larval injection screen,
respectively (see Supplementary Fig. 7). An X-linked transgene insertion (Xred,
expressing DsRed in larval eyes) was used for sexing larvae. dsRNA solution in the
volume 1 pgpl ~! was injected into 10 animals per experiment using a FemtoJet
express device (Eppendorf). It was injected as much as possible without interfering
with survival. For injection and morphological inspection, larvae and adult beetles
were anaesthetized with ice or carbon dioxide. Pupae were affixed to microscope
slides for injection using a double sided sticky tape or rubber based cement
(Fixogum). Inspection of pupae and adult morphology and phenotype
documentation was performed with epifluorescence stereomicroscopes (Leica
M205 FA). The data were documented electronically during analysis using an
online interface. The interface allowed the documentation of technical remarks and
offered dropdown lists with controlled vocabularies for documentation. In
addition, pictures were uploaded for the documentation of the annotations and
remained linked to the respective annotation. This allowed displaying the relevant
pictures in the search results. For analysis of embryonic muscles, living embryos
were dechorionated, embedded in Halocarbon oil (Voltalef 10S) and analysed using
upright fluorescence microscopes (Zeiss, Jena). Fourty-one dsRNAs targeting genes
with known phenotypes were randomly introduced as positive controls with a
frequency of 1 or 2 per 24 injections. The first and last of the 24 injections
performed on 1 day were negative control injections (buffer). The throughput of
the screen was 21 and 28 genes per week in the pupal and larval injection screen,
respectively. The workflow is shown in Supplementary Table 6; the schedules are
shown in Supplementary Figs 8 and 9. All phenotypes shown in this paper were
reproduced with non-overlapping fragments using the SB strain as a different
genetic background (see Supplementary Table 7 for sequences). The data are
available at http://ibeetle-base.uni-goettingen.de/*.

GC-MS of odoriferous stink gland contents. dsRNA was injected in animals at
mid-pupa stage (SB strain). Injected pupae as well as uninjected control pupae were
kept on whole-grain flour at 32 °C. Ten days after hatching both the prothoracic
and the abdominal glands of one beetle were dissected and crushed pairwise in
50 pl methanol (Merck Millipore: SupraSolv). The samples were stored at — 20 °C
and subjected to gas chromatography mass spectrometry (GC-MS) measurements
within 48 h. A volume of 1 ul was loaded per sample by a split injector into a gas
chromatograph (Agilent Technologies 6890N Network GC System) connected to a
mass spectrometer (Agilent Technologies 5973 Network Mass Selective Detector).
For chromatogram analysis the software MSD ChemStation D.02.00.275 (Agilent
Technologies) was used.

Comparison of essential genes. The portions of essential (that is, lethal) genes in
Drosophila that had been published previously vary with the assumed total number
of genes at the time. For our comparison, we related the published absolute
numbers of essential genes to the number of protein coding genes of the current
Drosophila genome release (6.02). For Tribolium we reduced the numbers observed
in the iBeetle screen by the estimated portion of false positives in our data set (26%;
see above). See Supplementary Table 8 for numbers and calculations.
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