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In the lungs, macrophages constitute the first line of defense against pathogens

and foreign bodies and play a fundamental role in maintaining tissue

homeostasis. Activated macrophages show altered immunometabolism and

metabolic changes governing immune effector mechanisms, such as cytokine

secretion characterizing their classic (M1) or alternative (M2) activation.

Lipopolysaccharide (LPS)-stimulated macrophages demonstrate enhanced

glycolysis, blocked succinate dehydrogenase (SDH), and increased secretion

of interleukin-1 beta (IL-1b) and tumor necrosis factor-alpha (TNF-a).
Glycolysis suppression using 2 deoxyglucose in LPS-stimulated macrophages

inhibits IL-1b secretion, but not TNF-a, indicatingmetabolic pathway specificity

that determines cytokine production. In contrast to LPS, the nature of the

immunometabolic responses induced by non-organic particles, such as silica,

in macrophages, its contribution to cytokine specification, and disease

pathogenesis are not well understood. Silica-stimulated macrophages

activate pattern recognition receptors (PRRs) and NLRP3 inflammasome and

release IL-1b, TNF-a, and interferons, which are the key mediators of silicosis

pathogenesis. In contrast to bacteria, silica particles cannot be degraded, and

the persistent macrophage activation results in an increased NADPH oxidase

(Phox) activation and mitochondrial reactive oxygen species (ROS) production,

ultimately leading to macrophage death and release of silica particles that

perpetuate inflammation. In this manuscript, we reviewed the effects of silica

on macrophage mitochondrial respiration and central carbon metabolism

determining cytokine specification responsible for the sustained

inflammatory responses in the lungs.

KEYWORDS

macrophage metabolic adaptation, macrophage immunometabolism, M1
macrophages, respirable crystalline silica, complex II, electron transport
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1 Introduction

In 1927, Otto Warburg discovered the so-called Warburg

effect, which portrays the ability of tumor cells to reprogram their

metabolism to survive through the upregulation of glycolysis and

suppression of oxidative phosphorylation (OXPHOS) in the

presence of abundant oxygen (1). Since then, our understanding

of immunometabolism, the metabolic signatures of immune cells,

and the adaptation of metabolic pathways governing the

molecular transcriptional and post-transcriptional mechanisms

of immune cells in response to stimuli have expanded

tremendously (2–5). In the lungs, macrophages constitute the

frontline cells of innate immunity against pathogens and foreign

bodies and play a key role in the maintenance of tissue

homeostasis, resolution of inflammation, and tissue

regeneration/repair after injury (6, 7). Thus, the stimuli released

in the surrounding microenvironment can determine the profile

of macrophages, switching from the aerobic OXPHOS-driven to

the anaerobic glycolysis-driven phenotype and vice-versa. These

different metabolic profiles are associated with the release of

distinct and diverse mediators (pro- and anti-inflammatory

cytokines) whose specification is highly regulated by the cellular

metabolic signatures.

In this review, the authors described how an immune

response of macrophages, particularly alveolar macrophages,

undergoes their metabolic adaptation leading to functional

polarization. To accomplish this goal, we described the

difference between the mediators released by macrophages in

response to lipopolysaccharide (LPS) versus those observed

following the activation of macrophages by airborne

crystalline silica.
2 Activation of macrophages

Macrophages are very plastic cells, capable of changing and

adapting their phenotype based on the surrounding

environmental stimuli and according to their functional

requirement (8, 9). During the early stages of the immune

response, macrophages recognize and ingest pathogens and

foreign bodies, undergoing activation (10). During the later

stages, activated macrophages are responsible for the

resolution of inflammation, fibroproliferative response

regulation, wound healing, and tissue repair (11–14). Based on

the interaction with specific stimuli and the following gene

expression, transcriptional and post-transcriptional regulation,

and mediator secretion, two main activated profiles of

macrophages have been recognized: classically activated pro-

inflammatory M1 macrophages (15–19) and alternatively

activated anti-inflammatory M2 macrophages (11, 17–22), as

shown in Figure 1.

Generally, M1 pro-inflammatory macrophages are triggered

by the detection of danger signals through the intracellular
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pattern-recognition receptors (PRR) and toll-like receptors

(TLRs). Specifically, the TLR-ligands (e.g. LPS) and T helper-1

lymphocytes-secreted cytokines, such as interferon-g (IFN-g)
and tumor necrosis factor-alpha (TNF-a), can activate

macrophages to sustain the immune response and confer a

higher host defense.

The effect of LPS on macrophages promotes the activation of

transcription factors, such as nuclear factor kappa-light-chain

enhancer of B-cell (NF-kB) (22–26), signal transducer and

activator of transcription molecules (STAT1/3) (23–25),

hypoxia-induced factor (HIF)-1a (27–30), and activator

protein (AP)-1 (25). This transcriptional activation leads to

the secretion of high levels of pro-inflammatory cytokines,

such as TNF-a, interleukin (IL)-1b, IL-6, IL-12, and IL-23, as

well as reactive oxygen species (ROS) and inducible nitric oxide

synthase (iNOS) (31, 32), which are characteristic of the M1

polarization and are necessary to sustain the inflammatory

reaction and recruit other immune cells to initiate the adaptive

immune response. Nevertheless, these cytokines are also

cytotoxic; hence, their regulation is extremely crucial to avoid

further tissue damage. Specifically LPS-activated macrophages

also synthesize eicosanoids, such as prostaglandin E2 (PGE2),

which are bioactive lipids capable of autoregulate the

inflammation, through downregulation of pro-inflammatory

cytokines (i.e., TNF-a) and upregulation of anti-inflammatory

cytokines (i.e., IL-10).

M2 anti-inflammatory macrophages differentiate in

response to innate or adaptive signals. IL-4 (19, 33, 34) or IL-

13 (19, 33, 34), released by mast cells, basophils, and T helper-2

lymphocytes, promotes macrophages differentiation into cells

involved in inflammation resolution, tissue repair and

remodeling, wound healing, immune suppression, and pro-

tumoral activity (9, 19, 34–36). Typical M2 activated

macrophages surface markers are the mannose receptor

(CD206), the decoy IL-1R (receptor), and IL-1R antagonist,

while released biomarkers are anti-inflammatory and pro-

fibrotic cytokines, such as the transforming growth factor-beta

(TGF-b) and insulin-like growth factor 1 (IGF-1) (9, 35, 37, 38),

and pro-angiogenetic factors, such as vascular endothelial

growth factor A (VEGF-A), endothelial growth factor (EGF),

platelet-derived growth factor (PDGF), and IL-8 (35, 39, 40).

The predominant molecular pathways involved in the cytokines

specification of M2 macrophages include STAT, GATA binding

protein 3 (GATA3), suppressor of cytokine signaling 1 (SOCS1),

peroxisome proliferator-activated receptor-gamma (PPARg)
(26, 34, 37, 41) (Figure 1).

Within the M2-activated macrophages, there are other

populations of cells, namely regulatory macrophages, which

can be activated by various factors. Specifically, M2a

macrophages are activated by IL4/13 leading to increased

expression of IL-10, TGF-b, CCL17, CCL18, and CCL22. M2b

macrophages are promoted by immune complexes/TLR-ligands/

IL1b and are characterized by increased secretion of both pro-
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https://doi.org/10.3389/fimmu.2022.936167
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Marrocco and Ortiz 10.3389/fimmu.2022.936167
FIGURE 1

Schematic of M1 and M2 macrophage activation. M1 pro-inflammatory macrophages are activated by TLRs ligands, such as LPS, or Th1
cytokines, such as TNF-a and IFN-g. After activation, several transcription factors are involved, such as NF-kB, STAT1, STAT5, IRF3, and IRF5,
leading to the release of pro-inflammatory cytokines and chemoxines, including TNF-a, IL-1a, IL-1b, IL-6, IL-12, CXCL9, and CXCL10, which
exert microbicidal and anti-tumoral functions. M2 anti-inflammatory macrophages are polarized by Th2 cytokines, such as IL-4 and IL-13, which
activate transcription factors, including STAT3, STAT6, IRF4, KLF4, JMJD3, PPARd, PPARg. As result the M2 activated macrophages release anti-
inflammatory cytokines and chemoxines including IL-10, TGF-b, CCL17, CCL18, and CCL22, which promote wound healing, tissue repair and
regeneration, immune-suppression and tumor grow and diffusion.
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and anti-inflammatory cytokines, such as TNF-a, IL-1b, IL-6,
and IL-10. M2c macrophages are triggered by glucocorticoids/

IL10/TGFb and subsequently release IL-10, TGF-b, CCL16, and
CCL18. In addition, in the tumor microenvironment there are

M2d macrophages, which are activated by TLR antagonists, and

secrete IL-10 and vascular endothelial growth factors (VEGF),

which are involved in angiogenesis and tumor progression (42–

45). These regulatory cells can produce both pro- and anti-

inflammatory cytokines, through the activation of transcription

factors, such as STAT6, interferon regulatory factor 4 (IRF4),

NF-kB, and PPAR-g. The main purpose of these macrophages is

to regulate the immune and inflammatory response, wound

healing, angiogenesis, and tumor growth and diffusion (9,

46–48).
3 Metabolic features of LPS-
activated macrophages

As shown in Figure 2A, the main metabolic features of LPS-

activated macrophages are represented by enhanced flux

through glycolysis, pentose phosphate pathway (PPP), and

fatty acid synthesis (FAS) at the expense of the mitochondria

respiration and Krebs cycle, where the impairment of isocitrate

dehydrogenase (IDH) and succinate dehydrogenase (SDH)

causes the intracellular accumulation of citrate and succinate

(49–57). Altogether, these metabolic alterations drive the pro-

inflammatory status and the transcription and secretion of pro-

inflammatory mediators, such as IL-1b, TNF-a, and IFNs. In

contrast, M2 anti-inflammatory macrophages are metabolically

sustained by mitochondrial respiration, while glycolysis and PPP

are decreased, and upregulated fatty acid oxidation (FAO),

glutaminolysis, and tryptophan catabolism with the release of

kynurenine and synthesis of polyamines (49, 58).
3.1 Glycolysis and the pentose phosphate
pathway (PPP)

Although upregulated glycolysis in pro-inflammatory

macrophages was recognized early during the 1900s (1, 59),

the link between this metabolic reprogramming process, the

production and release of inflammatory cytokines, and

macrophage polarization has only been recently recognized

(3, 5).

A crucial role of LPS-activated macrophages in the metabolic

and functional regulation of immune response is mediated

by HIF-1a (27, 29, 30, 60–62). HIF-1a regulates the main

glycolytic alterations, such as overexpression of glucose

transporter 1 (GLUT1), which facilitates rapid and increased

uptake of glucose (54, 63, 64), and overactivation of

pyruvate dehydrogenase kinase isozyme 1 (PDK1) and lactate
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dehydrogenase (LDH), which prevent pyruvate from

entering into the Krebs cycle in favor to its conversion into

lactate in a reaction coupled with the oxidation of nicotinamide

adenine dinucleotide (NADH) into NAD+ (46, 65–67)

(Figure 2A). The latter redox reaction is particularly relevant

for the enhancement of the glycolytic flux, occurring in

cooperation with the overexpression of other key enzymes,

such as 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase

3 (PFKFB-3), pyruvate kinase M2 isoform (PKM2), and

monocarboxylate transporter 4 (MCT4), which are also

regulated by HIF-1a (68–70).

Interestingly, evidence has shown a correlation between the

pro-glycolytic metabolic alteration and inflammasome

activation (52, 70–73). LPS treatment of peritoneal

macrophages induces mTORC upregulation, associated with

hyperexpression of glycolytic enzymes, such as hexokinase

(HK)-1, and simultaneous overactivation of the NLR family

pyrin domain containing 3 (NLRP3) inflammasome (70–72, 74,

75). Moreover, inhibition of glycolysis with 2-deoxyglucose

(2DG) in LPS-activated bone marrow-derived macrophages

(BMDM) and an in vivo model of murine acute lung injury

has suppressed the secretion of the activated NLRP3

inflammasome product, IL-1b, while it did not affect TNF-a
or IL-6 secretion (48, 52, 70, 73). In an association with the

glycolytic pathway, the upregulation of PPP in pro-

inflammatory macrophages provides the reduced NADPH

(nicotinamide adenine dinucleotide phosphate) from NADP+,

which is required as a cofactor for LPS-activated iNOS to

catabolize arginine into nitric oxide (NO) and L-citrulline (73,

76, 77), but it also enhances the fatty acid synthesis, required for

prostaglandin production (24, 48, 49, 73, 78, 79).
3.2 Krebs cycle

Metabolomic analysis of LPS-activated macrophages has

revealed two important breakpoints in the Krebs cycle,

represented by the downregulation of IDH, which converts the

citrate isomer isocitrate into a-ketoglutarate, and SDH, which

converts succinate into fumarate (62, 73, 80, 81). The direct

consequence of these changes is the intracellular accumulation

of substrates for both enzymes, citrate and succinate (62, 80–83).

Citrate is necessary for the production of three important

pro-inflammatory mediators: NO and ROS through the

reduction of NADP+ to NADPH and PGE2 due to the

upregulation of mitochondria citrate carrier (mCIC) (80, 84).

In LPS-activated macrophages, the mCIC overexpression allows

for the translocation of citrate from mitochondria into the

cytosol, where it is cleaved to acetyl-CoA and oxaloacetate by

the upregulated enzyme adenine triphosphate (ATP) -citrate

lyase (ACLY). While in the cytosol, acetyl-CoA represents the

substrate for FAS and, in turn, phospholipids and arachidonic
frontiersin.org
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acid, which are the precursors of PGE2 (80, 82, 85–

88) (Figure 2A).

More recently, investigations on the citrate-derived FAS-

precursors have revealed that in LPS-activated macrophages,

malonyl-CoA induces the malonylation of several proteins,

including glycolytic enzyme glyceraldehyde-3-phosphate

dehydrogenase (GAPDH). In resting macrophages, GAPDH

sequesters TNF-a mRNA, blocking its translation, while the

LPS-induced malonylation of GAPDH facilitates the release of

TNF-a mRNA for transcription and subsequent protein

secretion (62, 89).

Additionally, the accumulation of citrate in mitochondria of

M1 macrophages also leads to the upregulation of enzyme
Frontiers in Immunology 05
aconitate decarboxylase 1 (ACOD1), also known as immune-

responsive gene 1 protein (Irg1), that converts aconitate (derived

from citrate) to itaconic acid, leading to the accumulation of the

latter (81, 90–93) (Figure 2A).

In addition to antimicrobial effects against gram-positive

and gram-negative bacteria, such as Legionella pneumophila,

Mycobacterium tuberculosis, and Salmonella enterica (94–96),

itaconate plays a crucial role in the immunomodulation and

suppression of inflammatory response by LPS-activated

macrophages due to the stabilization of anti-inflammatory

transcription factor nuclear factor erythroid 2-related factor 2

(NRF2) via the Kelch-like ECH-associated protein 1 (KEAP1)

degradation. The subsequent NRF2 nuclear translocation leads
BA

FIGURE 2

Schematic of the metabolic reprogramming of M1 macrophages following LPS (A) or silica (B) exposure. Upon LPS or silica activation, M1
macrophages show enhancement of aerobic glycolysis, glucose uptake, and conversion into lactate; increased flux through the PPP, NADPH
generation, and production of fatty acids, NO, and ROS (wide red arrows). LPS induces two breakpoints in the Krebs cycle (IDH and SDH),
leading to the mitochondrial accumulation of citrate and succinate. Accumulation of citrate increases the synthesis of itaconate, and citrate
translocation into the cytosol, via mCIC, resulting in upregulation of synthesis of fatty acids, PGE2, NO, ROS, and transcription and secretion of
TNF-a (wide red arrows). The dysfunction of SDH (Complex II of ETC), results in the accumulation of succinate, also due to the glutamine-
dependent anaplerosis via the GABA shunt, and reversion of the electron transport (RET) toward complex I, which rises the generation of ROS,
stabilization of HIF-1a, activation of the NLRP3 inflammasome and release of pro-inflammatory cytokine IL-1b. (LPS-specific activated pathways
are represented with green arrows.) In contrast to LPS, silica also modulates the Krebs cycle, but the intracellular level of all key Krebs cycle
intermediates, including succinate and citrate, and amino acids is measured below baseline, probably as a result of high demand and
consumption (red arrows). In addition, the enhanced aerobic glycolysis occurs at the expense of mitochondrial respiration, which is sustained
only by an upregulated complex II activity, while complex I is impaired, leading to the generation of an excessive amount of ROS. The latter in
addition to the intrinsic toxicity of silica particles drive the stabilization of HIF-1a, activation of NRLP3 inflammasome, and release of IL-1b.
Similar to LPS-activated macrophages, hyperproduction of malonyl-CoA is necessary for the synthesis of fatty acids, PGE2, NO, ROS, and
transcription and secretion of TNF-a (wide red arrows). (Silica-specific activated pathways are represented with red arrows.).
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to the reduction of ROS production, inflammasome activation,

and pro-inflammatory cytokines secretion, such as IL-1b and IL-

6 (67, 81, 92, 93, 97–102).

Additionally, itaconic acid inhibits SDH, causing succinate

accumulation (46, 50, 52, 53, 62, 82, 83, 101, 103, 104)

(Figure 2A). SDH has the unique property of being an enzyme

shared between the Krebs cycle and the mitochondrial electron

transport chain (ETC), where it represents respiratory complex

II. For this particular feature, SDH catalyzes the oxidation of

succinate to fumarate by coupling it with the reduction of

ubiquinone (UQ) to ubiquinol (UQH2) and FAD (flavin

adenine dinucleotide) to FADH2. These reactions are

fundamental in the ATP generation process occurring in the

ETC complex V or ATPase enzyme. In LPS-activated

macrophages, the increased concentration of succinate

(complex II substrate) leads to the over-reduction of

ubiquinone to ubiquinol; thus, the electrons are transferred

back to respiratory complex I in a process known as reverse

electron transport (RET) (105–107). In turn, RET is responsible

for significant ROS generation that, along with the succinate

cytosol accumulation, drives the stabilization of HIF-1a by

inhibiting prolyl hydroxylase domain (PHD) activity (46, 61,

66, 86, 108–112), activation of the NLRP3 inflammasome, and

release of mature IL-1b (97, 100, 113–115) (Figure 2A).

Subsequently, LPS treatment promotes the overexpression of

succinate receptor SUCNR1/GPR91, helping sustain the

inflammation and the IL-1b secretion by sensing succinate in

the extracellular space (104).

Several mechanisms explain the carbon flow through the

dysfunctional Krebs cycle of LPS-stimulated macrophages.

These predominantly involve the metabolism of the amino

acids, which can contribute to sustaining the amount of a-
ketoglutarate, succinate, and fumarate, even in the presence of

enzyme inhibition (46, 116). In M1 macrophages, the

upregulation of aspartate-arginosuccinate shunt (AASS), which

is primarily involved in the iNOS expression and antimicrobial

NO and IL-6 production, also represents the source of fumarate

and, consequently, citrate after SDH inhibition by anaplerosis

(117). Similarly, the glutamine-dependent anaplerosis via the

gamma-aminobutyric acid (GABA) shunt represents an

independent source of succinate, in which a-ketoglutarate or

glutamine is converted into glutamate, contributing to the

increased concentration of succinate in LPS-activated

macrophages (118, 119). This is also supported by the

increased expression of glutamine transporter Slc3a2 in LPS-

activated macrophages (52, 120).
3.3 Electron transport chain

The aforementioned overproduction of NO from arginine in

LPS-activated macrophages plays a crucial role in the
Frontiers in Immunology 06
dysfunctional mitochondrial respiration: nitrosylation of the

iron-sulfur-containing ETC complexes I, II, and IV inhibits

mitochondrial respiration (121–123), uncouples the electron

transport causing leakage of electrons, decreasing ATP

production, and promoting ROS generation mainly by the

RET at complex I (51, 115, 122).

Complex I and II are highly involved in macrophageal

immune response against bacteria. Recent investigation on the

role of ECSIT protein (evolutionarily conserved signaling

intermediate in Toll pathways) has revealed that besides being

a key regulator in complex I assembly, upon bacteria

phagocytosis, ECSIT initiates the recruitment of mitochondria

into the phagosome to produce and secrete ROS and other

antibacterial and pro-inflammatory mediators (IL-6, TNF-a,
and IL-1b) into the phagosomes (124).

Similarly, Garaude et al. have reported that after the

engulfment of live bacteria, BMDMs recruit mitochondria into

the phagosome to produce toxic products, such as ROS, fumarate,

itaconic acid, and others, that are secreted into the phagosomes.

Such metabolically adapted mitochondria exhibited an alteration

in the assembly of ETC supercomplexes, consisting of reduced

complex I activity and enhanced complex II abundance and

activity (125, 126). Nonetheless, the same phenomenon has not

been present in LPS-activated BMDM.

In summary, LPS-activated macrophages are metabolically

sustained by increased glucose uptake, glycolysis rate, and

FAS supplying the source of energy in the absence of an

efficient mitochondria respiration due to ETC and oxidative

phosphorylation suppression and impaired Krebs cycle. These

metabolic adaptations of macrophages govern the immune

response, bacterial killing, and host defense through the release

of toxic and pro-inflammatory mediators, such as ROS, NO, IL-6,

TNF-a, and IL-1b.
4 Metabolic reprogramming of
macrophages in silica-induced
pulmonary fibrosis

Airborne crystalline silica, also known as silicon dioxide

(SiO2), is one of the most abundant minerals on Earth. More

than 2 million workers in the United States and more than 230

million workers worldwide are exposed to crystalline silica

annually, predominantly due to activities, such as mining and

construction (127, 128). The health effects of silica inhalation are

mainly characterized by chronic lung inflammation and

progressive fibrosis. Therefore, silicosis is considered

progressive pneumoconiosis without any specific and effective

available therapy and is associated with an increased risk of

tuberculosis, lung cancer, chronic obstructive pulmonary

disease, kidney disease, and autoimmune disease, even after

ceased silica exposure (129–132).
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The understanding of silicosis pathogenesis is still

incomplete, and almost no data exist in humans (133, 134).

Previous studies have shown that alveolar macrophages are the

first line of defense against crystalline silica and play a crucial

role in initiating lung inflammation (129, 135–137).

Investigation on alveolar macrophages from humans exposed

to asbestos or silica has shown a spontaneous release of IL-1b
from activated cells (62, 138), which was subsequently related to

NLRP3 inflammasome activation (138–141).

The initial response to crystalline silica in the lungs is

mediated by innate immunity. Phagocytosis of silica particles

by macrophages into phagosomes triggers macrophageal

activation at the cellular and molecular level with the

development of inflammatory response through oxidative

stress, the release of ROS, and activation of PRRs and NLRP3

inflammasome, followed by transcription and secretion of

inflammatory cytokines, such as IL-1b, TNFa, and IFNs (133,

135, 136, 139, 141–145). Since silica particles cannot be

degraded, the persistent macrophageal activation results in

increased NADPH oxidase (Phox) activity and ROS

production, with eventual cell death (apoptosis/necrosis) and

release of silica particles perpetuating and amplifying

inflammation (62, 129, 146–152).

However, it is important to mention that lung macrophages

polarization is a dynamic process depending on the stage of

silicosis and the ontogenesis of macrophages (153–155). Indeed,

in an early acute and chronic inflammatory stage, the resident

and recruited alveolar macrophages are predominant and

exhibit mostly an M1 pro-inflammatory phenotype (increased

glycolysis rate and impaired mitochondrial respiration and

Krebs cycle enzymes) accompanied by high expression of

inflammatory cytokines, such as TNF-a, IL-1b, IL-6, ROS, and
iNOS, which are necessary to eliminate the pathogen.

Subsequently, in the late fibrosis stage, the resident interstitial

macrophages are mostly involved in tissue repair, remodeling,

and fibrogenesis, and they are characterized by an M2 anti-

inflammatory phenotype (even when stimulated with LPS, they

maintain stable or minimally altered glycolysis and Krebs cycle

enzymes and increased fatty acid oxidation even after LPS

stimulation) accompanied by high expression of anti-

inflammatory cytokines, such as IL-10, PGE2, and TGF-b
(153–158).

However, while there are studies explaining the many

different aspects of mitochondrial reprogramming induced by

LPS, very little data are available regarding the correlation

between metabolic features and cytokines secretion from M1

macrophages during the early acute response to crystalline silica.
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4.1 Immunometabolic response of
macrophages to crystalline silica

4.1.1 Glycolysis
Recent in vivo and in vitro studies have shown that in

response to silica, without LPS-priming, lung macrophages

could adapt their metabolism, raising the flux through aerobic

glycolysis, which becomes a major source of ATP (62, 159–162).

Similar to the LPS-activated macrophages, the levels of released

lactate and glycolytic enzymes expression, including HK2,

PKM2, PDK1, and LDH, have been all enhanced in

macrophages of silicotic rodents lungs (151, 161–163) and

murine macrophages cell lines (62) (Figure 2B). However, the

increased release of lactate has been further enhanced in vitro by

LPS-priming of macrophages before silica exposure, reflecting

the surge of LDH release and cell necrosis in these experimental

conditions (62, 164, 165).

4.1.2 Krebs cycle
While data on Krebs cycle alteration following silica

exposure in macrophages in vivo have been not available,

recent reports have shown clear differences between the LPS-

and silica-activated RAW 264.7 macrophages in the

functionality of the Krebs cycle, as represented in Figure 2B.

In contrast to the LPS-activated macrophages, which

recapitulate all above-mentioned features, including an

increased level of itaconate and succinate correlated to the

impairments of IDH and SDH enzymes (Figure 2A), silica-

treated RAW 264.7 macrophages exhibit an overall intracellular

depletion of Krebs cycle metabolites, including itaconate, a-
ketoglutarate, succinate, fumarate, and malate, and undetectable

citrate, accompanied by the depletion of amino acids, such as

glutamine and glutamate, in the absence of the GABA shunt

activation (62) (Figure 2B).

4.1.3 Electron transport chain
The assessment of mitochondrial respiration in LPS- and

silica-activated RAW 264.7 macrophages has also revealed

profound differences. While LPS has not affected complex I

activity but has only slightly enhanced complex II activity (125),

crystalline silica alone has been capable of enhancing the oxygen

flux through complex II, even after complex I inhibition with

rotenone, which proves that RET has not been the reason. More

importantly, the overactivation of complex II has been linked to

the decreased activity of complex I, most probably due to ECSIT

downregulation and a surge in ROS production (62) (Figure 2B).

The crucial role of complex II in macrophageal immune
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response and survival has been further elucidated by using the

IC-21 mouse macrophage cell line. IC-21 macrophages exposed

to crystalline silica in the absence of LPS-priming have

experienced a high cell death, which is correlated with the

downregulation of complex II activity, and the increased

oxygen flux and mROS generation through complex II when

stimulated with CII substrate succinate (62). Similar to

macrophages, in vitro studies on human bronchial epithelial

(HBE) cells have indicated that crystalline silica alone also

determines a mitochondrial membrane depolarization

depending on NLRP3 phosphorylation and activation (166).

4.1.4 Correlation between metabolic alteration
and cytokine secretion

While it is evident that silica-activated macrophages secrete

IL-1b, TNF-a, IFNs, IL-6, and ROS to initiate a strong

inflammatory response, the silica-driven metabolic alterations,

their related transcription, and translation effects are still unclear.

Similar to LPS, silica-activated macrophages exhibit a

stabilization of HIF-1a and HIF-1a-mediated activation of

NRLP3 inflammasome, leading to the release of IL-1b.
However, while LPS promotes the stabilization of HIF-1a
through the impairment of the Krebs cycle and accumulation

of succinate, in silica-activated macrophages lacking a high level

of succinate, the excessive amount of ROS and the toxicity of

silica particles sustain the stabilization of HIF-1a and

subsequent NRLP3 inflammasome activation, followed by IL-

1b cleavage and secretion (62) (Figure 2B).

In both LPS- and silica-activated RAW 264.7 macrophages,

the malonylation of GAPDH facilitates the release of TNF-a
mRNA for transcription and secretion (62). Interestingly, the

secretion of TNF- a, which is a key mediator of silicosis, is not a

common feature of silica-activated macrophages. In fact, while

LPS-activated IC-21 and RAW 264.7 macrophages secrete high

levels of TNF-a following NF-kB activation, only RAW 264.7

macrophages maintain the enhanced TNF-a production and

NF-kB activation in response to silica, which is absent in IC-21

macrophages, although both can phagocytize silica particles

(130, 146, 150, 152, 167).

Finally, the decreased intracellular level of itaconate in silica-

activated macrophages correlates with the decreased

transcription and secretion of IFN-b, as opposed to LPS (62).

In summary, respirable crystalline silica activates

macrophages toward a pro-inflammatory phenotype, which

does not exhibit the same metabolic features of classically LPS-

act ivated macrophages . Upon internal izat ion into

phagolysosomes, silica particles regulate the metabolic

adaptation of macrophages toward increased uptake of

glucose, glycolysis, and lactate secretion, while the

mitochondrial respiration becomes sustained only by increased

complex II activity, while complex I activity is reduced. Given
Frontiers in Immunology 08
the role of complex II as a component of both the Krebs cycle

and the ETC, its activity becomes a key regulator of the survival

of macrophages. The hyperactivation of complex II also

modulates the Krebs cycle, where not only succinate and

itaconate but all intermediates and amino acids are decreased,

probably as a result of high demand and consumption. This new

adaptation still provides the source for IL-1b and TNF-a release

while suppressing the release of IFN-b.
5 Conclusions

In the last decade, enormous progress has been made in

understanding the adaptation of metabolic pathways in

macrophages and their effect on phenotype and function.

However, the schematic illustration that the authors described

in this manuscript represents an oversimplification of the

complexity of the highly dynamic, tissue-specific, and

ontogeny-specific immunometabolic response of macrophages.

In the context of M1 macrophages polarization, many

inflammatory signals or pathogens can trigger the pro-

inflammatory phenotype, leading to the secretion of

pro-inflammatory mediators, even if they express different

metabolic signatures. For example, an increased level of succinate

and succinate receptors in M1 macrophages underlies the

development of many inflammatory diseases, including diabetic

retinopathy, diabetic renal disease, hypertension, rheumatoid

arthritis, and metabolic dysfunction (46). However, experimental

data discussed above have shown that silica-induced macrophage

production of pro-inflammatory mediators does not depend on the

succinate intracellular accumulation, which is, in fact, depleted in

RAW 264.7 macrophages (62). Moreover, in the same

environment, alveolar macrophages are polarized toward the pro-

fibrotic (M2) phenotype, with minimal glycolysis, augmented

oxidative phosphorylation, and fatty acid oxidation (153–155,

157, 158).

Despite the complexity, it is fundamental to understand the

intimate connection between immune response and metabolism

and how the aberrant metabolic functions are involved in the

amplification or inhibition of immune responses. Such

understanding can lead to the development of metabolic-

targeting drugs especially important for diseases that are still

untreatable. For example, metformin, an oral antidiabetic

medicine, has already been used to control inflammation

through the inhibition of RET-dependent ROS generation

(149) and induction of adenosine monophosphate (AMP)-

activated protein kinase-dependent fatty acid oxidation (168).

It could be possible that a similar approach, targeting the

overactivated glycolysis and complex II can rewire the

recruited macrophages from a pro-inflammatory toward an

anti-inflammatory phenotype to eventually block or delay the
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progression of chronic inflammation, such as the one observed

during the development of silica-induced pulmonary fibrosis.
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