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Abstract

Gene-mapping studies, regularly, rely on examination for Mendelian transmission of marker

alleles in a pedigree as a way of screening for genotyping errors and mutations. For analysis

of family data sets, it is, usually, necessary to resolve or remove the genotyping errors prior

to consideration. At the Center of Inherited Disease Research (CIDR), to deal with their

large-scale data flow, they formalized their data cleaning approach in a set of rules based on

PedCheck output. We scrutinize via carefully designed simulations that how well CIDR’s

data cleaning rules work in practice. We found that genotype errors in siblings are detected

more often than in parents for less polymorphic SNPs and vice versa for more polymorphic

SNPs. Through computer simulations, we conclude that some of the CIDR’s rules work

poorly in some circumstances, and we suggest a set of modified data cleaning rules that

may work better than CIDR’s rules.

Introduction

A genotyping error arises when the observed genotype differs from the true underlying geno-

type [1, 2]. Even with the most modern techniques, the observed genotype does not always

match the true underlying genotype, and this has been shown to occur at a rate of 0.5–7% for

microsatellite markers [3]. Error rates are influenced by a number of factors, but are generally

quoted between 0.25% and 1% for microsatellite genotyping [4]. Where family information is

available, a proportion of genotyping errors can be detected as Mendelian inconsistencies, but

this is more difficult for single nucleotide polymorphism (SNP) markers with only two alleles

[5]. Several authors have shown that even a small error rate (i.e., 1–2%) can have a massive

impact on linkage results [6–9].

In linkage and association analysis, investigators and researchers are fully aware of the con-

sequences of genotyping errors at the marker loci [6, 10–13]. It is well known that misspecified

marker allele frequencies, genotyping errors and Mendelian inconsistencies can lead to a
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systematic increase in false-positive rates. Power may be reduced, and parameter estimates

may be biased and/or inconsistent [1–2, 7, 14–19].

For analysis of family data, it is, usually, necessary to resolve or remove the genotyping

errors prior to analysis. There are no hard and fast rules about how to clean genotyping errors

from pedigree data. Researchers, typically, clean their data using: PedCheck [20], MERLIN

[21], MENDEL [22], SimWalk2 [23], or Sibmed [7].

At the Center of Inherited Disease Research (CIDR), to deal with their large-scale data flow;

they formalized their data cleaning approach in a set of rules, which are presented in Table 1.

They use PedCheck [20] to detect the inconsistencies, and then specific cleaning rules are trig-

gered by certain combination of error messages from PedCheck. Here, we examine, via care-

fully designed simulations how well CIDR’s data cleaning rules work in practice by answering

the following three questions: i) How often are genotyping errors detected?; ii) How often are

these rules applied?; iii) How often are these rules applied correctly?

Methods

We wish to evaluate how well the CIDR rules (see Table 1) work in terms of accurately remov-

ing Mendelian inconsistencies from the data set. The Center of Inherited Disease Research

Table 1. CIDR’s rules for removing Mendelian inconsistencies.

Situation in a Nuclear Family Error Messages Actions Short Rule

Namea

1 parent is inconsistent with 1

child

ERROR: Child 01 and Mother are inconsistent Zero out the child’s genotype 1P1C:C0

OR

ERROR: Child 01 and Father are inconsistent.

1 parent is inconsistent with 2

+ children

ERROR: Child 01 and Mother are inconsistent Zero out the specific parent genotype 1P2+C:P0

AND

ERROR: Child 02 and Mother are inconsistent

OR

ERROR: Child 01 and Father are inconsistent

AND

ERROR: Child 02 and Father are inconsistent.

2 parents are inconsistent with 1

child

ERROR: Child 01 is consistent with each parent

separately, but not as a pair

Zero out the child’s genotype 2P1C:C0

OR

ERROR: Child 01 and Mother are inconsistent

AND

ERROR: Child 01 and Father are inconsistent.

2 parents are inconsistent with 2

+ children

ERROR: Child 01 is consistent with each parent

separately, but not as a pair

Zero out the genotypes of the whole

nuclear family

2P2+C:W0

AND

ERROR: Child 02 is consistent with each parent

separately, but not as a pair.

OR

ERROR: Child 01 and Father are inconsistent.

AND

ERROR: Child 02 and Mother are inconsistent.

aLet P = parent, C = child, and W = whole family, then we name CIDR’s rules as 1. 1P1C:C0, 2. 1P2+C:P0, 3. 2P1C:C0, 4. 2P2+C:W0, where C0 = zero out

the child’s genotype, P0 = zero out the specific parent genotype, and W0 = zero out the genotypes of the whole nuclear family.

doi:10.1371/journal.pone.0172807.t001
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(CIDR), routinely, uses PedCheck to detect Mendelian inconsistencies for each SNP. Ped-

Check [20] offers different error-checking levels: Level 0 checks for formatting errors in the

pedigree structure data, Level 1 checks for Mendelian errors in nuclear families, Level 2 checks

for all other Mendelian errors using the genotype elimination algorithm. CIDR runs Level 0

and 1 checks on a data set and removes Mendelian inconsistencies. After clearing up Level 0

and Level 1 errors, Level 2 checks are run to make sure that the data are free of Mendelian

inconsistencies.

In our simulation study, we explore three questions:

1. How often are genotyping errors detected?

2. How often are these rules applied?

3. How often are these rules applied correctly?

We evaluate these questions via simulation study. In our simulation study, first we simulate

error-free marker data for a single SNP (single nucleotide polymorphism) for 20,000 nuclear

families (S1 File) with sibship sizes 2 to 6 [24] and SNP minor allele frequency (MAF) taking

on the values 0.5, 0.4, 0.3, 0.2, 0.1 [25]. These simulations were done using the SIMULATE

program [26]. Genotypes were simulated for all pedigree members. Secondly, we add in geno-

type errors using Mega2 [27]; this requires specification of the probability model for introduc-

ing errors, and the error rate. We introduce errors by picking a genotype at random with

probability 0.01, and then changing the true genotype to one of the others with equal probabil-

ity (for more see [28]. After introducing genotyping errors in data, we run Level 1 of PedCheck

[20] to find the true underlying errors. Now we have two matched data sets: the original error

free one, and the second one containing errors. After running PedCheck, we compute the per-

cent of time genotype errors are detected in siblings, parents, or either. We also tabulate the

percent of time each rule is applied. Finally, we compute how often each rule is applied cor-

rectly. We consider a rule to have been applied correctly if the genotype it zeroed out is a truly

erroneous genotype.

Results

We present the results as Figures—for detailed counts, please see the supplemental tables. Fig 1

and S1 Table shows the percent of time genotyping errors are detected in siblings, parents, and

in either. Using data set (S1 File), we observe that for sibship size 2 with MAF 0.3–0.5, error

detection rates in parents and in siblings are very similar, while for sibship sizes 3 to 6, errors

in parents are detected more often than errors in siblings. As the SNP becomes less polymor-

phic (i.e., MAF 0.1–0.2), errors in siblings are detected more often than errors in parents for all

sibship sizes.

For each genotype error that is detected, a CIDR rule, as defined in Table 1, is triggered (Fig

2 and S2 Table). Rules 1P1C:C0 and 2P1C:C0 are inversely proportional in application. As the

MAF decreases from 0.5 to 0.1, the frequency of application of rule 1P1C:C0 decreases from

~58% to ~18%, while that of rule 2P1C:C0 increases from ~18% to ~60%. Rule 2P2+C:W0 is

only applied 1–12% of the time. For MAF 0.1–0.2, rule 2P2+C:W0 is applied 1–6% of the time,

and for MAF 0.3–0.5, rule 2P2+C:W0 is applied 6–12% of the time. Similarly, overall, rule

1P2+C:P0 is applied from 12% to 31% of the time. It is applied most frequently when the MAF

is 0.1 and the sibship size is 2.

Fig 3 and S3 Table show how often each rule is applied correctly. Since rule 2P2+C:W0

zeros out the whole pedigree if it contains one or more genotyping error, it is always “cor-

rectly” applied. So we excluded rule 2P2+C:W0 from Fig 3 and S3 Table.

Rules for resolving Mendelian inconsistencies in nuclear pedigrees
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Fig 1. Percent of time a genotyping error is detected.

doi:10.1371/journal.pone.0172807.g001

Fig 2. Percent of time each rule is applied.

doi:10.1371/journal.pone.0172807.g002
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For rule 1P1C:C0, we observe in Fig 3 that for sibship size 2, the action taken is 61–64% cor-

rect. When we increase the sibship size from 2 to 3, then the percentage of the correctness of

rule 1P1C:C0 also increases to 70–76%. Similarly in the same fashion, the correctness of rule

1P1C:C0 is 78–83%, 84–92% and 91–96% for sibship sizes 4, 5 and 6 respectively. In addition

to noting this systematic increase in correctness of rule 1P1C:C0 with increase in sibship size,

it is also important to note that there are not any drastic changes in the correctness of rule

1P1C:C0 with change in MAF within a given sibship size.

Rule 1P2+C:P0 is correctly applied 100% of the time for sibships of size 2, regardless of the

MAF. As the sibship size increases, the frequency of correct application only declines very

slightly: for sibship size 6, rule 1P2+C:P0 is applied correctly 94–97% of the time.

For rule 2P1C:C0, Fig 3 shows that for sibship size 2 with MAF 0.5, action taken for rule

2P1C:C0 (see Table 1) is 66% correct. For the same sibship size, the percentage of correctness

of action taken for rule 2P1C:C0 is 70%, 73%, 88% and 97% respectively for MAF 0.4, 0.3, 0.2

and 0.1. In similar fashion when sibship size increases, the percentage of the correctness of

action taken for rule 2P1C:C0 also increases, whereas the percentage of correctness of action

are 66%, 76%, 87%, 91% and 99% respectively for sibship size 2, 3, 4, 5 and 6 with MAF 0.5.

The action taken for rule 2P1C:C0 is highly correct for higher sibship sizes and also for low

MAF when the sibships are smaller.

Conclusion and discussion

In this study, we simulated data for nuclear families to examine the behavior of the CIDR data

cleaning rules (Table 1). These rules are determined by the results of running PedCheck [19]

to detect Mendelian inconsistencies. We examined how often a given error is detected, how

often the rules are applied, and how often each rule is correctly applied.

Fig 3. Percent of time each rule is applied correctly.

doi:10.1371/journal.pone.0172807.g003
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Fig 1 shows how often errors are detected, and indicates that usually more errors are

detected in parents than in siblings when MAF is 0.3–0.5. Similarly, when MAF is smaller

(0.1–0.2), more errors are detected in siblings than parents. Overall true errors are detected at

the rate of 51–74%. Douglas et al. [29] derived at the rate of 30–48% for 2 alleles model and

51–74% for 4 alleles model.

Fig 2 shows how often each rule is applied, and indicates that rule 1P1C:C0 is applied most

frequently in nuclear families for MAF 0.3–0.5. Similarly, for SNP allele frequencies 0.1–0.2,

rule 2P1C:C0 is applied most frequently, while rule 1P2+C:P0 is applied moderately (15–20%).

Rule 2P2+C:W0 is always the least frequently applied rule (1–12%) across all MAF values and

sibship sizes.

Fig 3 shows that how often actions taken by the CIDR rules shown in Table 1 are correct.

Note that rule 2P2+C:W0 is excluded from Fig 3 because the concept of ‘correctness’ is not

applicable to it if correctness means ‘the rule correctly zeroed out only the erroneous genotype’.

Rule 2P2+C:W0 zeros out all the genotypes for the entire family. So while it does zero out the

erroneous genotype, it also zeros out several correct genotypes.

Rule 1P2+C:P0 is almost always applied correctly (94–100%) as it is always correctly applied

when there is one detectable true error in the nuclear family, and the underlying true error is

in the parents (Fig 3). Alternatively, if there is only one true error in the pedigree in a single

child, then it will not trigger rule 1P2+C:P0 because it will not cause one parent to be inconsis-

tent with 2 or more children. When rule 1P2+C:P0 is applied less than 100% correctly, this is

due to more than one true (and detectable) error occurring within a given family, which is a

rare event in the smaller sibship sizes.

Rule 1P1C:C0 performs most incorrectly on smaller sibships (Fig 3) and is applied most fre-

quently when it is extremely wrong (Fig 2), and is consistently more frequently wrong than the

other rules. Rule 2P1C:C0 becomes more correctly applied as the MAF becomes smaller.

CIDR’s rules are more often correctly applied as the sibship sizes get larger and MAF becomes

smaller.

If we focus on where the rules are correctly applied (i.e. greater than 95% of the time), then

we might come up with the following alternative rules, which should be better than CIDR’s

rules:

1. Delete Rule 1P1C:C0, and instead zero out all the genotypes of the whole nuclear family

when rule 1P1C:C0’s triggers apply.

2. Keep Rule 1P2+C:P0

3. Apply Rule 2P1C:C0 as a function of the MAF and sibship size; otherwise zero out all the

genotypes of the whole family instead. Rule 2P1C:C0 is only to be applied to sibship of size

2 if the MAF� 0.1; to size 3 if the MAF� 0.2; to size 4 if the MAF� 0.3; to size 5 if the

MAF� 0.4; and to size 6 for all values of the MAF.

4. Keep Rule 2P2+C:W0

We can also use another alternative approach which might be better than the CIDR’s rules

—we may use Pedcheck’s Level 4 checking, and then zero out the genotype of any person

whose alternative genotypes have at least one odds ratio of 1.0. Bedzioch et al. [30] examines

genotyping errors using Level 4 of PEDCHECK for 4 data sets and conclude that Level 4

checking worked quite well (even when PEDCHECK did not indicate the most probable geno-

typing error in a few cases).

Rules for resolving Mendelian inconsistencies in nuclear pedigrees
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