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Dental imaging is one of the most common types of diagnostic radiological procedures in modern medicine. We introduce a
comprehensive table of organ doses received by patients in dental imaging procedures extracted from literature and a new web
application to visualize the summarized dose information. We analyzed articles, published after 2010, from PubMed on organ and
effective doses delivered by dental imaging procedures, including intraoral radiography, panoramic radiography, and cone-beam
computed tomography (CBCT), and summarized doses by dosimetry method, machine model, patient age, and technical
parameters. Mean effective doses delivered by intraoral, 1.32 (0.60-2.56) uSv, and panoramic, 17.93 (3.47-75.00) uSv, procedures
were found to be about1% and 15% of that delivered by CBCT, 121.09 (17.10-392.20) uSv, respectively. In CBCT imaging, child
phantoms received about 29% more effective dose than the adult phantoms received. The effective dose of a large field of view
(FOV) (>150 cm?) was about 1.6 times greater than that of a small FOV (<50 cm?). The maximum CBCT effective dose with a large
FOV for children, 392.2 4Sv, was about 13% of theeffective dose that a person receives on average every year from natural
radiation, 3110 uSv. Monte Carlo simulations of representative cases of the three dental imaging procedures were then conducted
to estimate and visualize the dose distribution within the head. The user-friendly interactive web application (available at http://
dentaldose.org) receives user input, such as the number of intraoral radiographs taken, and displays total organ and effective
doses, dose distribution maps, and a comparison with other medical and natural sources of radiation. The web dose calculator
provides a practical resource for patients interested in understanding the radiation doses delivered by dental imaging procedures.

1. Introduction

Dental imaging is one of the most common types of diag-
nostic radiological procedures taken by the average person.
Popular dental imaging procedures include intraoral radi-
ography, which has the longest history of use, followed by
panoramic radiography, and more recently, cone-beam
computed tomography (CBCT) [1]. Intraoral radiography, a
simple two-dimensional (2D) projection imaging, is often
used to detect periodontal disease and cavities at regular
dental check-ups. Panoramic radiography, a more com-
prehensive 2D image that combines a series of narrow 2D
images, has been widely used to provide a wide range of
information about the dentition and jaws. Introduced in the

late 1990s, three-dimensional (3D) imaging technology,
CBCT, offers a comprehensive set of cross-sectional images,
the ability of vertical scanning, and real-time intraoperative
assessment. All three procedures expose different portions of
the head, from small parts of the teeth to the whole lower
head, to ionizing radiation. There are concerns about the
increasing use of imaging procedures as well as the resulting
radiation dose, especially for pediatric patients [2, 3].
Absorbed dose is defined as the energy deposited to a
given volume divided by the mass (measured in gray, Gy, in
the International System of Units) [4]. Equivalent dose
(measured in sieverts, Sv) is derived from the absorbed dose
multiplied by the radiation weighting factor, which repre-
sents the effectiveness of the biological damage to the
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exposed tissue. Effective dose (measured in sieverts, Sv) is
then derived by adding all equivalent doses multiplied by
tissue weighting factors and provides a relative measure of
the risk of stochastic effects that might result from irradi-
ation. The most fundamental dose quantity, organ dose, of
dental imaging can be obtained through two methods:
measurement and computer simulation. First, organ doses
can be physically measured with dosimeters placed within
anatomy models, called physical human phantoms, that are
exposed to dental radiation. Second, organ doses can be
calculated through computer simulations where the simu-
lation model of an imaging device is combined with digital
anatomy models, called computational human phantoms
[5]. Different types of pediatric and adult computational
human phantoms are available for dose calculations. Many
studies report organ doses from dental imaging procedures
estimated by measurement or simulation. However, there
are few resources that summarize a variety of data and
present the radiation dose with a user-friendly interface.

The current study was intended to provide a practical
resource for patients interested in understanding the radi-
ation doses delivered by dental imaging procedures for the
period of 2010-2020 and comparison with other radiation
sources that are commonly faced in daily life. We established
a comprehensive table of organ doses for dental imaging
procedures by extracting data from literature and developed
a user-friendly web application to present the summarized
information.

2. Materials and Methods

We obtained articles from PubMed, published after 2010, on
organ and effective doses delivered by dental imaging
procedures including intraoral radiography, panoramic
radiography, and CBCT, and summarized doses by do-
simetry method, machine model, patient age, and technical
parameters. Monte Carlo simulations of representative cases
of the three dental imaging procedures were conducted to
estimate and visualize the dose distribution within the head.
Finally, we developed an interactive web-based dose cal-
culator to provide easy access to the dental doses and to
compare them with other radiation sources commonly faced
in daily life.

2.1. Literature Search. We searched for articles on organ and
effective doses delivered by dental imaging in PubMed
(https://pubmed.ncbi.nlm.nih.gov, National Library of
Medicine, National Center for Biotechnology Information)
available on October 1, 2020, using the following keywords:

(i) “dental intraoral organ dose” (for intraoral)
(ii) “dental panoramic organ dose” (for panoramic)
(iii) “dental cone beam CT organ dose” (for CBCT)
These keywords brought up 41, 49, and 54 papers (144 in
total) for intraoral, panoramic, and CBCT procedures, re-
spectively. We selected papers published after 2010:a total of

81 papers (14, 20, and 47 papers for intraoral, panoramic,
and CBCT, respectively) out of 144 papers. The papers that
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were not written in English (except for non-English articles
with dose tables in English) or did not include the dose to
bone marrow, brain, salivary glands, and thyroid and ef-
fective doses were excluded from the review process. After
the exclusion, we finally used 3, 9, and 11 papers providing
organ and effective doses for intraoral, panoramic, and
CBCT procedures, respectively.

2.2. Data Collection. The following data were extracted from
the papers:

(i) Dosimetry methods: simulation or measurement
(ii) Imaging machine model

(iii) Age represented by physical (measurement) or

computational (simulation) phantoms: we denoted

the age of 35 as the minimum age for all adult

phantoms, which is the International Commission

on Radiological Protection (ICRP) reference age of
adults [6]

(iv) Dose calculation program for simulation studies or
dosimeter type for measurement studies

(v) Beam rotation angle (only for CBCT)
(vi) Imaging protocol

(vii) Dose area product (DAP) (mGy—cmz) (for
intraoral and CBCT)

(viii) Tube potential (kVp)

(ix) The width and height of field of view (FOV) (cm)
(for intraoral and CBCT)

(x) Effective dose (E) (uSv)

(xi) Doses to the bone marrow, brain, salivary glands,
and thyroid (uGy)

When a single paper provided multiple dose data in
multiple categories, the dose in each category was considered
a separate dose set. Simulation and measurement data were
analyzed separately when both were reported in a single
paper. When an effective dose was missing but organ doses
were reported, an effective dose was derived from the organ
doses using tissue weighting factors from ICRP Publication
103 [4]: 0.12 (bone marrow), 0.01 (brain), 0.01 (salivary
glands), and 0.04 (thyroid). We assumed zero doses for other
organs outside the head region in the calculation of the
effective dose. The extracted data were tabulated in three
detailed tables for intraoral, panoramic, and CBCT,
respectively.

To efficiently analyze the doses, we averaged the organ
and effective doses over different data sources. As for CBCT,
which had more available data for different phantom ages
and FOVthan intraoral and panoramic, we further arranged
organ and effective doses by phantom age group (children
and adults) and/or the area (height x width) of FOV (small
<50 cm®, medium 50-150 cm?, and large >150 cm?).

2.3. Monte Carlo Simulation of Dental Imaging Procedures.
We conducted Monte Carlo simulations of intraoral, pan-
oramic, and CBCT imaging procedures by using a
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computational human head phantom and multimodal im-
aging-based detailed anatomical (MIDA) [7]combined with
a Monte Carlo radiation transport code, MC-GPU [8]. The
voxel resolution of the head phantom was
0.5x0.5x0.5mm>. Key technical parameters for Monte
Carlo simulations that were collected from literature are
summarized in Table 1. In the case of panoramic imaging, a
simplified image acquisition was modeled by concatenating
9,153 simulations with a 1-pixel-wide field of view of
10x 0.05cm? instead of the realistic field of view of
10 x 0.2 cm” since the image overlap in real machines could
not be reliably simulated. Our simulations had two purposes:
to evaluate the proportion of the dose distribution among
different tissues during the three imaging modalities and to
visualize dose distribution across the head anatomy in the
web program.

2.4. Development of a Web-Based Dose Calculator. After the
summary dose tables were established, we developed a web-
based dose calculation program to allow for convenient
access to the organ and effective doses and comparison of the
dental doses with doses from other radiation sources.

The web program was designed to allow an input from
the user for the following parameters: type of imaging
modalities, number of image sets, patient age group (child or
adult), and size of imaging region, which is the area of the
FOV (small <50cm? medium 50-150cm? and large
>150 cm?). The last two parameters were only used for
CBCT dose as the dose data for intraoral and panoramic
imaging were not enough to be stratified by age and FOV.
The user has the option of “I do not know” for the patient age
group and FOV, in which case the average dose of the age
groups and/or the size of FOV were presented.

Based on the input data from a user, the web application
presents the following information:

(i) Dose delivered to the bone marrow, brain, sali-
vary glands, and thyroid and effective dose; the
doses are calculated by multiplying the dose per
imaging by the number of image sets inputted by
a user. Limited pediatric data points were
available for intraoral and panoramic, andonly a
total of 22 pediatric data points were extracted for
CBCT. Since the data points were not enough to
derive age dependency of dose for finer age
resolution, we combined the 22 data points for
CBCT into the pediatric age group. In the case of
CBCT, when the user selects both age group and
FOV, age and FOV dependent doses are dis-
played. FOV-averaged doses are displayed when a
user selects “I do not know” for FOV. Age-av-
eraged dose is displayed when a user selects “I do
not know” for age.

(ii) 2D and 3D dose distribution for the selected im-
aging procedures and the fraction of dose delivered
to different tissues

(iii) Comparison of the total effective dose (effective
dose multiplied by the number of image sets) with

that from other radiation sources: 37 uSv (London-
to-New York flight), 100 uSv (chest X-ray) and
3110 uSv (annual natural background) [9]

The web dose calculator was developed using the
commercial cross-platform language, Xojo (Xojo, Inc.,
Austin, TX). The Xojo development tool provides a
graphical user interface-based programming environment
to develop multiplatform apps for macOS, Windows,
Linux, and Web. We used the web application platform to
develop our web-based dose calculator. We created two
versions of the web interface for web browsers on a
personal computer and a smart phone to account for
differences in screen size. The web application was
deployed through Xojo Cloud hosting, which was con-
nected to the domain name http://dentaldose.org. Figure 1
shows the workflow of the web program, where the user
input data and output data are described.

3. Results

We tabulated technical parameters and doses for a total of 4,
18, and 51 dose sets for intraoral (Table 2), panoramic
(Table 3), and CBCT (Table 4) procedures, respectively.

3.1. Technical Parameters and Methods Used in Dosimetry
Studies. About 56% (n=57) of the dose sets were from
measurements, and the remaining 44% (n=44) were from
simulation studies. In the measurement studies, different
types of dosimeters were used: the thermoluminescent
dosimeter (TLD) (86%), the optically stimulated lumines-
cent dosimeter (OSLD) (7%), the Gafchromic film (5%), and
the metal-oxide-silicon field-effect transistor (MOSFET)
(2%). The physical head phantoms used for measurements
included the Alderson Radiation Therapy (ART) phantom
(Radiology Support Devices Inc., Long Beach, CA) (70%),
the ATOM adult and child phantoms (CIRS, Norfolk, VA)
(20%), and CDP-R1 (Chengdu Fangtuo Simulation Tech-
nology Company Limited, China) (10%). In the simulation
studies, the EGS program [27] produced about 60% of all
dose sets followed by MCNP [28] (22%) and PCXMC [29]
(STUK, Helsinki, Finland) (18%). A variety of computational
head phantoms were used for the simulation studies: in-
house head phantoms developed from patient CT images
(44%), the Zubal head phantom [30] (22%), the Oak Ridge
National Laboratory (ORNL)-stylized phantoms (18%), and
the ICRP adult phantoms [31] (16%). The tube potential for
intraoral imaging ranged from 60 to 70 kVp. The panoramic
and CBCT scans used 62-73 kVp and 70-120 kVp, re-
spectively. In the case of CBCT, the width and height of the
FOV ranged from about 4 to 26cm and the area
(width x height) ranged from about 15 [11] to 600 [24] cm”.
The beam rotation angle for CBCT was between 180° and
360°. The DAP for CBCT ranged from 91 to 1080 mGy-cm?®.

3.2. Organ and Effective Doses. The organ and effective doses
reported in the literature are summarized in Table 5. Mean
effective doses delivered by intraoral, 1.32 (0.60-2.56) uSv,
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TaBLE 1: Technical parameters for intraoral, panoramic, and cone-beam computed tomography collected from literature, which were used
for Monte Carlo simulations conducted using MC-GPU to estimate dose distribution within the head.

Parameters Intraoral Panoramic Cone-beam computed tomography
X-ray energy (kVp) 60 73 90

Filtration (mm Al) 35 2.5 2.8

FOV (cm?) 4x3 10x0.2 10x 10

SRD' (cm) 75 35 50

Rotation angle per view (degree) 0? 240 360

Number of views per acquisition 1 9153 360

Number of X-rays per simulated view 10" 5x107 5x10°

Total simulation time (min)? 33 143 760

!Source-to-rotation axis distance. *The rectangular field was rotated 30° cranially.

3Simulation run in an NVIDIA GeForce GTX 1080 GPU.

Read dose data by imaging
modality, organ and
effective doses, age group
(CBCT), and FOV (CBCT)

!

Which type of imaging did you take?
intraoral, panoramic, or CBCT

!

How many times did you take?

Type of imaging
modality

How old are you?
< 20 years, > 20 years, N/A

Intraoral or
Panoramic

'

What was the size of the FOV?
Small, medium, or large, N/A

'

Dose to the brain, bone marrow, salivary
glands, and thyroid, and effective dose

v

Fraction of dose in different tissues and 2D
and 3D dose distribution maps

!

Dose comparison with other radiation

sources

End

FiGure 1: Flowchart of the web application for dental radiation dose calculations and dose display.
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TaBLE 5: Minimum, mean, and maximum values of effective and organ (bone marrow, brain, salivary gland, and thyroid) doses from

intraoral, panoramic, and cone-beam computed tomography procedures reported in the selected publications.

Organ dose (uGy)

Procedures Effective dose (uSv
sv) Bone marrow Brain Salivary gland ~ Thyroid
Mean 1.32 0.63 2.36 22.79 7.97
Intraoral (n=6) Min 0.60 0.00 0.00 0.01 0.00
Max 2.56 1.20 7.76 45.25 24.47
Mean 17.93 14.66 23.28 660.24 57.93
Panoramic (n=21) Min 347 1.50 0.00 4.32 13.29
Max 75.00 54.00 72.00 2887.00 256.00
Mean 121.09 254.78 471.65 2333.95 811.16
Cone-beam computed tomography (n=76)  Min 17.10 6.90 2.80 32.00 8.40
Max 392.20 1478.00 4653.00 7775.00 8727.00

and panoramic, 17.93 (3.47-75.00) uSv, procedures are
about 1% and 15% of that delivered by CBCT, 121.09
(17.10-392.20) uSv. Among the three imaging modalities,
the salivary glands received the greatest dose: 22.79 uGy
(intraoral), 660.24 uGy (panoramic), and
2333.95 uGy (CBCT). Among the four organs of interest, the
smallest dose was delivered to the bone marrow, except for
intraoral where the brain received the smallest dose.

In CBCT imaging, the child phantoms tended to receive
greater doses compared with the adult phantoms, except for
the salivary glands and thyroid doses (Table 6). The child
phantoms received about 29% greater effective dose than the
adult phantoms. The bone marrow dose of the child
phantoms was about 80% greater than that of the adult
phantom.

The effective dose for the larger FOV in CBCT is greater
than that for the smaller FOV (Table 7). The effective dose
for the large FOV (greater than 150 cm?) is about 1.6 times
greater than that for the small FOV (less than 50 cm?). The
brain dose for the large FOV is about eight times greater than
that for the small FOV.

Table 8 shows the age- and FOV size-dependent organ
and effective doses. A similar trend by age group shown in
Table 6 (child’s dose is greater than adult’s dose) and by FOV
size shown in Table 7 (large FOV gives greater dose than
small FOV) is also observed.

3.3. Monte Carlo Dose Distribution. 2D dose distribution at
the level of the center of the lower teeth for intraoral,
panoramic, and CBCT calculated by MC-GPU simulations
are presented in Figure 2. The angles of radiation incidence
to the head phantom used in the simulations (Table 1) are
visible on the head anatomy: 30” from the patient’s front for
intraoral; 240° rotation behind the patient’s head for pan-
oramic; and 360° rotation for CBCT. Movie clips presenting
a rotating 3D dose distribution for panoramic and CBCT
were created and included in the web dose calculator.

The fraction of dose in different tissues (brain, muscle,
bone, skin, soft tissue, cerebrospinal, blood, and eye lens) out
of the total dose for intraoral, panoramic, and CBCT is
shown in Figure 3. A larger portion of the radiation dose is
delivered to the bone (55%) in intraoral imaging compared
with panoramic and CBCT, each of which contributes about

35% of the total radiation dose to the bone. The dose de-
livered to the brain is nearly zero in intraoral but slightly
increased to 1% in panoramic and 2% in CBCT. The dose
delivered to skin and soft tissue remarkably increases from
12% (soft tissue) and 10% (skin) in intraoral to 26% (soft
tissue) and 12% (skin) in panoramic and 22% (soft tissue)
and 11% (skin) in CBCT.

3.4. Web Dose Calculator. A user-friendly interactive web
program was developed for a user to input the following: the
type of imaging procedure, the number of image sets, age
group, and FOV size (Figure 4(a)). The web interface dis-
plays organ and effective doses (Figure 4(b)), dose fraction in
tissues and 2D and 3D dose distributions in the head
(Figure 4(c)), and dose comparison with other radiation
sources (Figure 4(d)).

4. Discussion

Dental imaging is one of the most common radiological
imaging procedures. Although the dose level is known to be
relatively low, it is still important to monitor the trend of
dental dose in different dental imaging modalities. We
evaluated the radiation dose received from dental imaging
practices by extracting data from literature published after
2010. To efficiently present the results of the study, an in-
teractive web-based dose calculator was created.

We compared our results from intraoral imaging with
those published by Fontana et al. [32], which report the dose
to the brain, salivary gland, and thyroid delivered by imaging
conducted from 1940 to 2009, with the increment of ten
years. To simplify the comparison, we averaged their doses in
three time periods: 1940-1969, 1970-1989, and 1990-2009.
The period 2010-2020 adopted in our study follows the end
of their study period. A clear dose reduction was observed in
the brain dose by period. Compared with the organ doses
reported for the earliest period (1940-1969), the doses to the
brain, salivary gland, and thyroid resulted from our study
were smaller by 77%, 93%, and 93%, respectively. Compared
with the latest period, 1990-2009, in Fontana et al., our
organ doses were smaller by 7%, 64%, and 62% for the brain,
salivary gland, and thyroid, respectively. The dose reduction
may be due to the change in technical parameters and the



14

Radiology Research and Practice

TABLE 6: Minimum, mean, and maximum values of effective and organ (bone marrow, brain, salivary gland, and thyroid) doses from cone-
beam computed tomography procedures by age group (children and adults) reported in the selected publications.

Organ dose (Gy)

Age group Effective dose (uSv) Bone marrow Brain Salivary gland Thyroid
Mean 143.9 372.2 600.7 2393.3 759.7
Children (n=22) Min 17.1 15.2 14.4 336.3 38.6
Max 392.2 1478.0 4324.0 4352.0 2908.0
Mean 111.8 207.0 419.1 2309.7 832.1
Adults (n=54) Min 19.0 6.9 2.8 32.0 8.4
Max 368.0 1034.0 4653.0 7775.0 8727.0

TABLE 7: Minimum, mean, and maximum values of effective and organ (bone marrow, brain, salivary gland, and thyroid) doses from cone-
beam computed tomography procedures by field-of-view area (FOV width x height, cm?) reported in the selected publications.

FOV area (cm®) Effective dose (uSv)

Organ dose (4Gy)

Bone marrow Brain Salivary gland Thyroid
Mean 96.5 262.8 144.2 1984.7 312.0
Small (<50) (n=20) Min 171 15.2 14.4 336.3 38.6
Max 220.2 1052.0 760.0 4352.0 1252.0
Mean 113.7 246.4 184.9 2137.2 780.7
Medium (50-150) (n=32) Min 28.0 6.9 2.8 32.0 8.4
Max 298.0 1478.0 1155.0 4700.0 3533.0
Mean 151.4 259.3 1126.8 2887.3 1267.7
Large (>150) (n=24) Min 31.0 10.0 124.0 738.3 47.0
Max 392.2 1034.0 4653.0 7775.0 8727.0

TaBLE 8: Minimum, mean, and maximum values of effective and organ (bone marrow, brain, salivary gland, and thyroid) doses from cone-
beam computed tomography procedures by age group (children and adults) and field-of-view area (FOV width x height, cm?) reported in

the selected publications.

FOV area (cm?) age group

Effective dose (uSv)

Organ dose (uGy)

Bone marrow Brain Salivary gland Thyroid
Mean 131.3 292.4 192.0 2568.5 281.4
Children (n=11) Min 17.1 15.2 14.4 336.3 38.6
Small (<50) Max 220.2 1052.0 760.0 4352.0 751.0
Mean 53.8 226.6 85.8 1271.1 349.3
Adults (n=9) Min 19.0 21.0 18.0 523.0 30.0
Max 105.0 400.0 290.0 2830.0 1252.0
Mean 144.3 512.2 1159 2289.2 1089.1
Children (n=7) Min 47.9 31.7 28.6 1028.0 270.6
. Max 298.0 1478.0 219.0 4204.0 2772.0
Medium (50-150) Mean 105.2 172.0 204.3 2094.7 694.4
Adults (n=25) Min 28.0 6.9 2.8 32.0 8.4
Max 265.0 621.0 1155.0 6372.0 3533.0
Mean 177.7 346.6 2572.9 2093.9 1498.6
Children (n=4) Min 64.7 104.7 772.2 1319.0 202.6
Large (>150) Max 392.2 614.0 4324.0 4007.0 2908.0
Mean 146.1 2419 837.6 3046.0 1221.5
Adults (n=20) Min 31.0 10.0 124.0 738.3 47.0
Max 368.0 1034.0 4653.0 7775.0 8727.0

improvement in imaging quality with the same amount of
radiation.

The average effective dose from CBCT, delivering the
greatest dose compared with intraoral and panoramic, was
more than 92 times greater than that from intraoral and
seven times greater than that from panoramic (Table 4).
However, the maximum CBCT effective dose, with a large

FOV, for children, 392.2 uSv [5], is about 13% of the dose
from the natural radiation that a person receives on average
every year, 3110 uSv [9], disregarding the radiation received
from occupations and medical procedures.

We are aware of the following limitations in the current
study. First, without dose calibration using measurements
from clinical machines, absolute doses could not be
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FIGURE 2: Dose distribution at the level of the lower teeth generated by MC-GPU simulations for (a) intraoral radiography, (b) panoramic

radiography, and (c) cone-beam computed tomography.
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FIGURE 3: Percent fraction of radiation dose for the different tissues in the head derived from the MC-GPU simulation of the human head
phantom exposed to (a) intraoral radiography, (b) panoramic radiography, and (c) cone-beam computed tomography.
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estimated with our Monte Carlo simulations, so only relative
dose distributions were obtained and analyzed. Future work
may involve accurate dose measurements to provide abso-
lute doses for a comprehensive library of technical pa-
rameters for panoramic and CBCT procedures. Second, we
found that pediatric dose data were relatively limited in
literature compared with those of adults, so we grouped age-
dependent dose data into pediatric (age <20) and adult
(age >20) for CBCT only,for which a total of 22 pediatric
data points were available. Since a clear age dependency for
those limited data points was not observed, possibly due to
large variability, we categorized the pediatric ages into a
single group. Considering the higher potential risk in pe-
diatric patients, due to increased radiosensitivity and longer
expected life span after the irradiation event, it is important
to more accurately evaluate the doses delivered to them once
additional dose data are available in the future. Lastly, our
literature search was limited to one bibliographic database,
PubMed, to the keywords we defined, and to the papers
written in English.

5. Conclusion

A comprehensive table of the organ and effectives doses
delivered by intraoral, panoramic, and CBCT dental imaging
procedures was established from previously published ar-
ticles collected from PubMed. We found that organ and
effective doses from intraoral and panoramic radiography
are substantially smaller than those from CBCT, and the
maximum CBCT effective dose is about 13% of the dose
from annual natural radiation. Our dose summary should be
useful for comparison among doses from different dental
imaging methods as well as comparison with doses from
other radiation sources. The user-friendly, interactive web
application (http://dentaldose.org) allows for receiving user
input and displaying doses, dose distribution maps, and dose
comparison with other radiation sources.
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