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Abstract 
Obtaining accurate body weight (BW) is crucial for management decisions yet can be a challenge for cow–calf producers. Fast-evolving 
technologies such as depth sensing have been identified as low-cost sensors for agricultural applications but have not been widely validated 
for U.S. beef cattle. This study aimed to (1) estimate the body volume of mature beef cows from depth images, (2) quantify BW and metabolic 
weight (MBW) from image-projected body volume, and (3) classify body condition scores (BCS) from image-obtained measurements using a 
machine-learning-based approach. Fifty-eight crossbred cows with a mean BW of 410.0 ± 60.3 kg and were between 4 and 6 yr of age were 
used for data collection between May and December 2021. A low-cost, commercially available depth sensor was used to collect top-view depth 
images. Images were processed to obtain cattle biometric measurements, including MBW, body length, average height, maximum body width, 
dorsal area, and projected body volume. The dataset was partitioned into training and testing datasets using an 80%:20% ratio. Using the 
training dataset, linear regression models were developed between image-projected body volume and BW measurements. Results were used 
to test BW predictions for the testing dataset. A machine-learning-based multivariate analysis was performed with 29 algorithms from eight 
classifiers to classify BCS using multiple inputs conveniently obtained from the cows and the depth images. A feature selection algorithm was 
performed to rank the relevance of each input to the BCS. Results demonstrated a strong positive correlation between the image-projected cow 
body volume and the measured BW (r = 0.9166). The regression between the cow body volume and the measured BW had a co-efficient of 
determination (R2) of 0.83 and a 19.2 ± 13.50 kg mean absolute error (MAE) of prediction. When applying the regression to the testing dataset, 
an increase in the MAE of the predicted BW (22.7 ± 13.44 kg) but a slightly improved R2 (0.8661) was noted. Among all algorithms, the Bagged 
Tree model in the Ensemble class had the best performance and was used to classify BCS. Classification results demonstrate the model failed 
to predict any BCS lower than 4.5, while it accurately classified the BCS with a true prediction rate of 60%, 63.6%, and 50% for BCS between 
4.75 and 5, 5.25 and 5.5, and 5.75 and 6, respectively. This study validated using depth imaging to accurately predict BW and classify BCS of 
U.S. beef cow herds.
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Introduction
Beef production is one of the most important agricultural 
industries in the United States, accounting for $66.2 billion 
in cash receipts in 2019 (USDA, 2021). In 2021, the cow–
calf production totaled 40.9 million head of cows and heifers 
that have calved, comprising approximately 40.5% of the 
total U.S. beef cattle inventory (USDA-NASS 2015, 2021). 
Of 882,692 cattle and calf operations, 802,317 are cow–
calf and stocker/backgrounder cattle farms, of which 96% 
are family-owned and operated (NCBA, 2021). Like many 
other livestock production systems, beef cattle production, 
particularly the cow–calf production on western rangelands, 
faces a growing quest for improved production efficiency for 
producers to survive and thrive amidst increasing cost of pro-
duction and declining profitability.

The average beef cow weighs 550 kg or more and can range 
from 408 to 800 kg, depending on cow age and breed (NRC, 
2016; Bir et al., 2018). Obtaining an accurate body weight 
(BW) of the cows is an essential measure to guide cow–calf 

producers regarding production management. Accurate 
measurement of cow BW can provide valuable and timely 
information to the producers and result in greater produc-
tion efficiency (Watson et al., 2013). However, measuring 
cow BW is challenging, and variations can be present due 
to animals themselves (breeds, age, size), different weighing 
techniques from the care handlers, day of weighing, and am-
bient conditions (Watson et al., 2013). Stock et al. (1983) 
concluded that weighing cattle over multiple days yielded 
greater precision, yet this method is economically and prac-
tically prohibitive for industry settings. Obtaining accurate 
cow BW remains a challenge for producers, particularly those 
that manage in large extensive cow–calf environments.

Precision livestock management (PLM), also known as pre-
cision livestock farming, has been fast emerging to provide 
producers with more accurate or individualized informa-
tion on the health, welfare, and production of the cows in 
the herd. This information helps producers make better and 
faster decisions about the animals’ individual needs and 
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identify management problems (Salau et al., 2016; Norton 
and Berckmans, 2018). Among different PLM tools, imaging 
technologies have advantages over other technologies, pro-
viding more efficient data collection and the ability to mon-
itor individual animals for multiple species (Halachmi et al., 
2013; Van Hertem et al., 2014; Condotta et al., 2020a; Li et 
al., 2020). Among a wide variety of imaging sensors, depth 
cameras have been identified as low-cost monitoring tools for 
agricultural applications (Ruchay et al. 2019, 2020; Condotta 
et al. 2020a, 2020b; Jang et al., 2020; Kamchen et al., 2021). 
Condotta et al. (2018) conducted a study using depth images 
to obtain dimensions of pigs for weight estimation. In their 
research, different geometric characteristics of a standing pig 
(length, width, shoulder width, and height) were measured 
using depth cameras (Kinect I, Microsoft, Seattle, WA, USA), 
and algorithms were developed to accurately estimate ani-
mals’ weight with a standard error of 3.01 kg and a linear 
regression co-efficient (R2) of 0.99 (Condotta et al., 2018).

The dairy industry, particularly the European dairy sector, 
has embraced computer vision technology earlier than the 
United States, as evidenced by more research and advanced 
adoption among commercial operations (Kang et al., 2021). 
For example, image processing and computer vision have 
been studied in dairy production for multiple purposes, in-
cluding feed intake of dairy cows (Bezen et al., 2020), milk 
production and udder traits (Shorten, 2021), individual cow 
identification (Kumar et al., 2018; Tassinari et al., 2021), 
physiological responses (Jorquera-Chavez et al., 2019), body 
condition scoring (Bewley et al., 2008; Halachmi et al., 2013; 
Rodríguez Alvarez et al., 2019; Liu et al., 2020; Zhao et 
al., 2020), backfat thickness (Weber et al., 2014), behavior 
classification (Porto et al., 2013; Chen et al., 2021; Li et al., 
2021), lameness detection of dairy cows (Van Hertem et al., 
2014; Zhao et al., 2018; Kang et al., 2021), and BW esti-
mation (Song et al., 2018; Rudenko et al., 2020; Dohmen et 
al., 2022). Using depth imaging techniques, Song et al. (2018) 
achieved a 41.2 kg root mean square error (RMSE) when 
predicting BW of mature Holstein cows using daily intake, 
parity, and hip width as input variables. Weber et al. (2014) 
reported a correlation co-efficient of 0.96 between observed 
values and estimated backfat thickness. For studies that pre-
dict body condition scores (BCS) of dairy cows, using ad-
vanced machine learning algorithms such as transfer learning 
and ensemble models, researchers were able to achieve an ac-
curacy above 76% with a BCS deviation smaller than 0.25 
(Rodríguez Alvarez et al., 2019; Liu et al., 2020).

Although such low-cost technologies are proven effective in 
the dairy industry and have extended merit for monitoring beef 
cattle in efficient and noninvasive ways, they have not been 
widely studied nor validated for the U.S. beef cattle sectors. 
Current studies utilize depth image sensing concentrate in 
other locations of the world (e.g., European Union, Australia, 
etc.), including weight prediction for Brazilian Nellore heifers 
(Cominotte et al., 2020; Kamchen et al., 2021), recognition 
of Pantaneira cattle (de Lima Weber et al., 2020), and indi-
vidual feedlot cattle identification via muzzle images (Li et al., 
2022). Owing to the significant difference between the body 
composition and morphological traits of dairy and beef cattle 
breeds, and different rubrics used to predict BCS of dairy cows 
(Ferguson et al., 1994) and beef cows (Rasby et al., 2014), this 
gap in literature calls for a critical need to explore of the feasi-
bility of using such imaging technology in predicting BW and 
BCS for cow–calf operations in the United States. Prediction of 

BW and BCS would provide livestock producers the opportu-
nity to pro-actively monitor and manage BW and BW changes 
in grazing production systems that have limited or no access 
to weighing facilities (Ndlovu et al., 2007; Wangchuk et al., 
2018; Creamer and Horback, 2021).

The objectives of this study were to (1) estimate the body 
volume of mature beef cows from time-of-flight depth images, 
(2) quantify the BW and metabolic weight from the estimated 
volume derived from the depth images and (3) classify cow 
BCS from image-obtained morphological traits using a 
machine-learning-based classification approach.

Materials and Methods
Animal Information
All cattle were managed and cared for following the pro-
tocol approved by the Institutional Animal Care and Use 
Committee at the University of Nebraska-Lincoln (IACUC 
Protocol No. 1787). This study was conducted at the 
Gudmundsen Sandhills Laboratory near Whitman, NE. A 
total of 58 Red Angus × Simmental mature cows with red 
hair coats weighing between 310.7 and 575.6 kg with a mean 
shrunk BW of 410.0 ± 60.3 kg and between 4 and 6 yr of 
age, were used for data collection. Cows were imaged during 
two different data collection dates between May to December 
2021. The hair coat condition in both measurement dates had 
minimal mud and were dry. In May, cows had slicked off hair 
coats, whereas cows in December had a winter coat. To min-
imize variation in gut fill, cows were held off water and feed 
for approximately 16 h for a shrunk BW prior to depth im-
agery data collection.

Imagery data for this study were collected in a sheltered fa-
cility and without direct contact with the animals. Cows were 
sorted into a holding pen and then proceeded to a hydraulic 
chute for routine weighing. Color (RGB) and depth images, 
scale-measured BW, and BCS (1 = emaciated, 9 = obese; 
Wagner et al., 1988) were collected for individual cow.

Data Acquisition
A low-cost, commercially available time-of-flight (ToF) depth 
sensor (Azure Kinect DK, Microsoft) was selected and used to 
collect depth images for its reliability and accuracy under indoor 
and filtered light conditions. The depth camera was mounted 
on the ceiling at approximately 3 m from the floor and 1.5 m 
from the top of the chute area to collect top-view images of 
individual cattle (Figure 1). A C++ based program was written 
in the Visual Studio development environment (version 2019, 
Microsoft) to collect depth images in a resolution of 640 × 576 
pixels, a narrow field-of-view (FOV) mode with 75 × 65° field 
of interest, and a shutter speed of 15 frames/s. RGB images in 
4096 × 3072 pixels resolution were concurrently taken. The 
entire back of the individual cow needed to be captured inside 
the camera’s depth-view for acceptable image quality desired 
for data processing (Figure 2). To avoid causing unnecessary 
stress, cows were allowed to move naturally in the chute until 
the desired pictures were taken, which lasted between 1 and 5 
min. Upon completion of individual cow image collection, cow 
BW were recorded. Two experienced BCS technicians assessed 
the cow BCS by visual evaluation and palpation, and recorded 
the BCS (1 = emaciated, 9 = obese; Wagner et al., 1988) ac-
cording to standard guidelines to a degree of precision of 0.25. 
For each data collection day, an additional depth image of the 
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empty alley was taken to calculate the average distance from 
the camera to the floor.

Data Processing and Analysis
The imagery data was processed and analyzed by a MATLAB-
based (version R2022b, The MathWorks, Inc., Natick, MA, 

USA) program to obtain the desired cow biometrics in pixels 
(Figure 3). When measuring the cow’s cavity and associ-
ated depth profile, the depth camera emits a brief burst of 
infrared light towards the object (i.e., cows)  and precisely 
measures the time it takes for the light to return to the lens. 
By analyzing these time measurements, the camera calculates 

Figure 1. The setup of the data acquisition system. Positions of the depth camera and the hydraulic chute are illustrated. The depth camera was 
fastened at approximately 1.5 m above the walking alley. The average distance between the depth camera and the alley floor was ~2.8 m.

Figure 2. Top view imagery data (a) color image and (b) depth image for a beef cow in the walking chute before entering the hydraulic weighing scale. 
The cow in this figure has a measured shrunk body weight of 380.6 kg and a body condition score of 5.75. The contrast of the depth image was 
adjusted for better visualization.
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the distance between the camera and various points of the 
cow’s body (Horaud et al., 2016). Consequently, the camera 
generates a depth map by capturing the ToF data for multiple 
points within its FOV, enabling the creation of a three-dimen-
sional representation of the cow, as depicted in Figure 4. The 
following measurements were acquired from top-view depth 
images in pixels: (1) estimated morphologic dimensions, in-
cluding overall body length (from neck to rump), average 
height , maximum body width, and the dorsal area of the 
body (without head region) and (2) projected body volume. 
Dimension’s unit transformation (i.e., pixels to mm) was 
performed using the relation of field-of-view (FOV) and 
image resolution vs. distance, obtained using generic equa-
tion (1).

lm = 2× Z× tan

Å
FOV
2

ã
× lpx × Res−1,

� (1)

where Lm is the dimension, in mm; Z is the distance from 
camera to object being measured, in mm; FOV is the camera 
field of view, in degrees; Lpx is the measured dimension, in 
pixels; and RES is the image resolution, in pixels.

Body weight prediction.  Cow projected body volumes 
were calculated through the following image processing 
procedures. The depth image was imported, and values of 
distance from the sensor to the cow were converted into 
the cow’s average height (AH) by subtracting the distance 
between the sensor and the cow (ZA) from the distance be-
tween the sensor and the ground (ZG, obtained from the 
empty alley’s image, Figure 3). Then, pixels within a height 
range of approximately ± 20% of the approximate height of 
the cows were selected. Later, extraneous information (e.g., 
parts of the chute, farm crew) were eliminated, making the 
values of rows and columns around the cow equal to zero 
through morphological operations (a combination of erosion 
and dilation operations). Next, the cow’s body was rotated 
to a horizontal position in the image. The head and tail re-
gions were then manually eliminated by making their values 
equal to zero to obtain a better correlation with the BW 
(Schofield, 1990). The projected volume of the cow excluding 
the head area (Figure 4) was then determined by summing all 
the pixels of the resulting body image. For simplification, this 
projected volume will be referred to as “volume” throughout 
the manuscript. This “volume” unit was transformed to m3 

Figure 3. Schematics show the distance measurements using the time-of-flight depth camera and the extracted cow body measurements from depth 
images. ZA, distance from camera to animal; ZG, distance from camera to the ground; AH, average height; MW, maximum width; L, length from neck 
to rump; DA, dorsal area.
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using a variation of equation (1). The Pearson’s correlation 
co-efficient between the image-projected cow body volume 
and their scale-measured BW was performed using the CORR 
procedure in SAS (v 9.4, SAS Institute Inc., Cary, NC, USA).

The metabolic BW (MBW) is an important factor that 
provides insight into the heat production and net energy 
maintenance, thus, affecting the decision-making regarding 
energy maintenance requirements. Metabolic BW for each 
cow was calculated using the power adjustment expression 
(equation 2; NRC, 2016).

MBW = BW0.75,� (2)

where MBW is the power adjusted metabolic bodyweight of 
the cow, in kg; BW is the scale-measured cow BW, in kg.

Upon completion of all BW and image-extracted bio-
metric information, data from five cows were not retrievable 
due to the low image quality, and a final dataset containing 
53 cows’ data was formed. The dataset was then randomly 
partitioned into two subsets using 5-fold cross-validation and 
was stratified by BW classes: 80% for training (N = 43) and 
20% for testing (N = 10). A 5-fold cross-validation strategy 
was deployed to iterate through the training data to reduce 
overfitting.

Using the training dataset, linear regression models were 
developed between body volume obtained through image 
processing and (1) scale-measured weight and (2) calculated 
metabolic weight. For all cows, data were plotted with each 
cow’s scale-measured BW as the independent variable on the 
x-axis, and the image predicted BW as the dependent var-
iable on the y-axis. Correlations between predicted vs. ac-
tual measurements were plotted and analyzed for BW and 

the MBW. The linear regression equation developed using 
the training dataset was then applied to the testing dataset 
to obtain predicted BW for 10 cows. The predicted BW using 
the linear regression equation was plotted against the scale-
weighed BW for comparison. For the prediction models using 
the linear regression curve, performance was evaluated by the 
mean absolute error (MAE), mean absolute percentage error 
(MAPE), co-efficient of determination (R2) of the regression, 
and standard error of the mean (SEM). The above-mentioned 
descriptive statistics were calculated and tabulated (Table 2).

Body condition score classification.  The BCS is 
recognized as a discrete categorical variable to be predicted. 
Due to the poor correlation between BCS and a single input 
variable (e.g., BW, body volume) reported (Wildman et al., 
1982), a machine-learning-based multivariate classification 
analysis was performed with the dataset to assess the accu-
racy of predicting BCS using multiple input variables that 
can be conveniently obtained from the cows and the depth 
images.

All cows involved in this study were reproductively 
healthy and had a BCS ranging between 4.25 and 6. A his-
togram was created for the original BCS measurements 
using a 0.25 increment, from which the lack of repeatability 
of each BCS increment was evident (Figure 5a). Particularly, 
the BCS dataset is extremely skewed for 4.25, 4.5, and 5.75. 
Such a lack of repeatability within a small dataset creates 
challenges in using machine-learning algorithms to classify 
the BCS correctly and accurately. To increase the repeata-
bility and the predictability for each BCS category, the orig-
inally assigned BCS were categorized into four categories: 
4.25 and 4.5 (A), 4.75 and 5 (B), 5.25 and 5.5 (C), and 5.75 

Figure 4. An example of projected cow dorsal volume using information extracted from the depth images. The head region of the cow was removed 
during image analysis for uniform quality control.
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and 6 (D), with each category representing two BCS, and 
a histogram of the frequency of BCS categories assigned is 
shown (Figure 5b). Besides category A, all BCS categories 
have more balanced repeatability for proper classification 
analysis.

These four BCS categories were the predicted variable 
whereas multiple input variables, including cow age, depth-
image predicted cow body volume and BW, average height, 
average distance to camera, length from neck to rump, max-
imum width, and dorsal body area of the cow were fed into 

29 machine-learning algorithms included in the Categorical 
Classification Learner tool package in MATLAB (version 
R2022b, The MathWorks, Inc.). The Categorical Classification 
Learner categorizes these models into Discriminant Analysis, 
Classification Ensembles, Kernel, k-nearest neighbor clas-
sification (KNN), Naïve Bayes, Neural Network, Support 
Vector Machine Classification, and Tree models (Table 1). 
The machine-learning algorithms were first trained using the 
training dataset with a 5-fold cross-validation and were then 
tested with the test dataset. The model performance metrics, 

Figure 5. Histogram plots for all cattle, illustrating the frequency of occurrence of (a) original assigned body condition score (BCS) using a 0.25 
increment and (b) newly assigned BCS bin with a 0.5 increment.

Table 1. General information of the 14-machine learning classifiers from the Classification Learner in MATLAB (version 2022b)

Classifier category Highlights Subcategory models

Discriminant
(Bekios-Calfa et al., 2010)

Generates data based on different “Gaussian” distri-
bution

Linear discriminant

Ensemble
(Polikar, 2006;Ganaie et al., 2022 )

Meld results from many weak learners into one high-
quality ensemble model

Boosted trees

Bagged trees

Subspace discriminant

Subspace KNN

RUSBoosted trees

Kernel
(Hofmann et al., 2008)

Performs nonlinear classification of data with many 
observations. Trains and predicts faster than SVM 
classifiers with Gaussian kernels

SVM Kernel

Logistic regression kernel

k-nearest neighbor (KNN)
(Liao and Vemuri, 2002)

Categorizes query points based on their distance to 
neighbors in a training dataset to effectively classify 
new points

Fine, medium, corse KNN

Cosine KNN

Cubic KNN

Weighted KNN

Naïve Bayes
(Tuytelaars et al., 2011)

Leverages Bayes theorem and assumes that predictors 
are conditionally independent, given the class

Kernel Naïve Bayes

Neural network
(Sharkawy, 2020)

Optimizes squared errors with backpropagation based 
on Broyden–Fletcher–Goldfarb–Shanno algorithm or 
Stochastic Gradient Descent

Narrow, medium, wide neural net-
work

Bilayered neural network

Trilayered neural network

Support vector machine (SVM) (Bhavsar and 
Panchal, 2012; Somvanshi et al., 2016)

Classifies data by finding the best hyperplane that 
separates data points of one class from those of the 
other class

Linear, quadratic, cubic SVM

Fine, medium, corse “Gaussian” SVM

Tree
(Loh, 2011)

Develops tree nodes for predicting a target location in 
specific ranges of target features

Fine, medium, coarse tree
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including the accuracy of the validation and testing (%) and 
the total cost of validation and test, are provided. In general, a 
higher accuracy and a lower total cost indicate a more robust 
model during training and testing.

The one-way analysis of variance (ANOVA) feature impor-
tance algorithm was selected to perform a feature importance 
ranking analysis that ranks the importance and contribution 
of each input variable to the predicted variable. The ANOVA 
feature ranking algorithm performs one-way ANOVA for the 
BCS categories, then ranks features (input variables) using 
the P-values. The feature importance scores correspond to 
–log(p). A feature with a higher score plays a more impor-
tant role in predicting BCS, and a score near zero indicates 
little importance of that feature on the prediction, indicating 
that its removal may not influence prediction results and will 
reduce computational complexity (Kalousis et al., 2007). 
The Shapiro–Wilks test with Bonferroni correction was 
performed to test the normal distribution hypothesis for all 
input variables and the predicted variable in this analysis, at 
an α level = 0.05. The normality statistical test was performed 
in RStudio (Build 421).

A confusion matrix was plotted from the best-performed 
classifier to visualize the professionally assigned BCS, and the 

machine-learning model predicted BCS. The confusion matrix 
shows two important metrics, the true positive value (TPV) 
and the false discovery rate (FDR). The TPV indicates the 
classification precision and is represented as the proportion of 
correctly classified observations per BCS category predicted; 
the FDR is an indication of the Type I error rate of the classifi-
cation and is described as the proportion of incorrectly classi-
fied observations per predicted BCS category, calculated using 
the following equations.

TPV =
Number of true positive
Number of positive calls

,
� (3)

FNR =
Number of false positive
Number of positive calls

,
� (4)

where a “true positive” is the event that the model makes a 
positive prediction, and the subject has a positive result under 
the correct BCS category, and a “false positive” is the event 
that the test makes a positive prediction, but the subject was 
assigned to an incorrect BCS category.

Table 2. A summary of the training, testing, and total datasets. Cow information and descriptive statistics for the measured metrics including the body 
condition score (BCS), scale-measured weight, and metabolic body weight (MBW = BW0.75) and the predicted metrics, including the predicted weight, 
co-efficient of determination for predicted weight vs. the measured weight, mean absolute error (MAE), and mean absolute percentage error (MAPE) 
are calculated

Dataset Cow information Measured metrics Predicted metrics

No. of 
cows

Cow 
age,
yr

BCS Scale-measured 
shrunk weight, kg

MBW kg Predicted 
weight kg

R2 MAE,
kg

MAPE, %

Train-
ing

43 4.7 ± 0.7 5.2 ± 0.44 404.2 ± 56.56 90.0 ± 9.38 403.3 ± 52.21 0.8255 19.2 ± 13.50 4.8 ± 3.50

SEM 0.07 8.64 1.43 7.96 – 2.06 0.53

Testing 10 4.7 ± 0.8 5.2 ± 0.46 434.9 ± 71.92 95.0 ± 11.76 439.2 ± 60.74 0.8661 22.6 ± 13.44 5.5 ± 3.89

SEM 0.15 22.74 3.72 19.21 – 4.25 1.23

Total 53 4.7 ± 0.8 5.2 ± 0.44 410.0 ± 60.30 90.9 ± 9.95

SEM 0.06 8.28 1.36

The average value (± standard deviation) and the standard error of the mean (SEM) of each analyzed parameter are also provided.

Figure 6. The relationship between beef cows’ body projected volume obtained from depth images analyzed using the training dataset data (N = 43) 
and (a) scale-measure shrunk body weight and (b) the metabolic body weight.
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Results
Table 2 provides a summary of the training, testing, and total 
datasets. For each dataset, the cow information, descriptive sta-
tistics for the measured metrics, and the predictive metrics are 
summarized. The measured metrics include the body condition 
score (BCS), scale-measured BW, and metabolic body weight 
(MBW). The predicted metrics include the predicted BW, 
co-efficient of determination (R2) for predicted weight vs. the 
measured weight, mean absolute error (MAE) and mean abso-
lute percentage error (MAPE). The average value (± standard 
deviation) and the SEM of each analyzed parameter were also 
provided. For the total dataset used in data analysis, the av-
erage cow BW was 410.0 ± 60.30 kg, and the assessed BCS 
ranged from 4.25 to 6, with an observed median score of 5.

Figure 6 shows the relationship between the depth image-
predicted body volume and the scale-measured BW (Figure 
6a) and the MBW (Figure 6b), acquired using the training 
dataset. Each point represents an animal. The linear regres-
sion trendline between the two variables, the slope, inter-
cept, and the R2 of the regression are also presented. The 
plot demonstrates a strong positive correlation between the 
image-projected body volume and scale-measured shrunk 
BW (r = 0.9166). The standard error of regression was 
19.20 ± 13.50 and 3.20 ± 2.22 kg, or 4.80% ± 3.50% and 
3.50% ± 2.56% for the scale-measured BW and the MBW, 
respectively. The R2 of the two regressed variables was com-
parable, being 0.8255 and 0.8282 for the scale-measured BW 
and the MBW, respectively, which is expected as the MBW 
was calculated using an adjusted power of the BW.

The depth image-obtained linear regression equation (Figure 
6a, equation 5) was then applied to the testing dataset to calcu-
late the predicted BW, and the predicted values were regressed 
and plotted against the scale-measured BW (Figure 7).

y = 594.88x− 49.45,� (5)

where x is the animal dorsal volume projected from the depth 
images, in m3; y is the predicted cow BW, in kg.

Using the training dataset, the regression between the 
scale-measured BW and the equation-obtained predicted BW 
demonstrated that the equation developed using the training 
dataset was well-validated. There was an increase in the MAE 
of the predicted BW, 22.7 ± 13.44 kg (or 5.5% ± 3.88%), but 
a slightly improved R2 of 0.8661, when compared to the met-
rics obtained from the training dataset.

A summary of the classification model performance in 
predicting cow BCS categories is provided in Table 3. The 
classifier class, model name, and performance parameters, in-
cluding the accuracy of the validation and testing (%) and 
the total cost of validation and test, are provided. The general 
information on these classifiers is listed in Table 1. The best 
model is highlighted in italics.

Table 3 demonstrates that among all the machine-learning-
based classification algorithms evaluated, the SVM and 
Ensemble classifiers had a higher overall validation accuracy 
(41.86% to 51.16% and 37.21% to 58.14% for SVMs and 
Ensembles, respectively), while the Tree classifiers has the 
highest accuracy in model testing (70% to 80%). Among 
these three Classifier classes, the Bagged Tree model in the 
Ensemble class has the highest validation accuracy (58.14%), 
second-highest testing accuracy (70%), and the lowest total 
cost for both the validation (18) and the testing (3), and, 
therefore, was selected as the best classification model to 
classify BCS. The classification results using the bagged tree 
model in the Ensemble Classifier were visualized to demon-
strate the most relevant features obtained from the cows and 
extracted from the depth images in predicting BCS (Figure 8) 
and the prediction performance (Figure 9).

The results of feature importance scores ranked using the 
ANOVA algorithm are depicted in Figure 8. The Shapiro–
Wilks normality test with Bonferroni correction results indi-
cate that other than the variable “cow age”, all other input 

Figure 7. Correlation between measured and predicted shrunk body weight using the testing dataset that contains 10 beef cows. The circles represent 
individual measurements/predictions, the dotted blue line represents the linear regression of the testing dataset, whereas the black dotted line 
represents a linear regression with R2 = 1.0 (y = x). The standard error of the slope and the intercept was 0.11 and 48.11 (kg), respectively.
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and response variables were considered normally distrib-
uted. The most relevant features in predicting BCS were the 
body dorsal area extracted from the depth images, followed 
by the cow’s age, the projected body volume, and the cor-
responding predicted weight calculated. Other parameters 
extracted from  the depth images, including the maximum 
width, length from neck to rump, average height of the cow, 
and distance from the camera, were considered less important 
than the first three prominent features. Some less important 
features (e.g., the average distance from the camera) may be 
removed from the training dataset due to being less important 
than other selected features; however, including more features 
may enhance the model performance.

Figure 9 is a confusion matrix plot illustrating how the 
selected classifier performed in each actual or predictive 
class. In Figure 9, a blue cell of the diagonal displays high 
percentages, indicating good classification performance, and 
an orange cell indicates poor classification. The higher the 
percentage, the darker the hue of the cell color. The clas-
sification precision is represented by TPV and the FDR, 
where TPV is shown in blue for the correctly predicted 
points in each BCS category, and FDR is shown in orange 

for the incorrectly predicted points in each BCS category. 
The results indicate that the Bagged Tree model achieved 
a higher prediction precision for BCS categories B, C, and 
D compared to category A. Specifically, the model failed to 
predict any BCS correctly in category A [4.25 and 4.5]. At 
the same time, it accurately classified the BCS category with 
a TPV rate of 60%, 63.6%, and 50% for categories B [4.75 
and 5], C [5.25 and 5.5], and D [5.75 and 6], respectively. 
The failure to predict for category A and a slightly lower 
prediction precision for category D may be explained by 
the limited incidence of the BCS observations for these two 
categories, as evidenced by the histograms demonstrated in 
Figure 7.

DISCUSSION
BW and changes in BW of cows or average daily gain of 
growing animals are key for livestock producers to mon-
itor performance metrics, make adjustments to nutritional 
management, and help make overall management decision 
to achieve certain production goals. Currently, there are 
only a few techniques available to estimate or measure BW 

Table 3. A summary of the classification model performance in predicting cow BCS categories

Classifier class Model name Validation accuracy, % Validation
total cost

Test accuracy, % Test total cost

Discriminant Linear discriminant 41.86 25 20 8

Ensemble Boosted trees 44.19 24 40 6

Bagged trees 58.14 18 70 3

Subspace discriminant 41.86 25 40 6

Subspace KNN 41.86 25 50 5

RUSBoosted trees 37.21 27 40 6

Kernel SVM kernel 46.51 23 50 5

Logistic regression kernel 44.19 24 50 5

k-nearest neighbor (KNN) Fine KNN 44.19 24 20 8

Medium KNN 32.56 29 40 6

Coarse KNN 44.19 24 40 6

Cosine KNN 34.88 28 20 8

Cubic KNN 37.21 27 30 7

Weighted KNN 44.19 24 30 7

Naive Bayes Kernel Naïve Bayes 39.53 26 40 6

Neural network Narrow neural network 41.86 25 10 9

Medium neural network 48.84 22 40 6

Wide neural network 34.88 28 20 8

Bilayered neural network 37.21 27 50 5

Trilayered neural network 39.53 26 50 5

Supported vector machine (SVM) Cubic SVM 41.86 25 40 6

Fine Gaussian SVM 44.19 24 40 6

Medium Gaussian SVM 46.51 23 30 7

Coarse Gaussian SVM 44.19 24 40 6

Linear SVM 51.16 21 20 8

Quadratic SVM 44.19 24 30 7

Tree Fine tree 44.19 24 80 2

Medium tree 44.19 24 80 2

Coarse tree 44.19 24 70 3

The classifier class, model name, and performance parameters, including the accuracy of the validation and test (%) and the total cost in validation and test 
are provided. The general information of these classifiers is listed in Table 1. The best model is highlighted in italic.
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of livestock. The two of which are using scales or indirect 
approaches through estimates of body part measurements, 
while the most common method for measuring BW of live-
stock is using a calibrated scale. Both approaches have 

challenges for livestock producers. Walking livestock through 
an alley to weigh them on a scale can imposes some degree of 
stress on the animal (Lees et al., 2020). In addition, utilizing 
electronic scales increases labor needs and can be a costly in-
itial investment (Heinrichs et al., 1992). Moreover, motions 
associated with weighing large animals over the walk-over 
scale impose fluctuation in measures, thus, eventually leading 
to inaccurate weights. Indirect estimation using other body 
measurements can be impractical and time consuming for 
livestock producers. In extensive beef production systems, 
even attaining a regular BW measurement as less frequent as a 
yearly record can be a challenge for many livestock producers 
(Ndlovu et al., 2007; Wangchuk et al., 2018; Creamer and 
Horback, 2021).

In addition to challenges to collect BW of grazing livestock, 
inaccurate weights in both research and producer settings 
can have a large financial impact due to over or underfeeding 
and marketing livestock. Obtaining accurate weights can be 
challenging due to variation in gut fill, technique error, and 
varied environmental conditions. Kelly et al. (2019) reported 
differences in BW taken in two consecutive days for growing 
cattle that range from −18 to 22 kg. Weight of digestive tract 
contents or differences in intake may be the largest source of 
error in weighing cattle, which is especially true for livestock 
grazing or consuming forage-based diets (Koch et al., 1958). 
Therefore, Watson et al. (2013) recommended limit-feeding 
a standardized diet that minimizes gut fill prior to weight 
collection, which would be crucial for accurate calculation 
of average daily gain of growing animals. However, passive 
BW estimation or data collection technologies that have the 
ability to conveniently collect multiple weights over a short 
period of time may minimize the error in BW measurements 
due to the number of measurements that can be recorded over 
a short time period.

Depth sensing or image analysis has been utilized to predict 
body volume and biometric measurements in pigs (Kashiha 
et al., 2014; Condotta et al., 2018), Limousin beef cows 
(Ozkaya et al., 2016), Angus and Nellore bulls’ carcass char-
acteristics (Gomes et al., 2016), and Nellore heifers (Kamchen 

Figure 8. Feature importance score in predicting the cow body condition score (BCS) category, ranked using the ANOVA algorithm. The BCS categories 
are defined as following: A [4.25, 4.5], B [4.75, 5], C [5.25, 5.5], and D [5.75, 6].

Figure 9. A confusion matrix demonstrating the classification results 
using eight input variables (cow age, predicted body weight, image-
extracted cow dorsal length, width, and surface area, average body 
height, projected volume, and average distance to the camera) to predict 
the body condition score (BCS) category of the cows. The categories are 
defined as follows: A [4.25, 4.5], B [4.75, 5], C [5.25, 5.5], and D [5.75, 
6]. The true predicted values (TPV) and false discovery rate (FDR) are 
provided at the bottom.
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et al., 2021). Condotta et al. (2018) developed a multilinear 
regression model using convolutional neural network with 
different geometric characteristics of a standing pig (length, 
width, shoulder width, and height) and achieved accurate 
predictions of pigs’ BW with a standard error of 3.01 kg and 
a linear regression co-efficient (R2) of 0.99 (N = 772). Ozkaya 
et al. (2016) utilized an RGB color digital camera and manual 
acquisition of body measurements of 58 limousin beef cows 
to predict their BW. Their results demonstrated a linear re-
lationship between body area and bodyweight with an R2 
of 61.5%, and a higher R2 of 88.7% when all body traits 
were included as input variables. Kamchen et al. (2021) used 
a stereo depth camera to predict body measurements and BW 
of 260 Nellore heifers. Their results showed that it is possible 
to estimate body mass in Nellore heifers using depth-image-
estimated body volumes with a correlation of 0.97, a mean 
absolute error of 8.85 kg, and a mean absolute percentage 
error of 3.13%. Gomes et al. (2016) studied the first-genera-
tion of Kinect I depth cameras on the relationships between 
BW and hot carcass weight (HCW) for 20 black Angus and 
15 Nellore bulls and reported an R2 between 0.69 and 0.84 
for the black Angus and Nellore bulls, respectively.

Although these previous studies showed that digital/depth 
cameras demonstrated great potential to be used as a tool 
to estimate biometric information of livestock animals, they 
were limited on different animals, breeds, and environmental 
conditions. Moreover, none of the studies has taken the lim-
ited or restricted feeding into account for accurate shrunk BW 
of the cows. Results from this study support that the newer 
generation depth camera demonstrates greater potential to be 
used as a precision tool to accurately estimate shrunk BW of 
productively mature beef cows, with a strong positive corre-
lation between the image-projected body volume and scale-
measured shrunk BW (r = 0.9166). The prediction standard 
error of the regression between measured shrunk BW and 
image-model predicted BW was 19.2 ± 13.50 kg, with an R2 
of 0.83. The difference in standard error of the predicted BW 
and the R2 of the regression between image-predicted and 
scale-measured BW may be explained by vastly different an-
imal species, type of imaging tools used, total animal used, 
and data collection environments.

Body condition scoring (BCS) is an effective and critical 
management tool to estimate the energy reserves of a cow. 
If monitored multiple times across the production year, BCS 
is a good indicator of direction of BW change. Traditional 
recommendations suggest grazing beef cows need to be nu-
tritionally managed at a BCS 5 or greater at breeding for 
optimal reproductive performance (DeRouen et al., 1994; 
Lents et al., 2008). Since visual BCS evaluations are subjec-
tive, livestock producers need to be trained to accurately es-
timate BCS, which becomes a challenging task of fine-tuning 
and training human eyes to see anatomical differences. With 
that in mind, visual evaluation of cowherd BCS can be sub-
ject to error and inconsistency (Kristensen et al., 2006). Even 
more challenging, visually estimating grazing cowherd BCS 
in the winter can be deceiving due to gut fill of low-quality 
forages, winter hair coat, and environmental conditions. Thin 
cows with increased gut fill of low-quality forages can be mis-
taken as being in better condition than they truly are. Long 
winter hair coats can mask prominent ribs or the vertebrae, 
which are landmarks used in scoring body condition. In ad-
dition, estimating BCS in large numbers of cattle can increase 
the error due to estimations being biased towards thinner or 

fatter cows in the herd rather than the herd average. Prior to 
this study, imagining technology and depth cameras in par-
ticular have been utilized to accurately estimate BCS in dairy 
cows (Liu et al., 2020). Kojima et al. (2022) reported a model 
to estimate BCS of Wagyu beef cattle using depth imagery 
that yielded an accurate estimation; however, 62% of their 
cows were classified as a BCS 5 with 13% less than a 5 and 
25% classified as a 6 or 7. Similarly in this study, while a 
skewed BCS dataset was also encountered, a higher testing 
accuracy of BCS categories of 70% was achieved. However, 
skewed data population toward the small and large BCS is 
noted and should be taken into consideration. Therefore, a 
larger dataset with a diverse population of differing BCS cows 
is advised to increase the reliability of BCS predictions with 
depth images and machine-learning techniques.

Limitation and Future Considerations
The utilization of depth cameras in livestock operations 
presents several limitations, requiring careful consideration 
for practical application, especially in rangeland settings. 
Firstly, there is a need for a more user-friendly approach to 
data collection and analysis. For example, in our validation 
study, it was recognized that the time spent capturing a high-
quality image, ranging from 1 to 5 min, was far from ideal. To 
address this, the image collection process was modified and 
improved by recording depth videos and developing an in-
teractive frame selection tool. This advancement allowed for 
swift data collection while accommodating the natural move-
ment pace of cattle. However, further refinements are still nec-
essary to streamline the data collection process and simplify 
analysis procedures, ensuring efficiency and ease of use.

The placement of cameras and their resilience to environ-
mental challenges also pose hurdles for practical applications. 
Livestock operations, particularly beef cattle operations, en-
compass diverse and often extensive environments. Hence, 
strategically positioning the cameras to capture accurate and 
reliable data becomes paramount. The cameras must with-
stand harsh conditions, including dust, moisture, and po-
tential damage from animals. Thus, ensuring the durability 
and stability of the camera systems is crucial for successful 
implementation.

Furthermore, the validation of the technology’s practi-
cality requires a more comprehensive and expansive dataset 
covering various cattle ages, production phases, and color 
patterns within different environmental settings. While our 
study acknowledges the relatively small size of the animal 
herd used for data collection, active gathering of imagery 
data from diverse herds, ages, and color patterns is essential. 
This endeavor will enhance the generalizability and relia-
bility of the depth camera technology across different cattle 
populations.

Additionally, exploring the potential of data streaming and 
edge computing holds promise for depth sensing applications 
in livestock operations. By leveraging real-time or cloud proc-
essing and analysis at the edge, the technology architecture 
can provide immediate feedback and actionable insights for 
precision livestock management. However, it is essential to 
recognize the increased effort, labor, and complexity associ-
ated with model development, data streaming, synchroniza-
tion, and imagery data analysis.

To summarize, while our study contributes to the pio-
neering use of depth images for beef cattle applications, par-
ticularly in the United States, it is crucial to acknowledge 
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the significant limitations. Overcoming these limitations 
necessitates advancements in data collection methods, robust 
camera placement strategies, data diversity, and the utiliza-
tion of emerging technologies like data streaming and edge 
computing. By addressing these challenges and incorporating 
future advancements, depth camera technology holds great 
promise for practical application and enhanced management 
and decision-making in livestock operations.

In conclusion, this study showcases the potential of using 
imaging techniques and machine-learning approaches to im-
prove the accuracy and precision of estimating and predicting 
the BW and BCS of beef cattle in rangeland settings. However, 
to further advance precision beef management, the acquisi-
tion of a larger dataset encompassing variations in animal 
breeds, ages, weights, diverse BCS distributions, and different 
outdoor conditions and data collection environments is cru-
cial and warrants further exploration.

Conclusions
Depth sensing technology has shown great potential for ac-
curately measuring the BW, metabolic weight, and BCS of 
U.S. beef cattle, providing cow–calf producers with a new, 
low-cost approach to managing their herds. The use of a low-
cost, commercially available depth sensor for collecting top-
view depth images of cattle presents a new opportunity for 
cow–calf producers to improve their herd management and 
increase productivity. The results of this study demonstrate 
a strong positive correlation between image-projected body 
volume and measured BW, which can be useful for predicting 
BW and metabolic weight in beef cattle. The Bagged Tree 
model in the Ensemble class was found to have the best per-
formance for classifying BCS in beef cattle, demonstrating 
the potential for machine learning algorithms to aid in herd 
management and decision-making. Validating this approach 
with a larger dataset that encompasses variations in animal 
breeds, ages, weights, diverse BCS distributions, and different 
outdoor conditions and data collection environments should 
be further explored.
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