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Overactivation of the mitogen-activated protein kinase (MAPK) pathway is an important driver of many human cancers. First
line, FDA-approved therapies targeting MAPK signalling, which include BRAF and MEK inhibitors, have variable success across
cancers, and a significant number of patients quickly develop resistance. In recent years, a number of preclinical studies have
reported alternative methods of overcoming resistance, which include promoting apoptosis, modulating autophagy, and targeting
mitochondrial metabolism. This review summarizes mechanisms of resistance to approved MAPK-targeted therapies in BRAF-
mutated cancers and discusses novel preclinical approaches to overcoming resistance.

1. Introduction

The mitogen-activated protein kinase (MAPK) cascade plays
a critical role in cell survival, proliferation, and differenti-
ation [1]. The components of the MAPK pathway are a
highly conserved and ubiquitously expressed family of en-
zymatic kinases that phosphorylate many different target
substrates [2, 3]. MAPK components are part of the large
tiered phosphorylation cascade that includes RAS, RAF,
MEK, and ERK kinases [4-6]. This tiered organization
provides flexibility and adaptability, allowing a broad range
of higher-order kinases to respond to the environment and
control cellular function [7, 8]. Through transduction of
signals from extracellular stimuli to downstream effector
proteins within the cell, the MAPK pathway plays a major
role in nearly every cellular process [1, 9].

In healthy tissue, activation of the MAPK pathway arises
from a variety of intracellular and extracellular stimuli, in-
cluding metabolic stress, DNA damage, cytokines, and
growth factors [9]. Typically, the MAPK pathway is stimu-
lated by growth factors binding to receptor tyrosine kinases
(RTKs). RTKs including epidermal growth factor receptor
(EGFR), fibroblast growth factor receptor (FGFR), platelet-
derived growth factor receptor (PDGFR), and vascular en-
dothelial growth factor receptor (VEGFR) converge

downstream onto MAPK [10-13]. Notably, hormone stim-
ulation may also activate the MAPK pathway through the
progesterone receptor (PgR) and estrogen receptor (ER)
[14-16]. Progestin-bound PgR promotes rapid ER alpha/Src
association to activate MAP [16]. Hormone-triggered MAPK
signalling events have been well summarized by Giovannelli
etal. [17]. In addition, stress-activated MAP kinases modulate
the activity of several nuclear receptors, including androgen
receptor (AR), estrogen receptor (ER), glucocorticoid re-
ceptor (GR), peroxisome proliferator-activated receptor
(PPAR), and retinoic acid receptor (RAR) [18]. Overall,
MAPK signalling is important for growth, development, and
cell turnover across many tissue types. Canonical MAPK
signalling results from membrane receptor stimulation that
activates the small GTPase, RAS, leading to a kinase cascade
that ultimately phosphorylates extracellular signal-related
kinases (ERK) (Figure 1(a)) [19-22]. ERK has widespread
cellular effects, activating target proteins in both the cyto-
plasm, including RSK and MNK (Figure 1(a)), and the nu-
cleus, including c-JUN, MYC, and ELK1 (Figure 1(b))
[23-27]. ERK-MAPK signalling promotes cell survival,
proliferation, and motility [28-31]. Notably, crosstalk be-
tween MAPK components and other pathways can enhance
the effects of MAPK signalling and increase cell proliferation
and oncogenic transformation [18].
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FIGUre 1: Mitogen-activated protein kinase (MAPK) pathway regulates nuclear and cytoplasmic activities. (a) Membrane receptor
stimulation activates RAS GTPase which phosphorylates and activates RAF — MEK — ERK. BRAF forms homo- or heterodimers with
other RAF-family proteins (ARAF or CRAF)* leading to MEK activation. BRAFY*°F is constitutively active and phosphorylates MEK
independent of RAS activation and dimerization. ERK-specific phosphorylation regulates its localization. Cytoplasmic ERK regulates RSK
and MNK to modulate cellular function including transcription, proliferation, and invasion. (b) Phosphorylated ERK may phosphorylate
RSK, which can translocate to the nucleus. In the nucleus, other transcription factors are recruited to promote expression of growth and

prosurvival proteins.

Constitutive activation of the MAPK pathway, through
overstimulation of receptors, RAS activation, or un-
controlled kinase activity, drives many human cancers [32].
Overactivation of BRAF, a RAF-family protein kinase and
component of MAPK, is one of the most common events
resulting in aberrant MAPK signalling [33]. BRAF is fre-
quently mutated from GAG to GTG resulting in a valine to
glutamic acid transition at amino acid position 600 in the
activation loop of the BRAF kinase domain (BRAFV600E)
[33-35]. This mutation forms a salt bridge between glutamic
acid 600 and lysine 507 to promote an active, closed kinase
conformation and facilitate catalysis [36]. In addition, the
BRAFV®" mutation destabilizes the hydrophobic in-
teractions between the aspartic acid-phenylalanine-glycine
(DFG) motif and the P-loop to promote the DFG motif to
adopt an active inconformation resulting in autoactivation
of the monomeric form of the BRAF kinase [37, 38]. The
BRAFV%F mutation constitutively activates the MAPK
pathway independent of RAS stimulation and is the most
common activating BRAF mutation [39-41]. However,
other point mutations, gene fusions, splice site variants, and
gene amplifications also lead to constitutive BRAF activity
[42-45]. Mutations in BRAF are seen across many cancers
including, but not limited to thyroid, melanoma, colon,
squamous cell and hairy cell leukemia, and CNS-related
malignancies [33, 46, 47]. Consequently, inhibiting BRAF
kinase signalling is an attractive target, which can benefit
patients across different cancer types (Table 1).

Vemurafenib, a kinase inhibitor, was first used in a phase
1 clinical trial for BRAFY****-mutated metastatic melanoma
in 2010 and was approved for use in 2011 [48, 49]. Despite

improvements in overall survival, the majority of patients
treated with BRAF inhibitors develop resistance and disease
progression after 6-7 months [50, 51]. In 2018, the FDA
approved the BRAF/MEK combination encorafenib plus
binimetinib for BRAFV**°*- and BRAF"****-mutated met-
astatic melanoma based on more durable results from a
Phase 3 clinical trial [52]. Combining BRAF and MEK in-
hibitors has improved the average progression-free survival
of metastatic melanoma from 5.8 to 9.4 months but many
patients still suffer from resistance to combination therapy
[50]. Despite successes in melanoma, vemurafenib has
variable efficacy in other BRAF"****-mutated cancers such
as thyroid, colorectal, and glial, with only a small fraction of
patients responding [53-55]. While somewhat controversial,
histological subtype, microsatellite instability, and other
genetic alterations are proposed to contribute to variable
responses to vemurafenib across cancers [55, 56].
Resistance to BRAF inhibition may be intrinsic or ac-
quired, which is respectively observed as either no response
to initial therapy or a response and later resistance to
therapy. In this review, we will focus on the acquired re-
sistance mechanisms precipitated by BRAF inhibition and
alternative therapies that may overcome acquired resistance.
Acquired resistance is a cellular alteration in addition to the
BRAFV®F mutation that facilitates tumour cells to grow
despite BRAF inhibitor (BRAFi) therapy. Reactivation of
MAPK signalling is the most common mechanism of ac-
quired resistance to BRAFi therapy across cancer types [57].
However, recent studies have identified that overexpression
of antiapoptotic genes, stimulation of autophagy, adenosine
monophosphate protein kinase (AMPK) activation,
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TaBLE 1: Summary pharmacological interventions for BRAFV600E mutated cancers'.

Compound Target Pathway Cancer type*
Vemurafenib BRAF MAPK CRC/G/M/T
Dabrafenib BRAF MAPK CRC/M
Encorabenib BRAF MAPK CRC/M
Trametinib MEK MAPK CRC/M/PDA
Binimetinib MEK MAPK M
Navitoclax BCL-2/BCL-XL/BCLW BH3 mimetic M/T
ABT-737 BCL-2 BH3 mimetic M
A-1210477 MCL-1 BH3 mimetic M
Compound 1* SH2 STAT3 M
Hydroxychloroquine Unknown Autophagy CRC/M/PDA
Lys05 Lysosome Lysosomal autophagy M
Chloroquine Unknown Autophagy CRC/M/PDA
Temozolomide DNA DNA replication M
KP1339/1T-139 GRP78 ER homeostasis MT
GSK2606414 PERK UPR* M
A443654.3 AKT PI3BK/AKT/mTOR CC
MK2206 AKT PI3K/AKT/mTOR CRC
LY294002 PI3K P3K/AKT/mTOR CRC
GDC0941 PI3K P3K/AKT/mTOR CRC
PPP™ IGF-1R PI3K/AKT/mTOR M
Iso-orientin Unknown PI3K/AKT/Mitochondria HBC
™M Copper Angiogenesis/inflammation CRC
Ibuprofen COX1/2 NSAID™ MT
Naproxen COX1/2 NSAID* MT
Celecoxib COX-2 NSAID* SCC
Etomoxir CPT1A Lipid oxidation M/P
Phenformin AMPK Metabolic regulator M
B-sitosterol Complex I ETC™ M

SR4 Proton uncoupler Mitochondria M
Niclosamide Proton uncoupler Mitochondria M

*CC = cholangiocarcinoma; CRC = colorectal carcinoma; G = glioma; HBC = hepatoblastoma cancer; M = melanoma; MT =multiple tumours; P = prostate;
PDA = pancreatic ductal adenocarcinoma; PST =panel of solid tumours; SCC =squamous cell carcinoma; T =thyroid. “Compound 1 = quinoxaline-2,3-
diylbis (methylene) dicarbamimidoselenoate dihydrobromide. **PPP = cyclolignan propodophyllin. **TM = tetrathiomolybdate. “UPR = unfolded protein

response. “"NSAID = nonsteroidal anti-inflammatory. ***

ETC=electron transport chain. "This is not a comprehensive list of compounds that

target alternative mechanisms of BRAFi resistance and covers therapies that are referenced in this review.

alterations in the tumour microenvironment, and changes in
metabolic flux also promote resistance and treatment failure
[58-65]. Each section of this review describes the normal
role, the aberrant activity resulting in acquired resistance,
and potential approaches to targeting and overcoming these
resistance mechanisms. Here, we review cellular adaptations
that promote resistance to anti-MAPK therapy and sum-
marize novel preclinical approaches to improving long-term
patient responses across cancer types. We summarize recent
promising preclinical therapies in this review; however, it is
important to note that this is not a comprehensive list
(Table 1).

2. Targeting Apoptosis in Cancer

2.1. Antiapoptotic BCL-2 Family Proteins Promote Resistance.
Apoptosis, or programmed cell death, is a tumour sup-
pression mechanism that is critical to healthy tissue ho-
meostasis [66]. This program is a downstream effector
pathway of the MAPK signalling cascade (Figure 2(a)) [67].
Apoptotic pathways are driven by the caspase protease
family, which are proteolytically activated by either the
intrinsic or extrinsic apoptotic pathway [68]. The intrinsic

pathway (the “stress” or “mitochondrial” pathway) is me-
diated by pro- and antiapoptotic members of the B-cell
lymphoma-2 (BCL-2) protein family and is implicated in
tumourigenesis [69, 70]. Proapoptotic BCL-2 Associated X
(BAX) and BCL-2 Antagonist Killer (BAK) form homo- and
heterodimers stimulate the release of mitochondrial cyto-
chrome ¢ [71-73]. Cytosolic cytochrome ¢ subsequently
associates with apoptotic protease-activating factor (APAF-
1) to form the apoptosome, which cleaves and activates
proapoptotic caspases [74]. Apoptosis is modulated in part
by antiapoptotic members of the BCL-2 protein family,
which inhibit BAX and BAK activity and promote cell
survival [75, 76]. Conversely, BH3-only proteins, such as
BAD and BIM, stimulate cell death by activating BAX and
BAK [77-79].

Evading apoptosis is an important hallmark of cancer,
and the success of therapy depends, in large part, on its
ability to induce cell death [80]. Many cancers, including
breast, pancreatic, and endometrial cancer, evade apoptosis
through upregulation of antiapoptotic proteins, including
those in the BCL-2 protein family [81-84]. BCL-1, myeloid-
cell leukemia (MCL-1), and B-cell lymphoma extralarge
(BCL-XL) are antiapoptotic BCL-2 proteins frequently
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FV°F_mutated cancers. (a) MAPK mediates apoptosis by inhibiting

BH3-only proteins that activate proapoptotic BAX and BAK proteins. BCL-2 proteins inhibit caspase-mediated apoptosis by sequestering BAX
and BAK to prevent release of mitochondrial cytochrome c. (b) MAPK proteins associate with KSR2, GRP78, and endosomes to localize to the
ER. Translocation to the ER is required for ERK reactivation, ATF4 phosphorylation, and subsequent autophagy. (c) MAPK negatively regulates
PI3K/AKT/mTOR through TSC1 dimers. The Insulin receptor substrate (IRS) recruits PI3K to the membrane resulting in activation and
conversion of phosphatidylinositol-4,5-bisphosphate (PIP,) to phosphatidylinositol-3,4, 5-triphosphate (PIP;). The second messenger PIP;
promotes the activation of AKT. AKT inhibits the dimerization and activation of TSC1 and TSC2, leading to mTOR activation. (d) Downstream
ERK inhibits the metabolic sensor AMPK, which modulates the MAPK pathway via phosphorylation of serine 729 on BRAF, likely representing a
regulatory feedback loop. AMPK promotes catabolism, including lipid breakdown and autophagy.

overexpressed in human cancer and protect cells against ap-
optosis under normal conditions in breast, prostate, and
cholangiocarcinoma cancer cells [85-87]. In BRAFVE_my-
tated cancers, MCL-1 has been shown to be aberrantly
upregulated [58, 59]. Furthermore, constitutively active MAPK
signalling phosphorylates and inactivates BAD and BIM, two
proapoptotic BH3-only proteins (Figure 2(a)) [88, 89].

In recent years, co-opting proapoptotic pathways had
been of interest in several cancer types, including melanoma
and thyroid carcinoma [60, 90]. BH3 mimetics, single-agent
small molecule inhibitors that have proapoptotic effects
similar to BH3-only proteins, have shown efficacy in mela-
noma clinical trials for reducing tumour size [91]. Combining

drugs that target proapoptotic BCL-2 family proteins with
BRAF inhibitors in BRAFY****-mutated cancers sensitizes
melanoma cells to apoptosis but has not been shown to re-
verse resistance that is acquired over time [60]. However,
Jeong et al. showed BRAFi therapy increased BCL-XL and
BCL-2 expression in BRAF'*"*-mutated human thyroid
cancer cells [90]. Treating the same cells with BH3 mimetic,
navitoclax, promoted apoptosis and growth inhibition
compared with vemurafenib or navitoclax alone [90].

2.2. STAT3 is an Alternative Mechanism to Activate Anti-
aApoptotic Pathways. STAT proteins constitute a diverse
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array of transcription factors and are activated by a variety of
extracellular signals, including epidermal growth factor
(EGF), fibroblast growth factor (FGF), platelet-derived
growth factor (PDGF), granulocyte-colony stimulating
factor (G-CSF), interleukin-6 (IL-6), and insulin-like growth
factor (IGF) [92-97]. STAT3 is activated via tyrosine
phosphorylation and subsequently translocates to the nu-
cleus where it activates transcription of genes involved in cell
cycle progression including CCND1, ¢-MYC, and FOXM1
[98-100]. Interestingly, STAT3 also activates antiapoptotic
BCL-2 family proteins, highlighting its dual involvement in
prosurvival and apoptotic pathways [101].

In addition to BCL-2 family proteins, STAT3 represents
an attractive target of antiapoptotic therapies. BRAFY60F
mutations are highly abundant in advanced-stage melanoma
and colorectal cancer (CRC) [102, 103]. In tumours with
acquired resistance to BRAFi therapy, STAT3 activation is
associated with a poor prognosis [104, 105]. Alcolea recently
developed and tested an organoseleneium compound, which
reduced melanoma cell viability, suppressed proliferation,
induced apoptosis, inhibited STAT3, and induced cell cycle
inhibitor p21 [106]. This compound did not decrease
phosphorylation of ERK1/2 or other relevant kinases, sug-
gesting that it suppresses cell death through an alternative
mechanism [106]. Dysregulation of apoptotic pathways may
serve to increase the metastatic potential of BRAFY®'*E-
mutated cancer cells [107, 108]. These data suggest that
combining STATS3 inhibitors with BRAFi may be an effective
way to overcome resistance in cancers that have failed BRAFi
monotherapy.

3. Dual Roles of Autophagy in Cancer as
Potential Therapeutic Targets

Autophagy is a process by which cells recycle the cyto-
plasmic material for energy use or biosynthesis of macro-
molecules. Importantly, autophagy plays dual roles in either
promoting or preventing cell death. In healthy cells, auto-
phagic processes are upregulated in response to stress,
allowing for cell survival [109]. Accordingly, cells lacking
autophagic capabilities cannot adapt to stressed environ-
ments and have a lower apoptotic threshold [110]. Despite
its critical function in cell survival, autophagy also plays a
role in cell death. In some cases, cells may overstimulate
autophagy to catabolize indispensible cellular components,
leading to “autophagic cell death” (also known as “Type II
apoptosis”) [111]. High numbers of autophagosomes are
often seen in dying cells, and there is evidence that auto-
phagy alone is sufficient for cell death under certain con-
ditions [112]. Pathway crosstalk between autophagy and
apoptosis is explained in part by Beclin-1, a BH3-only
protein that is critical in autophagy and interacts with
antiapoptotic proteins BCL-2 and BCL-XL [113-115].
Proapoptotic caspase-mediated cleavage of Beclin-1 inhibits
its autophagic effects and stimulates apoptosis through
mitochondrial release of cytochrome c [115].

In relation to cancer, autophagy is complex and mul-
tifaceted. Similar to healthy tissue, autophagy plays dual
roles in either promoting or inhibiting cancer cell death.

Some evidence suggests that inhibition of autophagic pro-
cesses can contribute to tumourigenesis [116, 117]. For
example, the mammalian target of rapamycin (mTOR)
negatively regulates autophagy, and consequently, inhibition
of mTOR leads to cell death [118]. Similarly, stimulation of
autophagy through other mechanisms, including in-
termittent fasting and AMPK activation, have been shown to
inhibit tumour growth and selectively promote cancer cell
death [119, 120]. However, in cancer, autophagic processes
may be modulated to promote survival in conditions that
would otherwise trigger programmed cell death [121].
During nutrient deprivation or metabolic stress, cells
stimulate autophagy to survive, adapt to their environment,
and evade cell death, which may result in oncogenesis by
preventing senescence [122, 123]. Notably, cancer cells may
co-opt normal autophagic processes to survive stressors in
their microenvironment, suppress p53 function, and in-
crease mitochondrial respiration [124-126]. In starved
conditions, K-RAS-mutated cells become addicted to
autophagy, allowing them to retain functional mitochondria
[126]. RAS-mutated cells with abnormal autophagosomes
accumulate defective mitochondria and have decreased
oxygen consumption [126]. Interestingly, autophagy,
mitophagy, and mitochondrial metabolism are attenuated
during tumour formation, but can increase to maintain
energy homeostasis and promote tumour survival in a
stressed environment [126]. Taken together, autophagy
serves dual functions; it either promotes apoptosis or cell
survival. These functions are modulated based on the stage of
tumour development, indicating that autophagy-targeted
treatments should be tailored to the cancer phenotype.

In BRAFY**_mutated cancer cells, autophagy may be
upregulated as a protective mechanism in response to cel-
lular stressors [61, 127, 128]. Recently, there have been
preclinical studies using autophagy inhibitors in combina-
tion with BRAFi for BRAF'***-mutated cancer cells
[62, 129]. Kinsey et al. showed that inhibiting the
RAF — MEK — ERK signalling cascade in K-RAS-driven
cancers stimulated autophagy through activation of AMPK,
a key energy sensor and metabolic regulator [62, 130]. In low
glucose conditions, AMPK phosphorylates ULK1 at two
serine residues leading to autophagosome formation and
initiation of autophagy [130]. Conversely, under conditions
of high nutrient availability, active mTOR phosphorylates
ULKI at a different serine residue, preventing its interaction
with AMPK [130]. In preclinical models, the MEK1/2 in-
hibitor, trametinib, in combination with an autophagy in-
hibitor, chloroquine, demonstrated synergy in pancreatic
ductal adenocarcinoma, colorectal carcinoma, and mela-
noma patient-derived xenograft (PDX) models with RAS
and BRAFY**** mutations [62].

Autophagy serves as an adaptive drug resistance
mechanism in BRAFY®*E_mutated cancers [61]. Ojha et al.
showed that in melanoma, BRAFi therapy induces an ER
stress response that stimulates autophagy and promotes cell
survival. This stress response is mediated by protein-protein
interactions between MAPK components (including
BRAFV%")| chaperone protein GRP78, scaffolding protein
KSR2, ER translocase SEC61, and early endosomes



(Figure 2(b)) [129]. Activation of the ER stress response
results in components of the MAPK pathway translocating
to the ER via association with GRP78, KSR2, and SEC61
[129]. This translocation is required for ERK reactivation
and subsequent stimulation of cytoprotective autophagy via
ATF4 phosphorylation [129]. Accordingly, expression of
mutant ATF4 has been shown to improve cellular sensitivity
to MAPK inhibition in vivo [129]. Ryabaya et al. have shown
that GRP78 blockade inhibits the ER stress-mediated
autophagy and promotes apoptosis through caspase 7 to
sensitize melanoma cells to temozolomide [131]. KP1339/
IT-139, a GRP78 inhibitor, demonstrated significant anti-
cancer activity in a Phase I clinical trial and is an attractive
potential treatment for BRAFi-resistant tumours [132].
Taken together, these data provide rationale for clinical
studies combining antiautophagic agents with BRAF and
MEK inhibitors.

4. AKT, Copper Complexes, and Arachidonic
Acid Metabolism Are Inflammatory Targets in
BRAFY***_Mutated Cancer

Lipid signalling in the phosphoinositide 3-kinase (PI3K)-
AKT pathway plays a critical role in differentiation, cyto-
skeletal rearrangement, vesicle trafficking, growth, and
mounting inflammatory responses [133, 134]. Membrane
inositol phospholipids (PI) are modified by different classes
of PI3K. PI3K has different isoforms, Class I, Class II, and
Class III, which selectively phosphorylate membrane PIs
[135, 136]. Importantly, Class I PI3Ks convert phosphati-
dylinositol-4,5-bisphosphate  (PI(4,5)P2 or “PIP,”) to
phosphatidylinositol-3,4,5-triphosphate ~ (P(3,4,5)P3  or
“PIP5”) [137, 138]. The PIP; second messenger has many
functions but classically activates the downstream kinase,
AKT, which negatively regulates TSC1 and TSC2 hetero-
dimers to modulate mTORCI activity (Figure 2(b)) [139].

Inflammation and cancer are related bidirectionally,
with high levels of chronic inflammation conferring an
increased risk for tumour development [140, 141]. Con-
versely, cancer has been shown to alter surrounding tissue to
suppress cancer-killing immune cells and promote chronic,
proresolving  inflammation  [142, 143].  Tumour-
infiltrating lymphocytes and macrophages constitute a
significant population of cells in the microenvironment and
modulate response to treatment [144, 145]. Cytokines as-
sociated with chronic inflammation, including TNF-«, TGF-
B, and IL-6, remodel the microenvironment and promote
tumourigenesis in part through generation of reactive ox-
ygen species (ROS) [65, 146, 147]. The PI3K-AKT-mTOR
signalling axis remodels surrounding tumour-stromal cells,
playing an important role in tumour-infiltrating lymphocyte
activity and oncogenesis [119]. PI3K signalling is often
upregulated in BRAF"***-mutated cells that are resistant to
BRAFi therapy [148-151]. Isoforms of PI3K play important
roles in lymphocyte chemotaxis and NK cell extravasation
into tumour-stromal tissue [152, 153]. In addition, PI3K
upregulates mTOR signalling, further driving oncogenesis
(Figure 2(c)) [154]. Preclinical studies have successfully
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targeted PI3K signalling in combination with BRAF/MEK
inhibitors in BRAFY**°*-mutated colorectal cancer and
melanoma cells [155-157]. BRAFVE melanoma cells
treated to resistance with monotherapy BRAFi are sensitive
to IGF-1R/PI3K and MEK inhibitors [155]. While single-
agent vemurafenib is effective in less than 10% of
BRAFY**_mutated CRCs, the addition of PI3K inhibitors
shows synergistic growth inhibition in drug-resistant CRC
cells [156]. Jiang et al. showed BRAFi resistance increases
tumour PD-L1 expression, which can be overcome by
combined MEK and PI3K inhibition [157]. PI3K inhibitors
in combination with vemurafenib have shown promising
results in early clinical trials [158, 159]. In summary, PI3K
inhibitors in combination with other treatments offer po-
tential therapeutic benefit for BRAF"****-mutated cancers
resistant to monotherapy BRAFi.

In addition to classic pathway inhibition, other anti-
inflammatory drugs have been tested preclinically with
promising results. Copper is a tightly regulated cofactor for a
wide variety of enzymes and is an essential micronutrient
[160]. Copper dysregulation is seen in a variety of chronic
diseases including Wilson’s disease and Alzheimer’s disease
[161, 162]. Inflammatory ROS is seen with high serum
copper [160, 163-166]. Elevated serum copper levels are
correlated with poor survival in CRC and drug resistance in
other tumour types [167]. In BRAF'****.mutated lung
cancer and melanoma cells, copper has been shown to
enhance MEK1 phosphorylation of ERK1/2 through for-
mation of a MEKI-copper complex [168]. Therapeutics
targeting copper-driven ROS sequester block the uptake or
chelate copper to mitigate ROS production [160, 167, 168].
Metallothionine and glutathione can protect against copper-
driven ROS by sequestering it in the cytosol [160]. Copper
uptake into the cell can be inhibited by targeting the CTR1
receptor and disrupting the MEK1-copper binding site to
decrease ERK1/2 phosphorylation and downstream signal-
ling [168]. Copper chelation therapy with tetrathiomo-
lybdate is used in Wilson’s disease and is being studied in
cancers due to its antiangiogenic and anti-inflammatory
properties [167]. In BRAFi resistant CRC cells, copper
chelation therapy has been shown to decrease proliferation,
survival, migration, and clonogenic potential [167]. These
data highlight alternative approaches to overcoming re-
sistance and developing drugs that address multiple cellular
adaptations that contribute to oncogenesis (i.e., metabolism,
generation of ROS, and oncogenic transformation).

One of the most widely used classes of drugs, non-
steroidal anti-inflammatory drugs (NSAIDs), has the po-
tential to decrease the proliferative capacity of cancer
[169, 170]. NSAIDs target cyclooxygenase (COX) enzymes,
which play important roles in fever, pain, and inflammation.
Membrane phospholipids are converted into arachidonic
acid (AA) by either membrane phospholipase A2 (mPLA2)
or soluble phospholipase A2 (sPLA2) [171-173]. AA is
converted into lipid signalling molecules including prosta-
glandins, thromboxanes, and prostacyclins by COX1 and
COX-2 isoenzymes [170]. In healthy tissues, COXI is
expressed and constitutively active, functioning as a
“housekeeping” protein. Under ordinary conditions, COX1
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produces thromboxane, prostacyclin, and prostaglandin E2,
which serve normal functions in platelet aggregation and
gastrointestinal cytoprotection. By contrast, COX-2 ex-
pression is induced during inflammation. COX-2 plays a
critical role in mounting immune responses by producing
prostaglandin E2, leading to fever and increased blood vessel
permeability [170]. Classic inhibitors of COX1/2, including
ibuprofen and naproxen, and more recent selective COX-2
inhibitors, including celecoxib, have been employed in
clinical practice [174]. Targeting BRAF and the COX-2
orthogonal pathway could benefit patients with resistance to
BRAFi drugs. Escuin-Ordinas et al. describe how celecoxib
prevents the development of BRAFi-induced secondary
cutaneous squamous cell carcinomas (cuSCCs) that result
from paradoxical BRAF activation. In cuSCC cells, vemur-
afenib alone increased phosphorylation of ERK, a response that
was decreased significantly by celecoxib. Furthermore, tra-
metinib, a MEK inhibitor, reduced cuSCC development less
efficiently than celecoxib. The authors suggest that reduced
prostaglandin synthesis resulting from inhibition of COX-2
decreases the development of secondary cuSCCs [175]. The
results of this study may inform us that targeting an orthogonal
metabolic pathway could improve therapeutic efficacy of
BRAFi therapy in BRAFV***-mutated tumours. These data
provide rationale for future investigations into inhibiting in-
flammatory processes in BRAF %F_mutated cancers to
overcome resistance to BRAFi therapy.

5. Energy Homeostasis in Resistant BRAFY°°E-

Mutated Cancer as a New Avenue for Therapy

Metabolic efficiency is frequently optimized to produce
maximum ATP per molecule of glucose. To achieve maxi-
mum efficiency, healthy cells will metabolize glucose
through oxidative phosphorylation in the mitochondria in
the presence of oxygen. The flux through these metabolic
pathways will be tightly regulated to meet the metabolic
demands of any cell, modulate reactive oxygen formation,
and keep metabolites at homeostatic abundancies through
anaplerotic and cataplerotic reactions [176].

In 1931, Otto Warburg was awarded the Nobel Prize in
Medicine and Physiology for his proposal that cancer cells
metabolize glucose in the presence of oxygen, a process
known as aerobic glycolysis [177-179]. This observation was
named the Warburg Effect and has remained the classic
paradigm of cancer metabolism [177, 180]. However, recent
evidence suggests certain cancer types can uptake and ox-
idize lipids [181, 182]. Lipid catabolism is regulated by
AMPK, a nutrient sensor of normal and cancer cells. AMPK
phosphorylates and inactivates acetyl-CoA carboxylase,
which impedes fatty acid synthesis and promotes lipid
utilization by beta-oxidation in the mitochondria
(Figure 2(d)) [183]. In fact, a recent study by Aloia has
shown that upregulation of fat oxidation plays a role in the
adaptive response to MAPK inhibition [184]. Particularly,
the pharmacological blockade of CPTIA (the rate-limiting
step for fat oxidation) reactivated glycolysis in MAPKi-
treated melanoma cells. This compensatory increase in
glycolytic flux in response to CPT1A inhibition has already

been described and highlights the flexibility of cancer cell
metabolism to promote resistance [185]. Thus, the con-
comitant inhibition of CPTIA, glycolysis, and MAPK syn-
ergistically inhibited tumour cell growth in vitro and in
BRAFV®%E_mutated melanoma mouse models [184].

Interestingly, AMPK phosphorylates BRAF at serine 729
[186]. Shen et al. showed that this phosphorylation leads to
decreased MAPK signalling by preventing BRAF association
with CRAF and KSRI1 in BRAF wild type cells [186].
Consequently, AMPK presents an attractive therapeutic
target for BRAFi-resistant tumours. However, the re-
lationship between BRAF and AMPK is less clear in the
context of BRAFY*°" mutations. Ritt et al. demonstrated
that mutating serine 729 in BRAFV*%F cells did not affect
MEK activation or transformation potential [187]. By
contrast, mutating serine 729 in cells with intermediate
BRAF kinase activity led to increased MEK activation [187].
While more investi\gation into the mechanism of AMPK
regulation of BRAF"*** - mutated cells is necessary, AMPK
inhibitors have shown efficacy in combination with BRAFi
therapy [188]. Melanoma and CRC studies indicate that
cancer cells increase their tolerance to MAPK pathway in-
hibition by activating AMPK-mediated autophagy [63, 189].
Consistent with these findings, a preclinical study by Yuan
et al. demonstrated reduced drug resistance in melanoma
cells treated with AMPK and BRAF inhibitor therapy
compared with single-agent vemurafenib [188]. In contrast,
a recent study found that BRAF inhibitors in combination
with biguanide and phenformin (AMPK activators and
complex I inhibitors) induced tumour regression [64]. Taken
together, these studies merit further investigation into the
relationship between BRAF and AMPK.

Metabolic reprogramming events may play a crucial role
in tumourigenesis, drug resistance, and metastases [190]. A
study on slow-cycling, chemotherapy-resistant BRAF"*°F-
mutated melanoma showed oxidative phosphorylation en-
zymes were upregulated, and consequently, their inhibition
resulted in cell death [191]. Several compounds targeting
mitochondrial respiration have been studied preclinically
with promising results [192-194]. Molecular profiling shows
enzymes involved in oxidative phosphorylation are enriched
in melanoma brain metastases [193]. In a metastatic mel-
anoma PDX study, f3-sitosterol, an electron transport chain
complex I inhibitor, effectively reduced oxidative phos-
phorylation and prevented the development of brain me-
tastases [192]. Moreover, f-sitosterol increased the
generation of ROS and consequently induced apoptosis
[192]. Treatment with an oxidative phosphorylation in-
hibitor improved survival and decreased the development of
brain metastases in BRAF/MEK inhibitor-resistant mice
[193]. Uncoupling agents, which dissipate the proton gra-
dient in the mitochondrial intermembrane space, have also
inhibited tumour growth in vemurafenib-resistant mela-
noma PDX models [194]. Mechanistic studies indicate that
uncouplers modulate mTOR and AMPK and induce apo-
ptosis without perturbing MAPK signalling [194]. These data
indicate that the metabolic profile of drug-resistant cancer
cells clearly differs from drug sensitive subpopulations.
Metabolic differences in lipid metabolism can be modulated



therapeutically to overcome BRAFi resistance. The current
paradigm and our understanding of the Warburg effect in
cancer may be overlooking metabolic rewiring, such as lipid
metabolism, and other adaptations in cancer.

6. Conclusions

Preclinical data on agents that work synergistically with
MAPK therapy offer promising avenues for future clinical
studies. Apoptosis, autophagy, and metabolism are partic-
ularly interesting areas of research and present opportunities
for targeting nongenomic cancer transformations. Un-
derstanding the interconnectivity and regulation of these
cellular processes will provide insight into the efficacy of
targeted therapeutics in the context of tumour development,
invasion, progression, and metastasis. So far, preclinical data
show BRAF/MEK inhibitors in combination with alternative
therapies are novel and efficacious approaches to over-
coming BRAFi resistance. There have been advances in
overcoming acquired resistance to BRAFi across cancers.
However, it is important to acknowledge there are some
leading fields, including quickly advancing therapies in
melanoma, which could be beneficial for other tumour types
and translated across cancers. Future research must eluci-
date mechanisms in which BRAFi-resistant cancers alter
protein-protein interactions and their metabolism in order
to develop rational targets for BRAF'***-mutated cancers.
Understanding the unique metabolic and autophagic profiles
of BRAFY**.mutated tumours across cancer types and dis-
ease stages will help to advance the development of thera-
peutics with lower toxicity than conventional treatments.
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