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Abstract

Two families of Gaussian-type soliton solutions of the (n+1)-dimensional

Schrödinger equation with cubic and power-law nonlinearities in PT -symmetric

potentials are analytically derived. As an example, we discuss some dynamical

behaviors of two dimensional soliton solutions. Their phase switches, powers and

transverse power-flow densities are discussed. Results imply that the powers flow

and exchange from the gain toward the loss regions in the PT cell. Moreover, the

linear stability analysis and the direct numerical simulation are carried out, which

indicates that spatial Gaussian-type soliton solutions are stable below some

thresholds for the imaginary part of PT -symmetric potentials in the defocusing
cubic and focusing power-law nonlinear medium, while they are always
unstable for all parameters in other media.

Introduction

The construction of the exact solutions of nonlinear partial differential equations

is one of the most important and essential tasks in various branches from

mathematical physics, engineering sciences, chemistry to biology [1, 2]. Many

powerful methods have been presented, such as the (G’/G)-expansion method [3–

5], the variable separation method [6, 7], the multiplier approach [8], the

similarity transformation method [9] and the extended generalized Riccati

equation mapping method [10], and so on.

The nonlinear Schrödinger equation (NLSE) and its relatives play important

role in in physics, biology and other fields. Researchers have studied abundant
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mathematical solutions and physical localized structures of various NLSEs,

including solitons and nonautonomous solitons [11, 12], similaritons [13], rogue

waves [14] and breathers [15] etc.

In recent years, the propagation of solitons in parity-time (PT ) symmetric

potentials are presently attracting a great interest both from the theoretical and

from the applicative point of view [16–26]. The definitions of PT potentials were

given by Bender and coworkers in classical quantum mechanics, namely, the PT -

symmetric potential satisfies V(r)~V�({r) with � denoting complex conjugation

[27]. Considering the mathematical correspondence between the quantum

Schrödinger equation and the paraxial equation of diffraction-NLSE, the concept

of PT symmetry has been introduced in the field of optics. Pioneering theoretical

contributions of Christodoulides and co-workers [16, 17] stimulated recent

experimental observations [18, 19]. After then, optical solitons in PT -symmetric

Rosen-Morse potential [20], periodic potential [21] and Scarf II potential [22]

were discussed. Two-dimensional (2D) solitons in nonlocal media [23] with PT -

symmetric potentials have also been reported. More recently, the propagation of

nonautonomous solitons in optical media with PT symmetry has been a subject

of intense investigation [24–26].

However, all soliton solutions in [20–26] are sech-type. Other type of soliton

solutions in PT -symmetric potentials is less studied. Especially, higher

dimensional Gaussian-type soliton solutions in PT -symmetric potentials with

cubic and power-law nonlinearities are hardly studied. In this paper, we aim to

obtaining some analytical higher dimensional Gaussian-type soliton solutions of

NLSE with cubic and power-law nonlinearities in PT -symmetric potentials. Two

issues are firstly studied in this present paper: i) higher dimensional Gaussian-type

soliton solutions are analytically presented in PT -symmetric media with cubic

and power-law nonlinearities, and ii) linear stability analysis and direct simulation

are used together to investigate the stability of solutions in PT -symmetric media

with cubic and power-law nonlinearities.

Results

Analytical higher dimensional Gaussian-type soliton solutions

The propagation of spatial soliton and LB in a PT -symmetric nonlinear medium

of non-Kerr index can be described by the following NLSE

iuzz
XN

n~1

bnuxnxnzcjuj2uzc2mz1juj2muz½V(x)ziW(x)�u~0, ð1Þ

where u(z,x) with x:fxng is the complex envelope of the electrical field, x1,x2 and

x3 represent the transverse spatial coordinates x,y and the retarded time t,

respectively. The subscripts z and xn in the first and second terms in Eq. (1)

denote the derivatives to them. Parameters b1,b2 and b3 are respectively the

coefficients of the diffraction and dispersion, c is the cubic nonlinear coefficient

and c2mz1 for m~2,:::,j describe the nonlinearities of orders up to 2jz1. For
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m~2 one has the quintic nonlinearity, for m~3 the septic, and so on. Functions

V(x) and W(x) describe the index guiding and the gain/loss distribution

respectively. The real and imaginary components of the complex PT -symmetric

potential satisfy V(x)~V({x) and W(x)~{W({x). If N~1, Eq. (1) is

1DNLSE, and its solutions are 1D spatial soliton solutions. If N~2, Eq. (1) is

2DNLSE, and its solutions are 2D spatial soliton solutions. If N~3, Eq. (1) is

3DNLSE, and its solutions are LB solutions.

We seek solutions of NLSE (1) in the form:

u(z,x)~Y(x) exp (ilz)~r(x) exp ilzziW(x)½ �: ð2Þ

Substituting it into Eq. (1) leads to two differential equations about real

functions r and WXN

n~1

bn(rxnxn{rW2
xn)z½V(x){l�rzcr3zc2mz1r2mz1~0, ð3Þ

XN

n~1

bn(rWxnxnz2rxnWxn)zW(x)r~0: ð4Þ

In the following, we derive analytical Gaussian-type soliton solutions of Eqs. (3)

and (4) in two kinds of PT -symmetric potentials.

Family 1 Solution in the first type of extended PT -symmetric potential. If

the PT -symmetric potential has the form

V(x)~
XN

n~1

½V1nx2
nzV2ne{2a2

nx2
n �zV3 P

N

n~1
e{2a2

nx2
nzV4 P

N

n~1
e{2ma2

nx2
n ,

W(x)~
XN

n~1

Wnxne{a2
nx2

n ,

ð5Þ

with real parameters V1n~{4bna4
n,V2n~W2

n=(36bna4
n),V4~{c2mz1({V3=c)m

and arbitrary constants V3,Wn and an, the localization condition r?0 as x?+?
brings into solution of Eq. (1) as follows

u(z,x)~

ffiffiffiffiffiffiffiffiffiffiffi
{

V3

c

s
exp {

XN

n~1

a2
nx2

n

 !
exp ilzzi

XN

n~1

Wn
ffiffiffi
p
p

12bna3
n

erf (anxn)

" #
, ð6Þ

with l~{2
PN

n~1
bna2

n and the error function erf (o).

Family 2 Solution in the second type of extended PT -symmetric potential.

When the PT -symmetric potential has the form
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V(x)~
XN

n~1

½V1nx2
nzV2ne{2a2

nx2
n �zV3 P

N

n~1
e{2a2

nx2
nzV4 P

N

n~1
e{ 2

ma2
nx2

n ,

W(x)~
XN

n~1

Wnxne{a2
nx2

n ,

ð7Þ

with real parameters V1n~{4bna4
n=m2,V2n~m2W2

n=½4(mz2)2bna4
n�,V3~

{c2mz1({V4=c)m and arbitrary constants V4,Wn and an, the localization

condition r?0 as x?+? leads to solution of Eq. (1) in the form

u(z,x)~

ffiffiffiffiffiffiffiffiffiffiffi
{

V4

c

s
exp {

1
m

XN

n~1

a2
nx2

n

 !
exp ilzzi

XN

n~1

mWn
ffiffiffi
p
p

4(mz2)bna3
n

erf (anxn)

" #
, ð8Þ

with l~{
2
m

XN

n~1

bna2
n and the error function erf (o).

If N~1, solutions (6) and (8) are 1D spatial soliton solutions with x1~x. If

N~2, solutions (6) and (8) are 2D spatial soliton solutions with x1~x,x2~y. If

N~3, solutions (6) and (8) are LB solutions with x1~x,x2~y,x3~t. From

solutions (6) and (8), one knows that V3cv0 or V4cv0, thus solution (6) and (8)

exist in self-focusing cubic (FC) media with positive cubic nonlinearity (cw0) if

V3v0 or V4v0, as well as in self-defocusing cubic (DC) media with negative

cubic nonlinearity (cv0) if V3w0 or V4w0.

Characteristic quantities of analytical solutions

It is obvious that the real and imaginary parts of the PT -symmetric potentials (5)

and (7) are both even and odd functions with regards to xn. Thus, V and W
exhibit the symmetric and anti-symmetric properties. As an example, we present

2D case of these properties in Fig. 1. From Fig. 1(b), V possesses the plateau-like

structure with m~2. with the increase of m, this structure turns into a two-hump

structure, and the humps protrude little by little.

In the PT -symmetric potentials above, the phase switches of solutions (6) and

(8) can be found. Fig. 2(a) presents the phase switch of solution (6). The

comparison of phase switch of solution (8) with the different m at x~0 is shown

in Fig. 2(b). The span of switch gradually enlarges with the increasing order m of

nonlinearity.

The power P and power-flow density (Poynting vector)~S are two important

quantities. They can be calculated from P~
Ðz?
{? ju(z,x)j2dx, and

~S~(i=2)½Y+Y�{Y�+Y�. From these definitions, the powers P of solution (6)

and (8) can be expressed {(
p

2
)N=2V3=½c P

N

n~1
janj� and {(

mp

2
)N=2V4=½c P

N

n~1
janj�,

respectively. The power-flow densities~S of solution (6) and (8) can be expressed

as {
V3

6c
fWn

bna2
n

e{3a2
nx2

ng and {
mV4

2(mz2)c
fWn

bna2
n

e{( 2
mz1)a2

nx2
ng, respectively. Note
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that the notation f:g combines multi-component case, which means that there is

one component for 1D case, and two components ½:,:� for 2D case, etc.

From these detailed expression above, We can find that the power and the

power-flow density of solution (6) are both independent of the parameter m,

while those of solution (8) both depend on the parameter m. Considering V3cv0
or V4cv0, S is everywhere positive, which implies that the power flow and

exchange for solutions (6) and (8) in the PT cells are always in one direction, that

is, from the gain toward the loss regions. Two examples to this exchange among

gain or loss regions are shown in Fig. 2(c) and 2(d) for 2D case.

Fig. 1. All pictures are the cases of N~2. (a) and (c) V and W in the 2D PT -symmetric potential expressed by (5) with m~4,N~2. (b) The comparison of
V for different m at x~0. Parameters are chosen as b1~1,b2~1:1,c~{1,c2mz1~0:7,V3~5,a1~0:45,a2~0:4,W1~0:02,W2~0:015.

doi:10.1371/journal.pone.0115935.g001

Fig. 2. All pictures are the cases of N~2. (a) Phase switch of solution (6), (b) the comparison of phase

switch of solution (8) with the different m at x~0. (c) and (d) Power-flow vector~S for solutions (6) and (8) with
m~3. Parameters are chosen as b1~1,b2~1:1,c~{1,V3~5,V4~4 with (a),(c) a1~0:45,a2~0:4,W1~0:02,
W2~0:015 and (b),(d) a1~0:4,a2~0:45,W1~0:02,W2~0:01.

doi:10.1371/journal.pone.0115935.g002
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When N is chosen as other values, such as N~1 and N~3, the phase switch

and the directional power-flow density can also be found. Here we omit these

discussions for the limit of the length. In the next section, we only focus on the

dynamical behaviors of solutions (6) and (8) with N~2.

Discussion and Analysis

Linear stability analysis of analytical solutions

In order to discuss the linear stability of analytical solutions (6) and (8) of Eq. (1),

we consider a perturbed solution [28] u(z,x)~fu0(x)zE½R(x)zI(x)� exp (isz)g
exp (ilz), where E is an infinitesimal amplitude, u0(x) is a respective eigenmode

[analytical solution of Eq. (1)], R(x) and I(x) are the real and imaginary parts of

perturbation eigenfunctions, which may grow upon propagation with the

perturbation growth rate s. It is obvious that the perturbed solution becomes

linearly unstable if there exist nonzero imaginary parts of s, otherwise solution is

stable.

Substituting the perturbed solution into Eq. (1) and linearizing it around the

unperturbed one (the first-order term of E), we arrive at the eigenvalue problem

Lz 0

0 L{

� �
R

I

� �
~s

I

R

� �
, ð9Þ

where s is an eigenvalue, R and I are eigenfunctions with Hermitian operators

L+~{
PN

n~1
bnL

2
xn{m+cu0(x)2{n+c2mz1u0(x)2m{(VziW)zl with

mz~3,m{~1 and nz~2mz1,n{~1.

In the following, we discuss the whole eigenvalue spectra of the above problem

(9). In order to perform the numerical computation, here we have restricted

b1~1,b2~1:1,V3~5,V4~4 with a1~0:45,a2~0:4 in solution (6) and

a1~0:4,a2~0:45 in solution (8) with N~2. We discuss the linear stability

analysis of solutions (6) and (8) in the self-focusing and self-defocusing cubic and

power-law nonlinearities.

Fig. 3(a) presents stable and unstable regions of some order parameters m for

the self-defocusing cubic (DC) and self-focusing power-law (FP) nonlinearities in

2D case when other parameters are chosen as b1~1,b2~1:1,a1~0:45,a2~0:4,

V3~5,W2~0:015,c~{1,c2mz1~0:7. For a certain m, if other parameters are

fixed, there exists a threshold value of W1, above which analytical solution

becomes unstable and below which analytical solution evolves stably. From

Fig. 3(a), the threshold value of W1 decreases at first, next adds to a maximum

when m~4, then attenuates again, and finally increases to a certain value when

m~13. For m~2, the threshold value of W1 is close to 0.0234. For m~3, it is

W1*0:021, and for m~4, W1*0:0297. For m~8, W1*0:0231. After mw8 the

threshold value of W1 increases, and reaches to a fixed value (W1*0:0245) after

m~13.
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For other nonlinearities such as the self-focusing cubic (FC) and self-focusing

power-law (FP) nonlinearities, the self-focusing cubic (FC) and self-defocusing

power-law (DP) nonlinearities and the self-defocusing cubic (DC) and self-

defocusing power-law (DP) nonlinearities, the eigenvalue s of solution (6) exists

many imaginary parts shown in Fig. 3(b)-3(d), and thus solution (6) is always

unstable in these nonlinear media.

The linear stability analysis of solution (8) has the similar result with that of

solution (6). In the FC and FP, the FC and DP, and the DC and DP nonlinear

media, the eigenvalue s of solution (8) appears many imaginary parts, and thus

solution (8) is also linearly unstable. In the DC and FP nonlinear medium, if all

other parameters are fixed, solution (8) is linearly stable only in the case when the

values of W1 and W2 are chosen below their threshold values. Table 1 lists the

thresholds of W1 and W2 of solution (8) for b1~1,b2~1:1,a1~0:4,a2~0:45,

V4~4,c~{1,c2mz1~0:7 in 2D case with N~2.

Table 1 indicates that the values of W1 and W2 decrease quickly with the

increase of the order parameter m. Different from the case in Fig. 3(a), the values

Fig. 3. All pictures are the cases of N~2. (a) Stable and unstable regions of solution (6) with some order
parameters m for the DC and FP nonlinearities. Eigenvalues of solution (6) for (b) the FC and FP
nonlinearities, (c) the FC and DP nonlinearities and (d) the DC and DP nonlinearities. Parameters are chosen
as b1~1,b2~1:1,a1~0:45,a2~0:4,V3~5,W2~0:015 with (a) c~{1,c2mz1~0:7, (b)-(d) W1~0:0297,m~4.

doi:10.1371/journal.pone.0115935.g003
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of W1 and W2 always decrease in Table 1. The gain (loss) related to the values of

W1 and W2 are fairly small compared with the bigger value of V4, otherwise, all

analytical solutions finally result in instability.

Numerical calculation for the stability of analytical solutions

The linear stability analysis gives the stable regions of analytical solutions in

different 2D extended PT -symmetric potentials. However, the analytical

solutions are not exactly satisfied in real situations, thus it is important to discuss

the stability of solutions with respect to finite perturbations. In the following, we

further discuss the stability of these solutions against a perturbation of 5% white

noise by the direct numerical simulation (a split-step Fourier beam technique).

The stable and unstable 2D spatial soliton solution (6) in the 2D extended PT -

symmetric potential (5) are presented in Figs. 4 and 5, respectively. From Fig. 4,

2D spatial soliton solution (6) with m~2,3,5 stably propagate over tens of

diffraction lengths in the DC and FP nonlinear medium, and do not yield any

visible instability except for some small oscillations. We can find a good

agreement with results from the linear stability analysis for analytical solution (6).

This indicates that the PT complex potential is strong enough to inhibit the

collapse of spatial soliton solutions caused by diffraction and DC and FP

nonlinearities. From Fig. 4(b), when m~2, the white noise only influences the

background of soliton and produces some small oscillations around the soliton.

When m~3 and 5, the white noise brings some small oscillations on the top part

of soliton shown in Fig. 4(c) and 4(d).

In other nonlinear media, solution (6) is unstable in the 2D extended PT -

symmetric potential (5). As two examples, Fig. 5 displays this kind of instability.

For the DC and DP nonlinearities and the FC and DP nonlinearities, these

solitons can not maintain their original shapes. Along the propagation distance,

these solitons collapse, and finally decay into noise. With the increase of nonlinear

order parameter m, the instability of solution (6) adds. Compared Fig. 5(a) and

5(c) with Fig. 5(b) and 5(d), solution (6) with m~3 are more unstable than that

with m~2.

Spatial soliton solution (8) also exhibits stable and unstable propagations in

different nonlinear media. In the DC and FP nonlinear medium, solution (8) with

m~2,3,5 can stably propagate over tens of diffraction lengths. The influence of

Table 1. The thresholds of W1 and W2 for solution (7).

m W1 W2

2 0.0031 0.001

3 0.003 0.001

4 0.0022 0.001

5 0.00011 0.00014

6 0.000076 0.00011

doi:10.1371/journal.pone.0115935.t001
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initial 5% white noise is suppressed, and only some small oscillations happen.

Similar to the case shown in Fig. 4, the white noise only exerts an effect on the

background of soliton and generates some small oscillations around the soliton

for m~2 in Fig. 6(b). When m~3 and 5, the white noise only affect the top part

of soliton, and there are some small oscillations on the top part of soliton shown

in Fig. 6(c) and 6(d). Compared Fig. 4(a) and 4(b) with Fig. 6(a) and 6(b),

solution (6) is more stable than solution (8) for the case of m~2 because white

noise produce more small oscillations in Fig. 4(a) and 4(b) than that in Fig. 6(a)

and 6(b).

Some examples of unstable spatial soliton solution (8) are presented in Fig. 7.

In the DC and DP nonlinear medium and the FC and FP nonlinear medium,

spatial solitons are broken down propagating after several diffraction lengths, and

their original shapes can not be preserved, especially to the case of large nonlinear

order m. When m~2 in Fig. 7(a) and 7(c), spatial solitons are distorted, then

spread to the background, and next decay into noise. When m~3 in Fig. 7(b) and

7(d), spatial solitons almost become noise. Therefore, solution (8) with m~3 are

more unstable than that with m~2, and this instability also adds with the increase

of nonlinear order parameter m.

Fig. 4. Initial value of solution (6) with m~2 in the 2D extended PT -symmetric potential (5) at z~0 in (a). The numerical reruns of solution (6) with (b)
m~2, (c) m~3 and (d) m~5 for DC and FP nonlinearities at z~70. A 5% white noise are added to the initial values. All parameters are chosen as the same
as those in Fig. 3 except for W1~0:0015,W2~0:001.

doi:10.1371/journal.pone.0115935.g004

Fig. 5. Unstable 2D spatial soliton solution (6) in the 2D extended PT -symmetric potential (5). The numerical reruns of solution (6) with (a),(c) m~2,
(b),(d) m~3 for (a), (b) DC and DP nonlinearities with c~{1,c2mz1~{0:7 and (c), (d) FC and DP nonlinearities with c~1,c2mz1~{0:7 at z~70. All other
parameters are chosen as the same as those in Fig. 4.

doi:10.1371/journal.pone.0115935.g005
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Conclusions

We analytically obtain two families of Gaussian-type soliton solutions of the

(n+1)-dimensional Schrödinger equation with cubic and power-law nonlinearities

in PT -symmetric potentials. As an example, we discuss some dynamical

behaviors of two dimensional soliton solutions. Their phase switches, powers and

transverse power-flow densities are discussed. Results imply that the power flow

and exchange from the gain toward the loss regions in the PT cell. Moreover, the

linear stability analysis and the direct numerical simulation are carried out, which

indicates that spatial Gaussian-type soliton solutions are stable below some

thresholds for the imaginary part of PT -symmetric potentials in the defocusing

cubic and focusing power-law nonlinear medium, while they are always unstable

for all parameters in other media. These results will enrich the variety of higher

dimensional structures in PT -symmetric potential in the field of mathematical

physics, and may also have potential values to the application of synthetic PT -

symmetric systems in nonlinear optics.

Fig. 6. Initial value of solution (8) with m~2 in the 2D extended PT -symmetric potential (7) at z~0 in (a). The numerical reruns of solution (8) with (b)
m~2, (c) m~3 and (d) m~5 for DC and FP nonlinearities at z~70. A 5% white noise are added to the initial values. All parameters are chosen as the same
as those in Fig. 4.

doi:10.1371/journal.pone.0115935.g006

Fig. 7. Unstable 2D spatial soliton solution (8) in the 2D extended PT -symmetric potential (7). The numerical reruns of solution (8) with (a),(c) m~2,
(b),(d) m~3 for (a), (b) DC and DP nonlinearities with c~{1,c2mz1~{0:7 and (c), (d) FC and FP nonlinearities with c~1,c2mz1~0:7 at z~30. All other
parameters are chosen as the same as those in Fig. 4.

doi:10.1371/journal.pone.0115935.g007
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