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1  | INTRODUC TION

Alzheimer's disease (AD) is considered to be the most common type 
of dementia in the elderly population. Its main features are brain at‐
rophy, loss of neurons and synapses, plaque deposition, and neuro‐
fibrillary tangles containing tau protein. AD is usually divided into 
the following three periods: early, middle, and late. The deterioration 

related to this disease in patients is accompanied by changes in the 
white matter (WM) and gray matter (GM) of the brain morphology.

DTI technology is currently recognized as a noninvasive method 
for displaying WM fiber bundles, which can quantitatively analyze 
the diffusion properties of water molecules in WM to reflect the 
structural trend of nerve fibers, and plays an important role in de‐
tecting and diagnosing AD (Lo et al., 2010; Nowrangi et al., 2013). 
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Abstract
Introduction: Alzheimer's disease (AD) is a chronic neurodegenerative disease that 
generally starts slowly and leads to deterioration over time. Finding biomarkers more 
effective to predict AD transition is important for clinical medicine. And current re‐
search indicated that the lesion regions occur in both gray matter (GM) and white 
matter (WM).
Methods: This paper extracted BOLD time series from WM and GM, combined WM 
and GM together for analysis, constructed functional connectivity (FC) of static 
(sWGFC) and dynamic (dWGFC) between WM and GM, as well as static (sGFC) and 
dynamic (dGFC) FC within GM in order to evaluate the methods and areas most use‐
ful as feature sets for distinguishing NC from AD. These features will be evaluated 
using support vector machine (SVM) classifiers.
Results: The FC constructed by WM BOLD time series based on fMRI showed widely 
differences between the AD group and NC group. In terms of the results of the clas‐
sification, the performance of feature subsets selected from sWGFC was better than 
sGFC, and the performance of feature subsets selected from dWGFC was better 
than dGFC. Overall, the feature subsets selected from dWGFC was the best.
Conclusion: These results indicated that there is a wide range of disconnection be‐
tween WM and GM in AD, and association between WM and GM based on fMRI 
only is an effective strategy, and the FC between WM and GM could be a potential 
biomarker in the process of cognitive impairment and AD.
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The characteristics extracted from DTI have also been studied for 
the classification of mild cognitive impairment (MCI) and AD,and 
have achieved some results (Jung, Lee, Kim, & Mun, 2015; Wee et al., 
2012). In addition, fMRI has also been used as an imaging technique 
based on blood oxygen level‐dependent contrast (BOLD) signals for 
detecting human cortical nerve activity (Heeger & Ress, 2002). The 
brain function network based on fMRI mainly studied the connec‐
tion between GM regions in different states. The analysis of func‐
tional connectivity (FC) between GM in AD patients has a positive 
impact on revealing the pathological process of AD (Liu, Yu, Zhang, 
Liu, & Duan, 2014; Scherr et al., 2018).

In recent years, increasing literature has reported WM activ‐
ities detected by fMRI. For example, activation in the posterior 
limb of the internal capsule was observed in a magnetic field of 4T 
(Mazerolle et al., 2013); on the other hand, Tettamanti et al. used 
specialized task paradigms to detect enhancement of BOLD signals 
in WM (Tettamanti et al., 2002). Ding et al. observed similar tempo‐
ral and spectral profiles between GM and WM at rest (Ding et al., 
2013) and observed that their relative low‐frequency (0.01–0.08 Hz) 
signal powers were comparable (Ding et al., 2016). Then, Chen et al. 
(2017) constructed a functional correlation tensor of WM based on 
the BOLD signal and used it for the classification of MCI to obtain 
better classification performance. Furthermore, Zhang et al pro‐
posed a noise‐robust functional correlation tensor based on BOLD 
signals in the white matter and demonstrated its utility in AD diag‐
nosis (Zhang et al., 2017). Ding et al. (2018) compared the changes 
in BOLD signals between WM under a resting state and WM under 
a visual stimulation task state, and the synchronous activity and cor‐
relation between WM and GM were studied, which provided strong 
evidence that BOLD signals in WM can reflect neural activity under 
different states and demonstrated that the fluctuation in the BOLD 
signals in WM is significantly correlated with specific GM regions. 
Huang et al. (2018) detected WM activations under visual stimula‐
tion by analyzing the spatial distributions of BOLD signal frequency 
spectra, confirming that BOLD signal variations in WM are modu‐
lated by neural activity.

Inspired by these results, the current paper examined static 
and dynamic FC within GM and between WM and GM in order 

to evaluate the methods and areas most useful as feature sets for 
distinguishing NC from AD. These features will be evaluated using 
support vector machine (SVM) classifiers. The flowchart of the pro‐
posed method is shown in Figure 1.

2  | METHODS

2.1 | Materials and preprocessing of rs‐fMRI data

In this study, the data used were selected from the publicly avail‐
able Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). Forty‐five AD patients were selected as the AD 
group, and 45 age‐ and gender‐matched normal cognitive subjects 
were selected as the NC group. The specific information is shown 
in Table 1.

The fMRI images of each subject were obtained with 3.0  T 
scanners. Images were acquired using an echo planar imaging (EPI) 
sequence, it's repetition time is 3 s, echo time is 30 ms, flip angle 
is 80, slices = 48, and field of view is 212 mm RL, 198.75 mm AP, 
and 159 mm FH. The voxel size was 3.13 × 3.13 × 3.13 mm3, and 
the SPM12 software package (www.fil.ion.ucl.ac.uk/spm/software) 
was used to preprocess the rs‐fMRI data. First, the images were 
corrected for slice timing and head motion, and subjects with sub‐
stantial head motion (larger than 2 mm or 2°) were removed from 
the analysis. Then, T1‐weighed images were segmented into GM 
and WM, and then, these images were registered to the corrected 
BOLD image. Next, the fMRI images were normalized into Montreal 
Neurological Institute (MNI) space, and the images were then spa‐
tially smoothed with a Gaussian kernel with full width at half max‐
imum of 6 × 6 × 6 mm3. And a bandpass filter was used to reduce 
the effects of low‐frequency drift and high‐frequency physiological 
noise, a signal of 0.01–0.1 Hz was obtained.

2.2 | Construction of functional connectivity

Eighty‐two ROIs in GM were selected by the Brodmann atlas, and 
48 ROIs in WM were selected using the JHU ICBM‐DTI‐81 atlas. By 
calculating the average BOLD time series of all voxels in each ROI, 

F I G U R E  1   Framework of the proposed method

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm/software
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the regional average BOLD signal was obtained, which reflects the 
regional neural activity at the corresponding time.

Since rs‐fMRI reflects an unstable spontaneous cognitive activ‐
ity, static FC loses some information, which may underestimate the 
complex and dynamic interaction patterns between different brain 
regions, and dynamic FC changes over time reflecting additional and 
rich information about brain activities. Therefore, a sliding time win‐
dow strategy, a popular approach (Chen et al., 2016, 2017; Leonardi 
et al., 2013; Wee, Yang, Yap, & Shen, 2016), was used to construct 
dynamic FC, while static FC was also obtained as a comparison. 
Specifically, for each subject, the Pearson correlation coefficient, de‐
noted as r, of each ROI pair between GM was calculated directly to 
construct a static FC of GM (sGFC). And static FC between GM and 
WM (sWGFC) was obtained by calculating each ROI pair's r between 
WM and GM. Then, a sliding time window strategy was applied, and 
a complete time series was divided into several subsequent series by 
overlapping windows. We allowed the window length to be 30 and 
the step size to be 1. Then, the correlation coefficient of each subse‐

quence was calculated and denoted as FCij=

[

C1

ij
…Ck

ij
…CK

ij

]

, where i 

and j represent the i‐th and j‐th ROI, and k represents the k‐th subse‐
quence. A complete time series is divided into K subsequences. Next, 
the RMS feature of FC was calculated by the following formula:

The RMS value is also known as the quadratic mean in mathe‐
matics and reflects the fluctuation level of the signals (Chen et al., 
2017; Dey & Tech, 2014). As a result, the dGFC and dWGFC of each 
subject were obtained.

2.3 | Feature selection

In the next step, Fisher's r‐to‐z transformation, which is expressed 
as z=

[

ln
(

1+ r
)

− ln
(

1− r
)]

∕2, was applied to all FC matrices, in‐
cluding static and dynamic, to improve the normality of the cor‐
relation coefficients. Then, a two‐sample t test was used to select 
ROI pairs with significant differences to be used as the feature 
subset for the classification test. For sFC and dFC, we tested 
different p‐value and corresponding accuracy, selected the fea‐
ture subset with the highest accuracy. As shown in Figure 2, so 
the features selected from sGFC and sWGFC were chosen when 
p ≤  .001, and those from dGFC and dWGFC were chosen when 
p ≤ .01.

2.4 | Classifier learning

In this experiment, the main purpose was to compare feature sub‐
sets that contribute more to distinguishing AD from NC, rather 
than focusing on better classification models. Therefore, the clas‐
sifier was not optimized, and the SVM classification model was 
selected and LIBSVM library was performed to implement SVM 
classification. Studies (Yang, 2004) have shown that SVM classi‐
fiers have advantages for bioinformatics research. The SVM clas‐
sifier in this paper selected the linear kernel function. Due to the 
limited samples, a leave‐one‐out (LOO) cross‐validation was ap‐
plied to benchmark the different performance of different feature 
subsets.

3  | RESULTS

3.1 | Comparison of sWGFC

Without a sliding time window strategy, the sWGFC of the NC 
group and AD group was calculated, as shown in Figures 3 and 4, 
as in sWFC, where r is greater than the set threshold was displayed. 
Obviously, the sWGFC of the AD group has more loss of connection 
than that of the NC group.

RMS
�

dFCij
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�

�

�
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TA B L E  1   Information of the subjects included in this study

Group Number Gender (M/F) Age MMSE

AD 45 22/23 72.6 ± 7.1 21.24 ± 3.44

NC 45 20/25 74.3 ± 8.4 28.45 ± 1.82

F I G U R E  2   Different p‐value and corresponding accuracy



4 of 8  |     ZHAO et al.

F I G U R E  3   sWGFC of the NC group (|r| > 0.5)

F I G U R E  4   sWGFC of the AD group (|r| > 0.5)

F I G U R E  5   dWGFC of the NC group (|RMS| > 0.5)
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3.2 | Comparison of dWGFC

A sliding time window strategy was applied, the mean RMS value of 
the AD group and NC group was obtained, as shown in Figures 5 and 
6, where RMS is greater than the set threshold was displayed. There 
are many areas that have differences in the two groups, and these 
features will form feature subsets for classification.

3.3 | Classification performance of different 
feature subsets

Four feature subsets were selected from sGFC, sWGFC, dGFC, 
and dWGFC. The features selected from sGFC and sWGFC were 
chosen when the p‐value was <.001, and those from dGFC and 
dWGFC were chosen when the p‐value was <.01. The features 
were tested with the SVM classifier, and their performance is 
shown in Table 2. We evaluated the performance of different sub‐
sets from the following five indices: accuracy (ACC), sensitivity 
(SEN), specificity (SPE), area under the receiver operating charac‐
teristic curve (AUC), and F‐score. And the definitions of ACC, SEN, 
SPE, and F‐score are given as follows:

where precision= TP

TP+FP
, and recall= TP

TP+FN
. The feature subsets from 

dWGFC had higher accuracy and better generalization performance. 
Figure 7 plots the receiver operating characteristic (ROC) curves 

for different subsets. In addition, the top 15 features selected from 
dWGFC are displayed, as shown in Table 3.

4  | DISCUSSION

4.1 | Comparison of classifier performance

As shown in Table 2, the SVM classifier used a linear kernel func‐
tion, and LOO cross‐validation was applied. Feature subsets se‐
lected from dWGFC achieved a better balance between sensitivity 
and specificity, and its ACC was 81.11%, which is higher than that 
of the other three methods. Sensitivity reflected the ability to con‐
firm AD patients, while specificity reflected the ability to confirm a 
normal control. A better balance between sensitivity and specificity 
reflected a better generalization ability of the feature subsets, which 
means that the association between the WM and GM signals based 
on fMRI has positive significance in distinguishing AD from NC.

4.2 | Analysis of physiological significance

Table 3 shows that the areas involved in the WM included: the pos‐
terior limb of internal capsule, the sagittal stratum, the uncinate 
fasciculus, the genu of corpus callosum, the body of corpus callo‐
sum, the superior fronto‐occipital fasciculus, the superior longitu‐
dinal fasciculus, and the fornix. These abnormal phenomena are 
consistent with those reported in previous studies based on other 

ACC=
TP+TN

TP+TN+FP+FN

SEN=
TP

TP+FN

SPE=
TN

TN+FP

F−score=2×
precision×recall

precision+recall

F I G U R E  6   dWGFC of the AD group (|RMS| > 0.5)

TA B L E  2   Performance of different methods in classification

Method ACC (%) SEN (%) SPE (%) AUC F‐score

sGFC 70 62.22 77.78 0.7309 67.46

sWGFC 71.11 62.22 80 0.7427 68.30

dGFC 77.78 64.44 91.11 0.8059 74.36

dWGFC 81.11 84.44 77.78 0.8499 81.72
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technology (Fletcher, Carmichael, Pasternak, Maier‐Hein, & DeCarli, 
2014; Habes et al., 2018; Medina et al., 2006; Shu, Wang, Qi, Maier‐
Hein, & DeCarli, 2011; Xie et al., 2006).

The superior longitudinal fasciculus, inferior longitudinal fas‐
ciculus, and fronto‐occipital fasciculus belong to long contact 
fibers, which are connected with the cortex of the ipsilateral 

hemisphere. and its abnormality leads to damage of the nerve cir‐
cuit and affects cognitive function, as well as visual spatial pro‐
cessing, object recognition and memory (Catani, Jones, Donato, & 
Ffytche, 2003). It is generally believed that the structural integrity 
of the cingulum, fronto‐occipital fasciculus, superior longitudinal 
fasciculus, and uncinate fasciculus is closely related to AD (Perea 
et al., 2016). The corpus callosum and fornix belong to combined 
fibers, that connect the left and right hemisphere cortices. The 
complex connection of corpus callosum fibers makes it possible 
for the functional integration of bilateral cerebral hemispheres to 
ensure normal development of human emotions and various cog‐
nitive activities. As a result, damage to different parts of the cor‐
pus callosum may lead to different symptoms (Mielke et al., 2009). 
The fornix is an important part of the limbic system, which plays 
an important role in situational memory, emotional behavior and 
cognition (Nestor, Fryer, Smielewski, & Hodges, 2003). Damage to 
the fornix will lead to cognitive impairment and memory decline in 
patients. Posterior thalamic radiation and corona radiata belong to 
projection fibers, and posterior thalamic radiation passes through 
the posterior limbs of the internal capsule. Damage to the poste‐
rior limbs of the internal capsule is closely related to motor and 
sensory dysfunction in AD patients.

In addition, the GM ROIs involved included the piriform cortex, 
the cingulated cortex, the anterior prefrontal cortex, the perirhinal 
cortex, the fusiform gyrus, the temporal lobe, the parahippocampal 

F I G U R E  7   ROC curves

WM GM p‐value

Posterior limb of internal 
capsule L

Includes frontal eye fields L .0016

Sagittal stratum L Piriform cortex L .0066

Uncinate fasciculus L Retrosplenial cingulate cortex R .0071

Genu of corpus callosum Anterior prefrontal cortex (most rostral part of 
the superior and middle frontal gyri) L

.0069

Genu of corpus callosum Part of the perirhinal cortex (in the rhinal sulcus) R .0058

Genu of corpus callosum Anterior prefrontal cortex (most rostral part of 
the superior and middle frontal gyri) R

.004

Body of corpus callosum Fusiform gyrus R .0035

Superior fronto‐occipital 
fasciculus R

Superior temporal gyrus, of which the cau‐
dal part is usually considered to contain the 
Wernicke's area R

.0046

Superior longitudinal fascicu‐
lus R

Premotor cortex and supplementary motor cor‐
tex (secondary motor cortex) (supplementary 
motor area) R

.0032

Superior longitudinal fascicu‐
lus R

Primary motor cortex R .0041

Superior longitudinal fascicu‐
lus R

Primary somatosensory cortex2 R .0036

Superior longitudinal fascicu‐
lus R

Primary somatosensory cortex 1 (frequently 
referred to as Areas 3, 1, and 2 by convention) R

.0066

Fornix (cres)/ Stria terminalis R Dorsal entorhinal cortex (on the parahippocam‐
pal gyrus) L

.0065

Sagittal stratum R Middle temporal gyrus R .00092

Sagittal stratum R Inferior temporal gyrus R .0027

TA B L E  3   Top 15 ROI pairs selected 
from dWGFC during classification (p‐value 
was corrected used FDR [q = 0.05])
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gyrus, and the motor and somatosensory cortex. These areas are 
closely related to olfaction, emotion, learning, memory, and motor, 
and sensory functions (Chang et al., 2016; Choo et al., 2010; 
Daulatzai, 2015; Golob, Miranda, Johnson, & Starr, 2001; Grady, 
Furey, Pietrini, Horwitz, & Rapoport, 2001; Suvà et al., 1999; Wolk, 
Das, Mueller, Weiner, & Yushkevich, 2017).

White matter is the area where nerve fibers congregate in the 
brain and carrying the transmission of information. The loss of con‐
nection between different ROIs reflects different degrees of brain 
damage, leading to different clinical manifestations. The FC between 
WM and GM can reflect this disconnection more comprehensive, 
which suggests that we should pay more attention to these changes 
in the process of cognitive impairment and AD.

4.3 | Limitations

It should be noted that this study has some limitations. On the one 
hand, using other statistics to construct dynamic features and repre‐
senting signals from different perspectives may improve the results 
of the signal analysis. On the other hand, the number of samples 
analyzed is not enough, and expanding the scope of the study can 
lead to more general conclusions. In addition, convolutional neural 
networks and deep learning have greater capacity in medical image 
analysis and disease detection, the above two methods are the di‐
rection of our future work.

5  | CONCLUSIONS

This paper studied the FC between WM and GM in the AD group 
and NC group based on fMRI data. A sliding time window strategy 
was applied to construct dGFC and dWGFC. Then, a two‐sample t 
test and SVM classifier were used to test feature subsets from four 
different methods, the association between WM and GM improved 
the classifier performance. And 15 ROI pairs (p  <  .01) in dWGFC 
were observed. These results indicated that there is a wide range 
of disconnection between WM and GM, and the WM time series 
obtained from fMRI is helpful to study AD, and the FC between WM 
and GM could be a potential biomarker to predict the development 
of AD as well as distinguish AD from others.
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