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The focus of this research is to analyse both human hand motion and force, during eating, with respect to differing food
characteristics and cutlery (including a fork and a spoon). A glove consisting of bend and force sensors has been used to capture
the motion and contact force exerted by fingers during different eating activities. The Pearson correlation coefficient has been
used to show that a significant linear relationship exists between the bending motion of the fingers and the forces exerted during
eating. Analysis of variance (ANOVA) and independent samples t-tests are performed to establish whether the motion and
force exerted by the fingers while eating is influenced by the different food characteristics and cutlery. The middle finger motion
showed the least positive correlation with index fingertip and thumb-tip force, irrespective of the food characteristics and cutlery
used. The ANOVA and t-test results revealed that bending motion of the index finger and thumb varies with respect to differing
food characteristics and the type of cutlery used (fork/spoon), whereas the bending motion of the middle finger remains
unaffected. Additionally, the contact forces exerted by the thumb tip and index fingertip remain unaffected with respect to
differing food types and cutlery used.

1. Introduction

Upper limb disability is one of the major adversities faced by
poststroke patients. The resulting loss of mobility in these
patients reduces their ability to perform normal activities
of daily living (ADL), preventing them from leading a nor-
mal life and hence reducing their quality of life. These
patients are highly dependent on their caregivers (usually a
spouse or friend) who perform most of their basic ADL,
such as eating, bathing, and grooming, which gradually has
a negative impact on the mental and physical state of the
caregiver [1–6].

Eating is one of the fundamental activities of survival for
all living beings. Dysphagia and other eating difficulties are
also common among poststroke patients which can lead to
complications, such as malnutrition, dehydration, suffoca-
tion, and eventually death [7–10]. Over the past decade,
numerous robotic rehabilitation systems have been devel-
oped to assist impaired patients regain their hand functions.
Such robotic systems must have the capability to replicate
human hand function during any ADL. To develop a rehabil-
itation system meant specifically to regain the hand function

during eating, an in-depth knowledge of hand motion during
eating is vital.

Hand motion during eating is highly dexterous and is
subject to the type of food ingested and the type of cutlery
used. Analysing hand motion can be complicated due to its
highly articulate nature. A human hand consists of 27 bones
and 35 muscles, of which 17 are intrinsic muscles (located in
the palm) and 18 are extrinsic muscles (located in the fore-
arm). With roughly 30 degrees of freedom (DOFs), this com-
plex structure can perform intricate tasks, which require
dexterity. During the past few years, hand motion analysis
has gained the attention of the researchers working in the
field of rehabilitation, human-computer interaction (HCI),
and robotics.

Hand motion analysis enables researchers to gather data
such as the force applied by the fingers, different joint angles
of the hand, and velocity, while performing different activi-
ties. Analysing the motion and force of the hand during var-
ious eating activities can help in formulating a model, which
in turn can be useful in developing a rehabilitation robot for
assisted eating. Several studies have been conducted to ana-
lyse the motion of the hand and upper limb while performing
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different daily activities of living. Ju and Liu [11], Gopura
et al. [12], and Tang et al. [13] have successfully analysed
and classified different human hand motions while perform-
ing basic daily activities, such as hair combing and recogniz-
ing multiple hand gestures, using electromyography (EMG).
In EMG analysis, tiny electrodes, when placed on human
skin, detect and record the electrical signals transmitted by
the motor neurons responsible for activating muscle contrac-
tion. Ju and Liu [11] used a framework of multiple sensor
integration of CyberGlove, Finger TPS pressure sensors,
and Trigno wireless EMG sensors to capture hand gestures,
contact forces, and muscle contraction signals from various
hand motions, while performing 10 basic grasping activities,
such as holding and lifting a dumbbell and opening and clos-
ing a pen box, using five fingers.

Cabibihan et al. [14] explored the human patting ges-
ture for analysing the amount of force applied to regions
of the hand and the angular motion of finger joints so as
to incorporate them into a humanoid robot, in order to
imitate this gesture. Similarly, the kinematics and dynamics
of the human arm, during 24 daily activities (such as eating
using a spoon and a fork, drinking with a cup, and washing
the face) were studied by Rosen et al. [15] to develop a 7-
DOF powered exoskeleton for the upper limb. Ah et al.
[16] performed human hand motion analysis while turning
a door knob.

Aprile et al. [17] dedicated an entire study to analyse the
upper limb motion in stroke patients while performing a
drinking task, which included reaching for the glass, bringing
it to the mouth, and putting it back on the table. Adnan et al.
[18] developed a low-cost DataGlove using a flexible bend
sensor to recognize various human finger activities. In addi-
tion, the analytical mathematical model and analysis of vari-
ance (ANOVA) was established to predict the force induced
at the flexible force sensor by the human finger using the low-
cost DataGlove [19].

Some previous work on hand analysis is summarized in
Table 1. Despite many studies on hand motion (Table 1), to
the best of our knowledge, there has not been a study dedi-
cated to the analysis of hand motion while eating different
types of food and using different cutlery. It is important to
consider the food characteristics and the amount of force
exerted by the hand during eating to enhance the develop-
ment of robotic rehabilitation systems for this activity.

Therefore, this paper presents human hand motion anal-
ysis, focusing on the thumb, index finger, and middle finger
during eating. The motion of these three fingers and the force
they exert during eating is studied with respect to the type of
food (liquid, solid) and the cutlery used. An experiment has
been conducted involving five different food types and using
two different types of cutlery (fork and spoon) to study their
effect on hand motion. ANOVA and t-test analysis has been
conducted to study the influence of these factors on the finger
motion and force during eating. The paper is organized as
follows: Section 2 presents the method of experimentation
employed which is subdivided into two subsections: Experi-
mental Setup and Data Acquisition. Section 3 presents the
data analysis and results obtained while eating different types
of food and using different cutlery. Section 4 presents the

discussion of the data analysis results in the previous section,
and lastly, the conclusion is drawn in Section 5.

2. Experimental Method

2.1. Experimental Setup. A prototype glove has been used
to analyse the motion of hand during eating (Figure 1).
The glove for hand has been designed as an instrument
to measure the angle of the index finger, middle finger, and
thumb. The glove is developed with three flexible bend sen-
sors (Spectra Symbol, 4.5 inches) for measuring the angles
of the index finger, middle finger, and thumb (Figure 2).
These bend sensors act as variable resistors which, when
flexed, increase the resistance across the sensor. Force sensors
(FlexiForce™, A201) are attached to the finger tip of the index
and thumb to measure the force exerted by the thumb and
index finger, during eating process, since only the index fin-
ger and thumb are involved in holding the spoon/fork during
any eating activity.

The data from the glove is recorded using MATLAB 2015
through serial communication with Arduino. (Figure 3)
demonstrates the hardware setup of the bend sensors and
the force sensors.

2.2. Data Acquisition. Six healthy, right-handed subjects
including three males and three females, age ranging from
24 to 30 years and an average weight of 65 kgs, volunteered
for this study. Five eating activities were performed, to ana-
lyse the hand motion, while using different eating cutlery
(spoon and fork) and food types (including solids and liq-
uids). The type of food involved in the eating activities
included cooked rice, milk cereal, salad with chunks of vege-
tables, noodles, and a clear soup broth. A plastic spoon and a
steel fork were used during the activity. Each activity was per-
formed three times by each participant, with each trial lasting
seven seconds and while sitting on a chair with food on the
table. The five activities performed were as follows:

(1) Eating rice (solid) with a spoon

(2) Eating soup broth (liquid) with a spoon

(3) Eating cereal with milk (mixture of solid and liquid)
using a spoon

(4) Eating vegetable salad (solid) using a fork

(5) Eating noodles (solid) using a fork

Subjects were trained before performing the activities on
how to grasp the cutlery and eat using it, while wearing the
glove. For eating noodles, subjects were asked to roll over
the noodles on the fork and then eat. Each trial of the eating
activities performed consisted of four main events (Figure 4).
The first event in each eating activity was the origin or start-
ing point, which occurred when the subject kept the glove
rested horizontally on the table and bend sensors with almost
no bend. The second event called event A occurred, when the
subject holding a spoon or fork digs in to the food and brings
it towards the mouth to eat. The third event known as event B
occurred, when the subject during eating maintains the grip
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on the cutlery. The final event is known as event C, when the
subject releases the cutlery after eating and goes back again to
the origin, that is, the subject after finishing the eating
brought his/her hand back to rest on the table. Throughout
the experiment, subjects were asked to keep their elbows
rested on the table.

3. Data Analysis and Results

3.1. Bending Finger Motion Trajectories. The motion trajecto-
ries captured by the bend sensors for the thumb, index finger,
and middle finger during five different eating activities are
shown (Figure 5) with the four important events identified

Table 1: Highlights of the previous contributions to human motion analysis.

Number Authors Objective Focus of study
Data

acquisition
method

Results/findings Activity

1
Ju and Liu

[11]

To correlate the muscle
signals with contact forces
and finger trajectories &
motion recognition using

muscle signals

Human hand motion
analysis with
multisensory
information

EMG sensor,
force sensor &
DataGlove

Strong correlations between
muscle signals, contact forces,

and finger trajectories.
Fuzzy Gaussian mixture

models (FGMMs) used for
motion recognition

Ten in-hand
manipulations
like holding &

lifting a
dumbbell

2
Gopura
et al. [12]

To analyse upper-limb
muscle activities during
basic upper-limb motion,
to design power-assist
robotic exoskeleton

systems

Human upper-limb
muscle activities

during daily upper-
limb motions

EMG
electrodes,
VICON
motion

capture system

Relationships between the
upper limb motions &
activity levels of main
muscles have been

established

Basic motions
and the

selected daily
activities of
upper-limb

3
Tang et al.

[13]

To classify multiple hand
gestures using three
different methods

Hand motion
classification using a
multichannel surface

sEMG sensor

sEMG sensors

Experimental results showed
that the success rate for the
identification of all the 11
gestures is significantly high

11 hand
gestures

4
Cabibihan
et al. [14]

To analyse the gesture, the
amount of force applied
on regions of the hand,

and the angular motion of
finger joints

Human patting gesture
analysis for robotic
social touching

CyberGlove II
FingerTPS
sensors

The sensitive regions on the
hand while performing pat

have been identified

Human
patting gesture

5
Rosen

et al. [15]

To study the kinematics
and the dynamics of the
human arm during daily

activities

The human arm
kinematics and

dynamics during daily
activities

VICON
motion

capture system
& reflective
markers

The results indicated that the
various joints’ kinematics and

dynamics change
significantly based on the

nature of the task

24 ADL

6
Ah et al.
[16]

To evaluate motor control
abilities between the

groups of people with mild
and moderate arm

impairments

3D kinematic motion
analysis of door
handling task in

people with mild and
moderate stroke

VICON
motion

capture system
& reflective
markers

Comparisons have been
drawn between healthy, mild
& moderate stroke patients

Door handling
task

7
Aprile

et al. [17]

To analyse, using motion
analysis, the qualitative
and quantitative upper
limb motor strategies in

stroke patients

Kinematic analysis of
the upper limb motor
strategies in stroke

Smart motion
capture

optoelectronic
system

Comparisons have been
drawn between stroke &

healthy control group while
reaching out for the glass to

drink

Drinking task

8
Adnan

et al. [18]

To develop a low-cost
DataGlove, able to

recognize the different
finger activities

Measurement of the
flexible bending force

of the index and
middle fingers for
virtual interaction

Low-cost
DataGlove by
using the
flexible
bending
sensor

The DataGlove developed
can measure several human
degrees of freedom (DoFs)

Sign language
translation

(letters A, B, C,
D, F & K and
number 8)

9
Adnan

et al. [19]

To find the correlations
between the forces of
finger phalanges

Accurate
measurement of force
by the force sensor for

intermediate and
proximal phalanges of

index finger

Flexiforce
pressure
sensors

An analytical mathematical
model and ANOVA has been
established to predict the

force induced at the flexible
force sensor and the human
finger of low-cost DataGlove

Any finger
gripping
activity
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Bending
sensors

(a)

Force sensors

(b)

Figure 1: (a) The location of bend sensors on the thumb, middle finger, and index finger. (b) The location of force sensors on the thumb and
the index finger.

(a) (b) (c)

Figure 2: (a) The index finger angle, (b) the middle finger angle, and (c) the thumb angle, measured by the bend sensors.

Data from glove
(bend sensors &

force sensors)
Arduino MATLAB Computer

Figure 3: Hardware setup of the bend and force sensors for hand motion analysis.

Origin

(a)

Event A

(b)

Event B

(c)

Event C

(d)

Figure 4: Four main events identified during each eating activity: (a) origin, (b) event A, (c) event B, (d) Event C.
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on the trajectory. During all five eating activities (rice, cereal,
and soup with a spoon, noodle and vegetable using a fork),
the averaged range of motion (ROM) for the thumb ranged
from a minimum of 19.5° to a maximum of 59.1° (referring
to Figure 2). The origin is around 19°, although the subjects
kept their hands horizontally at rest on the table; this can
be due to the sensor fatigue while doing the activities repeat-
edly (Figure 5(a)).

The ROM of the index finger during eating rice with a
spoon is from a minimum averaged angle of 7° to a maxi-
mum averaged angle of 90°; for the noodle eating activity,
the ROM is from a minimum averaged angle of 7° to a max-
imum averaged angle of 93°; for cereal with milk activity
using a spoon, the ROM is from a minimum averaged angle
of 7° to a maximum averaged angle of 75°; for vegetable eat-
ing activity using a fork, the ROM is from a minimum aver-
aged angle of 9° to a maximum averaged angle of 83°; and for
the soup broth eating activity using a spoon, the ROM is from
a minimum of 7° to maximum averaged angle of 72°. The ori-
gin in all activities is around 7° (Figure 5(b)).

The ROM of the middle finger whist eating rice with
a spoon is from a minimum averaged angle of 18° to a

maximum averaged angle of 121.8°; for noodle eating activ-
ity, the ROM is from a minimum averaged angle 17° to a
maximum averaged angle of 115°; for cereal with milk
activity using a spoon, the ROM is from a minimum aver-
aged angle of 17° to a maximum averaged angle of 111°;
for eating vegetables using a fork, the ROM is from a mini-
mum averaged angle of 17° to a maximum of 103°; and for
the soup broth eating activity using a spoon, the ROM is
from a minimum of 17° to a maximum averaged angle of
120.6° (Figure 5(c)).

From the graphs (Figures 5(a)–5(c)), it can be observed
that as event A starts (at around 0.5 seconds), the bending
angles of the fingers start increasing to grip the cutlery and
reach a maximum value, while bringing the food to the
mouth. During event B (lasting around 3 seconds), the
magnitude of the angles remains steady, while the subject
maintains the grip on the cutlery during eating. The magni-
tude of the bending angles starts decreasing during event C
(lasting around 2 seconds), when the subject releases the
grip off the cutlery by putting it back into the dish and pro-
ceeding towards the origin, when the bending angles again
settle at around 20°.
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Figure 5: (a) Thumb motion trajectories, (b) index finger motion trajectories, and (c) middle finger motion trajectories obtained from the
bend sensor for five different eating activities.
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3.2. Contact Force Trajectories. The force sensors attached
to the prototype glove measured the force exerted by the
thumb tip and the index fingertip, while performing five
different eating activities, since only the thumb and index
finger are involved in holding the spoon or fork while eating.
To check the repeatability of the force sensors used, a subject
performing three trials of the vegetable eating activity is
shown in Figure 6.

From Figure 6, it can be observed that the force sensor
measurements, attached to the index fingertip and the thumb
tip, demonstrate quite consistent results.

(Figures 7(a) and 7(b)) demonstrate the force exerted by
the thumb tip and the index fingertip with the four main
events identified on the graphs. During the origin, the hand
is lying horizontally on the table, and as such, no force is
exerted by the thumb tip/index fingertip, but as event A starts
and the subject grips a spoon or fork between the thumb and
index finger, the magnitude of force increases and during
event C and a maximum force is reached, when the subject
is digging into the food or trying to get the food on the spoon
or fork. The force then starts to decrease in event C, as the

subject is putting the spoon/fork back into the dish, eventu-
ally, coming back to the origin, when the subject rests his/
her hand on table again. During the noodle eating activity
using a fork, the thumb tip exerts a maximum average force
of 2.7N, which is the highest of all other eating activities.
Since during the noodle eating activity, the subjects were
asked to roll over the noodles on the fork; hence, the force
trajectory shows some minor fluctuations and is longer than
other eating activities. For rice eating activity using a spoon, a
maximum average force of 2.4N; for cereal with milk eating
activity using a spoon, a maximum average force of 2.2N;
for vegetable eating activity using a fork, a maximum average
force of 2.4N; and for soup broth eating activity using a
spoon, a maximum average force of 2.0N is exerted by the
thumb tip (Figure 7(a)).

During the cereal with milk eating activity using a spoon,
the index fingertip exerts a maximum average force of 2.4N,
which is the highest of all other eating activities. For rice eat-
ing activity using a spoon, a maximum average force of 2.0N;
for noodle eating activity using a fork, maximum average
force of 2.0N; for vegetable eating activity using a fork, a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

Force exerted by thumb tip

Trial 1
Trial 2
Trial 3

0.00E + 00
5.00E − 01
1.00E + 00
1.50E + 00
2.00E + 00
2.50E + 00
3.00E + 00

Fo
rc

e (
n)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

Force exerted by index �ngertip

Trial 1
Trial 2
Trial 3

0
1
2
3
4
5

Fo
rc

e (
n)

(b)

Figure 6: (a) Three trials of thumb-tip force and (b) index fingertip force captured by the force sensor during vegetable eating activity.
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Figure 7: (a) Thumb-tip force and (b) index fingertip force recorded by the force sensor during five different eating activities.
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maximum average force of 2.2N; and for soup broth eating
activity using a spoon, a maximum average of 2.1N force is
exerted by the index fingertip (Figure 7(b)).

3.3. Correlations between Bending Angles and the Contact
Forces of Fingers. The bending finger angle data and the con-
tact force data captured by the sensors has been used to find
the correlations between the bending angles of the thumb,
index finger, and middle finger and the contact forces exerted
by the thumb and index finger, during eating activities using
the Pearson product moment correlation coefficient (PPMC).
Pearson correlation coefficient (r) measures the strength
and direction of a linear relationship between two variables.
The SPSS statistics software package has been used to per-
form this analysis. It takes values ranging from +1 to −1;
r =+1 implies a strong positive linear relationship between
the variables, while r = 1 implies a strong negative linear rela-
tionship, and r = 0 implies no linear relationship between the
variables. Equation (1) gives the formula for computing the
Pearson correlation coefficient [20].

r =
n〠 xy − 〠x 〠y

n 〠x2 − 〠x2 n 〠y2 − 〠y2
, 1

where n=number of data pairs.
The averaged Pearson coefficients of different bending

finger angles and the forces exerted by the index finger and
thumb, for all six subjects involved in the experiment, are
shown in (Table 2).

The most significant coefficients are highlighted
(Table 2). From the results (Table 2), both the soup (liquid)
and cereal (solid and liquid) eating activities which are per-
formed using a spoon have similar results, where both index
fingertip force and the thumb-tip force have shown the stron-
gest positive linear relationship with the average bending
motion of the thumb. Noodle eating activity has shown sim-
ilar results with the soup and cereal activities. Moreover, dur-
ing the vegetable and rice eating activities, the force exerted
by the thumb tip and the index fingertip have the strongest
positive correlation with the averaged index finger motion.
During all the eating activities, the middle finger motion
has the weakest linear relationship with the index fingertip
and thumb-tip force as compared to the bending motion of
the index finger and thumb.

3.4. One-Way ANOVA of the Bending Angles of Fingers with
Respect to Different Types of Food. The one-way analysis of
variance or ANOVA is a statistical comparison test used to
determine whether there are any statistically significant dif-
ferences between the means of two or more independent

groups. SPSS Statistics software package has been used to
perform ANOVA in this study. In this study, ANOVA has
been used to determine whether the bending motion of the
index finger (BENDINDX), middle finger (BENDMID), and
thumb (BENDTHMB) differed based on different groups of
food types (cereal, rice, vegetable, noodle, and soup) or not
(Tables 3 and 4).

The df column in Table 3 means degrees of freedom,
which is the division of Sum of squares byMean square values
in the ANOVA summary table. The Sum of squares is the
sum of Between groups and Within groups. The Sig. column
denotes the p value which represents the probability of find-
ing an effect equal to or greater than the one observed consid-
ering the null hypothesis to be true. The null hypothesis here
signifies that there is no significant difference in the bending
angles of the thumb, index finger, and middle finger with
respect to different types of food groups.

The lower the p value, the more likely the null hypothesis
is rejected (preferably less than 0.05, while 0.10 is also
accepted but as a weak evidence). The p value thus provides
a quantitative strength of evidence against the null hypothe-
sis stated [21, 22]. From (Table 3), it can be concluded that
for the average bending motion of the thumb and the index
finger across the five groups of food (soup, rice, noodle,
cereal, and vegetable salad), there is a statistically significant
difference at 5% and 10%, respectively, whereas for the aver-
aged bending motion of the middle finger, there is no statis-
tically significant difference, while eating different types of
food (p > 10%). In simple words, it can be concluded from
the ANOVA results that the bending motion of the thumb

Table 2: Averaged Pearson coefficient of bending finger angles and force exerted by fingers.

Rice (spoon) Cereal & Milk (spoon) Soup (spoon) Vegetable (fork) Noodle (fork)
Index Middle Thumb Index Middle Thumb Index Middle Thumb Index Middle Thumb Index Middle Thumb

FINDEX 0.93 0.87 0.78 0.89 0.84 0.95 0.90 0.87 0.94 0.89 0.81 0.74 0.85 0.73 0.89

FTHUMB 0.90 0.84 0.81 0.89 0.83 0.94 0.90 0.89 0.94 0.90 0.83 0.80 0.86 0.72 0.88

Table 3: Analysis of variance summary table.

Sum of
squares

df
Mean
square

Sig./p
value

BENDTHMB

Between
groups

893.33 4 223.33 0.023

Within
groups

26855.55 345 77.84

Total 27748.88 349

BENDINDX

Between
groups

5765.47 4 1441.37 0.074

Within
groups

230984.22 345 669.52

Total 236749.69 349

BENDMID

Between
groups

3236.77 4 809.19 0.609

Within
groups

413100.47 345 1197.39

Total 416337.24 349
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and the index finger is influenced by the type of food,
whereas the bending motion of the middle finger is not
affected by type of food.

An LSD (least significant difference) post hoc test has
been carried out to distinguish eating precisely which type
of food group (noodle, soup, rice, vegetables, and cereal)
the variances occur in the bending motions of the thumb
and the index finger (Table 4). To check for the vari-
ances, Mean difference (I-J) and Sig. (significance/p value)
column of Table 4 is considered. The LSD results for the
bending angles of the thumb from Table 4 can be sum-
marised as follows:

(1) The bending angles of thumb during cereal eating
activity are smaller than its bending angles during
rice eating activity at a statistically significant differ-
ence of 10% (p = 0 075, read row 1).

(2) On the contrary, the bending angles of thumb during
vegetable, noodle, and soup eating activities show sta-
tistically no significant difference with the bending
motion of thumb during cereal eating activity. In
other words, the bending motion of the thumb dur-
ing vegetable, noodle, and soup eating activities does
not show any variance with respect to the cereal eat-
ing activity.

(3) The bending angles of thumb during rice eating
activity are again greater than its bending angles dur-
ing the vegetable eating activity, at a statistically sig-
nificant difference of 1%, while the bending angles
of thumb during noodle and soup activities show sta-
tistically no significant difference with the bending
motion of thumb during rice eating activity.

(4) Similarly, the bending angles of thumb during
vegetable eating activity are lesser than its bending
angles during noodle and soup eating activities at
a statistically significant difference of 10% and 5%,
respectively.

(5) Finally, the bending motion of the thumb during
noodle eating activity has statistically no significant
difference with the bending motion of the thumb
during soup eating activity.

Therefore, from the LSD post hoc results, it can be
concluded that the bending motion of the thumb during
rice and vegetable eating activity is maximum as compared
to other eating activities and the bending motion of the
thumb does not show much variance during noodle and
soup eating activities.

Similarly, the ANOVA results for bending angles of index
finger (Table 4) can be summarised as follows:

(1) The bending angles of index finger during cereal eat-
ing activity are smaller than its bending angles during
the noodle eating activity, at a statistically significant
difference of 5%.

(2) Contrary, the bending angles of index finger during
rice, vegetable, and soup eating activity show statis-
tically no significant difference with the bending
motion of index finger during cereal eating activity.

Table 4: A least significant difference post hoc test using SPSS
software package.

Dependent
variable

(I)
foodtype

(J)
foodtype

Mean difference
(I− J) Sig.

BENDTHMB

1 Cereal

Rice −2.66 0.075

Veg 2.33 0.119

Noodle −0.60 0.687

Soup −0.61 0.684

2 Rice

Cereal 2.66 0.075

Veg 4.99∗ 0.001

Noodle 2.06 0.168

Soup 2.06 0.169

3 Veg

Cereal −2.33 0.119

Rice −4.99∗ 0.001

Noodle −2.93 0.050

Soup −2.94∗ 0.050

4 Noodle

Cereal 0.60 0.687

Rice −2.06 0.168

Veg 2.93 0.050

Soup 0.00 0.998

5 Soup

Cereal 0.61 0.684

Rice −2.06 0.169

Veg 2.94∗ 0.050

Noodle 0.00 0.998

BENDINDX

6 Cereal

Rice −3.29 0.452

Veg −3.33 0.447

Noodle −9.97∗ 0.023

Soup 1.96 0.655

7 Rice

Cereal 3.29 0.452

Veg −0.04 0.993

Noodle −6.68 0.127

Soup 5.25 0.231

8 Veg

Cereal 3.33 0.447

Rice 0.04 0.993

Noodle −6.65 0.129

Soup 5.28 0.228

9 Noodle

Cereal 9.97∗ 0.023

Rice 6.68 0.127

Veg 6.65 0.129

Soup 11.93∗ 0.007

10 Soup

Cereal −1.96 0.655

Rice −5.25 0.231

Veg −5.28 0.228

Noodle −11.93∗ 0.007
∗The mean difference is significant at the 0.05 level.
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(3) The bending angles of the index finger during rice
eating activity show statistically no significant differ-
ence with the bending motion of the index finger dur-
ing the vegetable, noodle, and soup eating activities.

(4) During the vegetable eating activity, the bending
motion of the index finger shows statistically no sig-
nificant difference with the bending motion of the
index finger during noodle and soup eating activities.

(5) Finally, during the noodle eating activity, the bending
angles of the index finger are greater than its bending
angles, during soup eating activity at a statistically
significant difference of 10%.

Thus, from the LSD post hoc test results, it can be sum-
marised that the bending motion of the index finger during
noodle eating activity is highest as compared to the other four
eating activities. Additionally, the bending motion of the
index finger does not show any significant variance with
respect to soup, vegetable, and rice eating activities.

3.5. One-Way ANOVA of the Forces Exerted by the Finger
Tips with Respect to Different Types of Food. The one-way
ANOVA technique has been again used to determine if there
exists a statistically significant difference in the averaged
forces exerted by the thumb tip (FTHMB) and the index fin-
gertip (FINDX), based on the different groups of food type
(Table 5). From the ANOVA results, it can be concluded that
for both forces exerted by the thumb and the index finger,
there exists statistically no significant difference during vari-
ous eating activities (p > 10%). As seen from the Sig. column
in Table 5, for both index finger and the thumb, the Sig. is
0.892 (89.2%) and 0.273 (27.3%), respectively, which is far
greater than the desired Sig. or p value of less than 10%. That
is, the contact forces of the thumb tip and the index fingertip
are not influenced by the type of food to be consumed.

3.6. An Independent Samples t-Test of Bending Angles of
Fingers with Respect to Different Eating Tools. An indepen-
dent samples t-test has been conducted using SPSS software
to find whether the averaged bending angles of the thumb,
index finger, and middle finger vary with respect to two dif-
ferent eating tool groups (a fork and a spoon). In this case,

t-test is conducted instead of ANOVA because here, the fac-
tor (independent variable) which is the cutlery has only two
groups (fork/spoon), but for conducting ANOVA, it must
be more than two; hence, an independent samples t-test has
been conducted.

The results of the independent samples t-test are shown
in Tables 6 and 7. To interpret the results from the t-test table
(Table 7), the large column labelled Levene’s test for equality
of variances is checked first. This is a test that determines if
the two conditions (a fork and a spoon) have about the same
or different amounts of variability between scores. Under this
column, the Sig. p value column is considered. This Sig. value
determines which row to consider, either the Equal variances
assumed or the Equal variances not assumed row. If the Sig.
value is greater than 0.05, read from the top row, which
means that the variability in the two conditions is about the
same. That is, the scores in one condition (fork) do not vary
much more than the scores in the second condition (spoon).
Put scientifically, it means that the variability in the two con-
ditions is not significantly different and vice versa, if the Sig.
value is lesser or equal to 0.05. In the latter case, read from the
bottom row, that the variability in the two conditions is not
the same. That is, the scores in one condition vary much
more than the scores in the second condition. Scientifically,
it means that the variability in the two conditions is signifi-
cantly different.

From Table 7, for the bending motion of the index finger
(BENDINDX), the p value is less than 0.05 (0.000), that is,
reading from the bottom row, which reveals that the variabil-
ity in the two conditions (fork and spoon) is not the same.
After finding the row to read (bottom row), now the results
of t-test can be found in the column labelled t-test for equality
of mean by considering the Sig. (2-tailed) column under it.
This Sig. (2-tailed) column determines if the two conditions’
means are statistically different. If the Sig. (2-tailed) is greater
than 0.05, this means that there is no statistically significant
difference between the two conditions. That is, the variances
between condition means are likely due to chance and not
likely due to the factor (independent variable) manipulation
and vice versa for Sig. (2-tailed) lesser or equal to 0.05. From
Table 7, for the bending motion of the index finger (BEND-
INDX), the Sig. (2-tailed) value is 0.034, which is less than
0.05. Thus, it can be concluded that there exists a statisti-
cally significant difference in the means of bending motion
of the index finger, while using a fork (mean= 41.392) and
a spoon (mean=35.19) condition. That is, the bending

Table 5: ANOVA summary table.

Sum of
squares

df
Mean
square

Sig./p
value

FINDX

Between
groups

0.30 4 0.08 0.892

Within
groups

94.05 345 0.27

Total 94.35 349

FTHMB

Between
groups

3.54 4 0.88 0.273

Within
groups

236.09 345 0.68

Total 239.63 349

Table 6: Group statistics showing the mean and standard deviation
(SD) for the bending motion data analysis.

Cutlery Mean Std. deviation

BENDINDX
Fork 41.39 28.29

Spoon 35.19 24.19

BENDMID
Fork 58.12 33.62

Spoon 56.19 35.20

BENDTHMB
Fork 33.02 8.81

Spoon 34.97 8.92
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motion of the index finger is influenced by the type of cutlery
used. Since results from (Table 6 showed that the mean of a
fork condition is higher than that of the spoon condition, it
can be concluded that the bending angles of the index finger
using a fork are greater than its bending angles, while eating
with a spoon.

Similarly, for the bending motion of the middle finger
(BENDMID), the results reveal that there exists no statisti-
cally significant difference, whether eating with a spoon or
a fork; hence, the bending angles of the middle finger
remain unaffected, irrespective of the cutlery used (Sig.
(2-tailed = 0.609), reading from the top row).

The t-test results for the bending motion of the thumb
(BENDTHMB) (Tables 6 and 7) showed that there also exists
a statistically significant difference in the means of bending
motion of the thumb, while using a fork (mean=33.02) and
a spoon (mean=34.97) condition (Sig. (2-tailed= 0.045),
reading from the top row). The results from (Table 6) showed
that the mean of a spoon condition is higher than that of the
fork condition; it can be concluded that the bending angles of
thumb using a spoon are greater than its bending angles
while eating with a fork.

3.7. An Independent Samples t-Test of the Contact Forces
Exerted by the Fingertips while Using Different Cutlery. A
similar independent samples t-test (Tables 8 and 9) has been
performed to find if the average contact forces exerted by the
thumb tip and the index fingertip vary with respect to differ-
ent eating tool groups (a fork and a spoon). Following the
same rules of interpreting the t-test as in the previous section,
it can be concluded from Tables 8 and 9 that for the average
contact force exerted by the index finger (FINDX), there
exists statistically no significant difference in the means of
the two conditions; that is, the contact force exerted by the
index finger is not influenced whether a fork or a spoon is

used (Sig. (2-tailed) = 0.494, reading from the bottom row).
Similar results have been obtained for the average contact
force exerted by the thumb (FTHUMB); that is, the contact
force exerted by the thumb is not influenced whether a fork
or a spoon is used (Sig. (2-tailed) = 0.118, reading from the
bottom row).

4. Discussion

Pearson correlation coefficient has been used to establish a
relationship between the bending motion of the thumb,
index finger, and middle finger and the contact forces exerted
by the thumb tip and the index fingertip during different eat-
ing activities. The results revealed that for the cereal and soup
eating activity using a spoon, the correlation coefficients
showed the same trend with the thumb motion, having the
strongest positive correlation with the index fingertip force
and thumb-tip force, respectively. This can be attributed to
the fact that since, both the activities involve similar eating
action using a spoon, with only the food characteristics
being different. Noodle and vegetable eating activities using
a fork showed different results. This can be due to the dif-
ferent eating action involved while picking up the food as
the noodle involved rolling action of the fork. From the
correlation results, it can also be concluded that the middle
finger motion has the weakest positive linear relationship
with the index fingertip and the thumb-tip force during
all five eating activities, irrespective of the eating tools and
food characteristics as compared to the thumb and index
finger bending motion.

A one-way ANOVA test has been done to compare the
bending motion of the thumb, index finger, and the middle
finger and the contact forces exerted by the thumb and the
index finger while eating different food types (cooked rice,
cereal with milk, vegetable salad, soup broth, and noodles).
It can be concluded that the bending angles of thumb during
the rice eating activity are relatively greater than cereal and
vegetable eating activities. Additionally, the bending motion
of the thumb during the vegetable eating activity is relatively
smaller than its bending motion during the noodle and soup
eating activity. Regarding the bending motion of the index
finger, in all five eating activities, it can be concluded that
during the noodle eating activity, the bending angles are
relatively greater than cereal and soup eating activities, while
the bending angles of the index finger show no significant

Table 7: Independent samples t-test results for the bending motion data analysis.

Levene’s test
for equality of
variances

t-test for equality
of means

t-test for equality
of means

F Sig. t df Sig. (2-tailed)

BENDINDX
Equal variances assumed 13.38 0.000 2.20 348 0.029

Equal variances not assumed 2.13 265.58 0.034

BENDMID
Equal variances assumed 0.22 0.643 0.51 348 0.609

Equal variances not assumed 0.52 307.26 0.606

BENDTHMB
Equal variances assumed 0.11 0.742 −2.02 348 0.045

Equal variances not assumed −2.02 300.69 0.044

Table 8: Group statistics showing the Mean and SD for the contact
force data analysis.

Cutlery Mean Std. deviation Std. error mean

FINDX
Fork 0.90 0.46 0.04

Spoon 0.94 0.55 0.04

FTHMB
Fork 0.74 0.90 0.08

Spoon 0.60 0.77 0.05
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statistical difference during the rice and vegetable eating
activities. The ANOVA results also revealed that the bending
motion of the middle finger showed no significant statistical
difference to different types of food. This means that the
bending motion of the middle finger is not varied much by
food characteristics (solid or liquid or mixture of solid and
liquid). The ANOVA results for the contact forces exerted
by the thumb and the index finger show that the forces are
unaffected by the type of food.

An independent samples t-test has been carried out to
compare the bending angles of the thumb, index finger, and
middle finger and the contact forces exerted by the thumb
and the index finger, respectively, while using different cut-
lery (fork and spoon). The results revealed that the bending
angles of the index finger and the thumb are influenced by
the type of cutlery unlike the middle finger which remains
unaffected. Thus, we can conclude that the motion of the
middle finger is not affected by the type of food characteris-
tics and the types of cutlery (fork/spoon) being used. The
independent samples t-test also revealed that the contact
force exerted by the thumb and the index finger is not influ-
enced by the cutlery. Hence, it can be concluded that the con-
tact force exerted by the index fingertip and the thumb tip are
not influenced by the different food characteristics nor by the
cutlery being used.

5. Conclusion

In this study, human hand motion analysis was carried out
on five different eating activities with six subjects. The
ANOVA and t-test results revealed that the bending motion
of the index finger and the thumb is affected with respect to
different food characteristics as well as the type of cutlery
used, that is, a fork and a spoon, whereas the bending motion
of the middle finger remains unaffected. In addition, the con-
tact force exerted by the thumb tip and index fingertip
remains unaffected with respect to the different types of food
and cutlery used. These results can be useful in the future to
differentiate hand motions dependent on different eating
activities and the different cutlery (fork/spoon) used. It can
further be used in the development of a mathematical model
of the hand for eating rehabilitation purposes.
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