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Abstract

High leptin concentration, low-grade inflammation, and insulin resistance often coexist in

obese subjects; this adverse metabolic milieu may be the main culprit for increased fracture

risk and impaired bone quality seen in patients with type 2 diabetes. We examined the asso-

ciations of leptin, hs (high sensitivity)- CRP and insulin resistance with bone turnover mark-

ers (BTMs) and bone characteristics in 55 young obese adults (median BMI 40 kg/m2) and

65 non-obese controls. Mean age of the subjects was 19.5 ± 2.5 years (mean ± SD). Con-

centrations of leptin, adiponectin, hs-CRP, MMP-8 and TIMP-1, fasting plasma glucose and

insulin (to calculate HOMA), BTMs (BAP, P1NP, CTX-1, and TRAC5b) were measured.

Bone characteristics were determined with pQCT at radius and tibia, and with DXA for cen-

tral sites. Leptin, hs-CRP and HOMA correlated inversely with BTMs: the partial coefficients

were 1.5–1.9 fold higher in males than in females. After adjusting for age, BMI, and other

endocrine factors, leptin displayed an independent effect in males on radial bone mass

(p = 0.019), tibial trabecular density (p = 0.025) and total hip BMD (p = 0.043), with lower

densities in males with high leptin. In females, the model adjusting for age, BMI, and other

endocrine factors, revealed that hs-CRP had independent effects on radial bone mass

(p = 0.034) and lumbar spine BMD (p = 0.016), women with high hs-CRP having lower val-

ues. Partial correlations of adiponectin and TIMP-1 with bone characteristics were discrep-

ant; MMP-8 showed no associations. In conclusion, in young obese adults and their

controls, leptin, hs-CRP and HOMA associate inversely with BTMs and bone characteris-

tics. Leptin appears to be the key independent effector in males, whereas hs-CRP displayed

a predominant role in females.
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Introduction

Chronic inflammatory diseases and chronic inflammation are associated with bone loss and

fragility fractures [1,2]. In general, factors that contribute to bone loss exert their effects by

introducing a negative balance between bone formation and bone resorption. Preclinical stud-

ies provide compelling evidence on this matter. Moreover, chronic inflammation, induced by

TNFα, inhibits osteoblastogenesis in various models [3]. Obese subjects have chronic low-

grade systemic inflammation, which contribution to bone health has remained unclear.

High-sensitivity C-reactive protein (hs-CRP) is widely used as a marker of systemic low-

grade inflammation. The association between hs-CRP and bone mineral density (BMD) or

fracture risk has been at the scope of several studies [4–6]. Recent findings from the Tromsø
Study indicate that elevated hs-CPR concentrations associate with higher BMI and age, lower

physical activity (PA), and male gender [2]. Although an inverse association between hs-CRP

and BMD was noted exclusively in men after adjusting for BMI, higher hs-CRP associated

with increased fracture risk in both sexes suggesting that other, BMD-independent mecha-

nisms may be involved. Chronic exposure to low-grade systemic inflammation from early age,

as noted in childhood obesity, predisposes to cardiovascular morbidity [7,8]. Similar associa-

tion may be true for skeletal complications. Abnormal metabolic milieu may affect bone min-

eral accrual and bone size [9,10]. In fact, Lucas et al. [11] demonstrated that high hs-CRP

concentrations in overweight girls led to decreased BMD by 17 years of age.

Leptin, a pro-inflammatory cytokine produced by adipocytes, exerts central and peripheral

actions on bone; in rodent models the overall effect appears beneficial for bone formation [12].

In contrast, we and others have proposed leptin to inhibit bone turnover in humans [13,14]. In

fact, all markers of bone turnover are substantially lower in obese subjects compared with nor-

mal-weight controls. Insulin resistance may also play a role in these interactions, since there is

a close connection between adipose tissue dysfunction and insulin resistance [7,15]. Insulin

resistance is suggested to impair IGF-1 signaling which is vital for the muscle-bone unit [16].

This further emphasizes the negative impact of early obesity-related insulin resistance may

have on bone health [16]. In line with this, several studies have suggested that insulin resistance

in children results in impaired bone mass accrual [17,18].

High leptin concentrations, chronic low-grade inflammatory status, and insulin resistance

often coexist in metabolically unhealthy obese subjects, who are at higher risk of developing

type 2 diabetes. The unfavorable metabolic milieu may be the main culprit for increased frac-

ture risk and impaired bone quality witnessed in obese subjects and patients with type 2 diabe-

tes [19]. The aim of this study was to identify the drivers of obesity-related bone phenotype.

Therefore, we have examined the associations of leptin, hs-CRP and insulin resistance with

bone turnover markers (BTM) and bone characteristics measured with peripheral computed

tomography (pQCT) and DXA in a cohort of young adults with morbid childhood-onset obe-

sity and their population-based non-obese controls.

Subjects and methods

Subjects

This study was designed to assess skeletal and metabolic characteristics of severe childhood-

onset obesity and was carried out at Children’s Hospital, Helsinki University Hospital, Fin-

land. An ethical approval was obtained from the Research Ethics Committee of the Hospital

District of Helsinki and Uusimaa. Written informed consent was obtained from all study par-

ticipants and in case of minors, the consent was obtained from their legal guardians as well.

Inclusion criteria for the obese subjects were: i) weight-for-height ratio exceeding 60% before

Obesity and bone

PLOS ONE | https://doi.org/10.1371/journal.pone.0179660 June 22, 2017 2 / 13

Foundation, Ahokas Foundation, Finska
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age 7 years, according to Finnish growth standards (comparable to BMI> 97th percentile for

age), ii) referral because of severe obesity to Children’s Hospital, Helsinki University Hospital,

during childhood, iii) residence in the capital region of Helsinki at age 7 years, and iv) aged

between 15 and 25 years at the time of the study, as described earlier [10]. We identified a total

of 366 patients fulfilling the inclusion criteria in the hospital’s patient register and 68 (19%) of

them consented to participate in the study. Control subjects were selected from the national

population register based on their age and hospital catchment area (capital region of Helsinki).

Controls were excluded if they had developed obesity (weight-for-height ratio above 40%)

before age 10 years. A total of 73 controls consented to our study during 2011–2013.

Methods

Anthropometry including height (cm), weight (kg), and waist (WC; cm) and hip circumfer-

ences (cm) was collected during the study visit and BMI (kg/m2) calculated, as described previ-

ously [10]. The health and diseases of the subjects, and their use of medicines were self-

reported and collected with a questionnaire [10].

Areal bone mineral density (BMDa) for whole body (WB), lumbar spine (LS) and total hip

(THIP), and WB fat percent (fat%) were measured with Lunar Prodigy Advance DXA (GE

Healthcare, Madison, WI) in subjects with weight < 160 kg, thus data was not available for 8

obese subjects. Calibration of the measurement was performed with a spine phantom. Reduc-

ibility of DXA measurement for total body is: BMD = 0.85%, BMC = 0.45% and BA = 0.78%

[20]. BMI, WC and fat% are referred to as obesity estimates in the text.

Bone characteristics of radius and tibia were examined with peripheral quantitative com-

puted tomography (pQCT) (XCT-2000; Stratec; Pforzheim; Germany; software version 6.20).

The radius was measured at distal (4%) and proximal (66%) sites and the tibia at distal (4%)

and diaphyseal (33%) sites, as previously described [10]. For the present study the following

variables were used: total bone mass (Mass; g/cm) and trabecular density (Trb Den; mg/cm3)

from distal sites, cortical density (Crt Den; mg/cm3), polar strength strain index (SSIPOL;

mm3) and periosteal circumference (PC; mm) from the proximal and diaphyseal sites. Scans

were taken by two trained operators. The repeatability of the pQCT was evaluated with mea-

surements of phantom provided by the manufacturer. For total, Trab and Cort cross-sectional

area and density CV% were 0.24, 0.27; 0.25, 0.34; and 0.25, 0.31, respectively. Our in-house

short-term precision (CV%) was determined with duplicate measurements of five subjects.

CVs for the cross-sectional area and density in the total, Cort, and Trab bone were 1.91, 1.49;

3.0, 0.80; and 1.04, 1.0, respectively as described before [21].

Laboratory methods. Overnight fasting blood samples were obtained between 8.00 and

10.00 am for biochemistry. The samples were centrifuged after 30 minutes and serum was

divided into aliquots and stored at– 80˚C for further analyses.

Glucose was analysed by spectrophotometric hexokinase and glucose-6-phosphate dehy-

drogenase assay (Gluko-quant glucose/hexokinase, Roche Diagnostics) with a Hitachi Modu-

lar automatic. Serum insulin was measured with time-resolved immunofluorometric assay

(Perkin Elmer Life Sciences, Finland) with a detection limit of 0.5 mU/l and an interassay-CV

less than 4%. The insulin-resistance index determined by homeostasis model assessment

(HOMA-IR) was calculated as the product of the fasting serum insulin concentration (in

mU/l) and fasting plasma glucose concentration (in mmol/l) divided by 22.5. The glycosylated

hemoglobin (HbA1c) was measured by photometric immunoassay.

Bone-specific alkaline phosphatase (BAP), intact N-terminal propeptide of type I collagen

(PINP) and C-terminal cross-linked telopeptide of type I collagen (CTX-I), serum 25-OH vita-

min D (S-25-OHD) and intact parathyroid hormone (iPTH) were measured with the IDS-
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iSYS automated analyzer (IDS Ltd, Boldon, UK), and tartrate-resistant acid phosphatase iso-

form 5b (TRACP 5b) using a manual assay (BoneTRAP1, IDS Ltd). 25-OHD concentrations

by IDS-iSYS showed good linear agreement with liquid chromatography in tandem with mass

spectrometry (LC-MS) (R2 = 0.942, in-house comparison performed with 67 samples). IDS-

iSYS 25-OHD concentrations were 0.72-fold lower than those measured with LC-MS. Intra-

and inter-assay CV% for 25-OHD were< 5% and< 8%, respectively. Our laboratory partici-

pates in the inter-laboratory quality assessment scheme for vitamin D, DEQAS.

Serum adiponectin was determined with Human Total Adiponectin/Acrp30 Quantikine

ELISA Kit and serum leptin with Human Leptin R Quantikine ELISA Kit (R&D Systems, Min-

neapolis, USA) with intra- and inter-assay CV of<12%.

Matrix metalloproteinase 8 (MMP-8) levels from serum samples were measured by time-

resolved immunofluorometric assay as described earlier [22, 23]. The interassay CV was 7.3%

with a detection limit of 0.08 μg/l. Serum levels of tissue inhibitors of metalloproteinase 1

(TIMP-1) were measured with commercial enzyme-linked immunosorbent assay TIMP-1

Amersham ELISA (Human, Biotrak, ELISA system, GE Healthcare, Amersham, Buckingham-

shire, UK) [23]. The interassay CV was 13.1% and the detection limit for this assay is 1.25 μg/l.

The calculation of MMP-8/TIMP-1 molar ratio was performed as mol/l [23, 24]. hs-CRP was

determined with immunoturbidimetric assay on Roche automated clinical chemistry analyzers

at the central laboratory.

Statistical methods. Normality of the variables was visually inspected and logarithmic

(BTMs, leptin, adiponectin, hs-CRP, HOMA, 25-OHD, PTH, MMP-8, TIMP-8, MMP-8/

TIMP-1 molar ratio) transformations were made to obtain normal distribution. Pearson corre-

lations were studied and confounding factors were identified for BTMs: age, gender and height

and for bone characteristics: age, gender and BMI.

Based on our earlier findings [10] on gender difference, partial correlations between endo-

crine factors/obesity estimates and BTMs / bone characteristics were examined separately in

males and females after adjustment for confounders. To dissociate independent effect of endo-

crine factors we compared BTMs and bone characteristics between groups of LOW and HIGH

concentrations of the endocrine factors. Cut-off values for groups were defined as the median

concentration of leptin, hs-CRP and HOMA in males and females separately. These analyses

were performed with MANCOVA, where group mean values were adjusted for confounders,

which included age, BMI, and other endocrine factors.

P values less than 0.05 were considered statistically significant. All statistical analyses were

conducted using the IBM SPSS program for Windows version 22 (IBM, Chicago, IL, USA).

Results

Baseline characteristics

Complete data on circulating endocrine factors were available for 55 obese and 65 control sub-

jects. The mean age of the participants was 19.5 (SD 2.5) years and 47.5% of them were males

(Table 1). Obese subjects had greater weight, BMI and waist circumference, but similar height

compared with controls. There were no reasons to exclude subjects based on their self-

reported medical conditions. Obese subjects had higher concentrations of hs-CRP (4.5-fold),

glucose, insulin (2.7-fold), leptin (4.7-fold) and PTH (1.5-fold), whereas concentrations of adi-

ponectin (0.6-fold), 25-OHD (0.8-fold) and BTMs (except BAP) were lower than in control

subjects. Concentrations of MMP-8 and TIMP-1, or their molar ratio did not differ between

the groups. Impaired fasting glucose levels (= 6.1–6.9 mmol/l) were observed in 5 subjects

(4.2%), while high fasting insulin concentrations (� 12 mU/l) were seen in 38 subjects (32%).
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Gender-specific differences were observed in HbA1c and fasting glucose, which were

higher in obese women compared with normal-weight females (p = 0.007 and p = 0.002,

respectively), while no differences were observed in males. In addition, obese females had

higher PTH and lower 25-OHD and adiponectin than normal-weight females (p<0.001, for

all), whereas these differences were not observed between obese and normal-weight males. On

the other hand, of BTMs P1NP (p = 0.027) and CTX (p = 0.021) were lower in obese males

compared with normal-weight males, whereas the differences between females did not reach

formal statistical significance.

Partial correlations with crude outcomes

Partial correlations for endocrine factors / obesity estimates and BTMs were investigated sepa-

rately in males and females (Table 2). In general, the partial coefficients were 1.5- to 1.9-fold

higher in males than in females, despite a similar number of subjects in the groups. This

applied to leptin, hs-CRP, and HOMA, which were at the focus of our study. Leptin correlated

inversely with BTMs except for BAP in both genders. hs-CRP showed consistent, inverse asso-

ciations with all BTMs in males. These were similar, but weaker in females, except not for

BAP. Interestingly, HOMA correlated inversely with BTMs except for BAP only in males. Of

obesity estimates, BMI showed the strongest correlations with BTMs in both genders.

Strong cross correlations were observed between leptin and hs-CRP (r = 0.704, p< 0.001),

leptin and HOMA (r = 0.575, p< 0.001) and hs-CRP and HOMA (r = 0.535, p< 0.001) in the

age, sex and height adjusted model. Cross correlations of MMP-8 and MMP-8/TIMP-1 with

Table 1. Sex-specific baseline characteristics in obese subjects and their controls with mean (SD).

Male Female P-value

Obese Normal-weight Obese Normal-weight for males for females

N 28 29 27 36

Age, y 19.1 (2.5) 19.8 (2.8) 19.1 (2.4) 19.9 (2.4) 0.296 0.173

Height, cm 179.7 (7.0) 180.5 (8.1) 167.7 (6.5) 166.9 (5.9) 0.674 0.604

Weight, kg 117.7 (29.7) 76.8 (13.9) 124.9 (27.9) 60.8 (7.3) < 0.001 < 0.001

BMI, kg/m2 36.4 (9.2) 23.6 (4.3) 44.1 (8.2) 21.8 (2.3) < 0.001 < 0.001

Waist circumference, cm 114.0 (19.5) 80.3 (9.7) 117.2 (18.7) 71.1 (7.1) < 0.001 < 0.001

Total fat, % 40.6 (8.4) 20.0 (8.8) 52.1 (5.4) 32.0 (5.2) < 0.001 < 0.001

Total fat, kg 46.1 (19.1) 15.5 (9.4) 59.5 (15.9) 18.7 (4.9) < 0.001 < 0.001

hs-CRP, mg/l 3.3 (3.9) 0.9 (2.2) 8.2 (7.4) 1.7 (3.9) 0.007 < 0.001

B-HbA1c, mmol/mmol 36.8 (14.6) 34.1 (2.4) 36.7 (6.3) 33.4 (2.5) 0.328 0.007

fP-Glucose, mmol/l 5.6 (1.6) 5.3 (0.4) 5.4 (0.6) 5.0 (0.4) 0.327 0.002

fS-Insulin, mU/l 16.6 (11.8) 6.6 (3.5) 18.7 (11.2) 6.4 (3.6) < 0.001 < 0.001

HOMA index 4.1 (3.1) 1.6 (0.9) 4.5 (2.7) 1.4 (0.8) < 0.001 < 0.001

Leptin, pg/ml 27086 (20341) 4148 (4608) 60427 (25395) 13230 (6480) < 0.001 < 0.001

Adiponectin, ng/ml 6114 (3475) 7188 (3754) 6820 (3001) 13394 (6476) 0.268 < 0.001

fP-PTH, ng/l 40.4 (22.2) 32.7 (19.6) 55.1 (28.7) 29.6 (16.6) 0.174 < 0.001

S-25-OHD, nmol/l 59.0 (25.6) 58.6 (17.5) 54.1 (18.2) 76.6 (27.9) 0.944 < 0.001

PINP, ng/ml 106.0 (50.0) 156.9 (108.0) 62.7 (25.5) 77.1 (33.4) 0.027 0.068

BAP, μg/l 27.5 (14.1) 31.8 (15.5) 19.7 (6.7) 16.8 (6.3) 0.286 0.083

CTX, ng/ml 0.97 (0.38) 1.28 (0.58) 0.61 (0.26) 0.73 (0.23) 0.021 0.053

TRACP5b, U/l 4.1 (1.2) 5.5 (1.7) 3.6 (1.0) 4.1 (1.0) 0.001 0.039

TIMP-1, ng/ml 39.7 (26.7) 44.5 (49.2) 40.4 (24.9) 28.9 (27.4) 0.665 0.090

MMP-8, ng/ml 138.3 (30.1) 139.9 (86.8) 117.2 (29.8) 118.6 (49.6) 0.930 0.897

https://doi.org/10.1371/journal.pone.0179660.t001
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leptin, hs-CRP and HOMA varied between 0.21 and 0.31 with p < 0.02 (S1 Table). Based on

these results, an adjustment for BMI was justified in further analyses.

Partial correlations between metabolic factors / obesity estimates and bone characteristics

are presented in Table 3 separately for males and females. The analyses were controlled for age

and BMI. Leptin correlated inversely with Mass in both distal radius and tibia, and with Trb

Den, and PC in tibia. Similarly, an inverse association was observed between leptin and BMDa

both in WB and THIP in males, but these were not present in females.

The data on the use of medicines were not available in 2 female subjects. In total 6 male and

4 female subjects reported the use of inhaled glucocorticoids: 5 for asthma, and others for non-

specific difficulties in breathing or allergy-related symptoms. This did not differ between obese

or normal-weight subjects, neither in males (2/28 vs. 4/29, p = 0.670) nor in females (2/26 vs.

2/35, p = 0.999), and was not related to BTMs (data not shown).

hs-CRP correlated inversely with SSIPOL both in radius and tibia, and with PC of tibia in

males. In females, inverse associations of hs-CRP were observed with Mass, Trb Den and PC

in radius and tibia and along with SSIPOL in tibia. In addition, hs-CRP correlated inversely

with BMDa in WB and THIP in females. On the contrary, positive associations were noted

between hs-CRP and radial Crt Den in females and between hs-CRP and tibial Crt Den in

males.

Table 2. Partial correlations between endocrine factors / obesity estimates and BTMs after controlling for age and height separately in males

(n = 57) and females (n = 63).

Ln(P1NP) Ln(CTX) Ln(BAP) Ln/(TRACP5b)

Ln(Leptin) m -0.497* -0.503** -0.204 -0.532**

f -0.263* -0.336* 0.195 -0.303*

Ln(hs-CRP) m -0.535** -0.569** -0.416* -0.512**

f -0.284* -0.377* 0.115 -0.298*

Ln(HOMA) m -0.371* -0.468** -0.135 -0.452**

f -0.107 -0.215 0.214 -0.084

Ln(Adiponectin) m 0.326* 0.332* 0.204 0.315*

f 0.184 0.170 -0.228 0.125

Ln(25-OHD) m 0.155 0.075 -0.004 0.064

f 0.022 0.091 -0.211 0.238

Ln(PTH) m -0.119 -0.108 -0.035 -0.462*

f -0.172 -0.204 0.041 -0.448**

Ln(MMP-8) m -0.263 -0.236 -0.115 -0.092

f 0.050 0.077 0.272* 0.170

Ln(TIMP-1) m -0.305* -0.127 -0.136 -0.305*

f 0.045 0.010 0.160 0.070

BMI, kg/m^2 m -0.605** -0.684** -0.358* -0.595**

f -0.376* -0.416** 0.175 -0.451**

WC, cm m -0.613** -0.672** -0.323* -0.590**

f -0.355* -0.408** 0.266* -0.390**

Fat, %1 m -0.524** -0.543** -0.208 -0.466**

f -0.351* -0.384* 0.118 -0.382*

m; males, f; females,

*; p<0.05,

**; p<0.001
1n = 51 in males and n = 54 in females for Fat%

https://doi.org/10.1371/journal.pone.0179660.t002
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HOMA correlated inversely with various bone characteristics (Mass, Trb Den, SSIPOL, PC,

BMDa in WB, LS and THIP) in males. Of these, only an inverse association with radial Mass

and positive association with LS BMDa were present in females.

In males, adiponectin was not associated with bone outcomes, but in females positive asso-

ciations were demonstrated with SSIPOL and PC in tibia, while inverse with Crt Den. TIMP-1

showed a positive correlation with Crt Den only in females, but not in males. No association

were present between MMP-8/ MMP-8/TIMP-1 and bone characteristics.

Comparison between LOW and HIGH groups

To understand the drivers of obesity-related bone phenotype we investigated independent

effects by comparing BTMs and bone characteristics between LOW and HIGH groups defined

by median concentration of the metabolic factor in males and females (Table 4).

Although leptin demonstrated no independent effect on BTMs nor radial characteristics,

males with HIGH LEPTIN had lower Mass (adjusted mean values for LOW and HIGH groups

were 4.267 vs. 3.708 g/cm, p = 0.019, respectively) and lower Trb Den (260 vs. 226 mg/cm3,

p = 0.025) in tibia than males with LOW LEPTIN. In parallel with this finding, THIP BMDa

Table 3. Partial correlation between estimates of obesity/ endocrine factors and bone outcomes in age and BMI adjusted model separately for

males and females.

RADIUS TIBIA DXA

Mass,

g/cm

Trb Den,

mg/cm3
SSIPOL,

mm3
Crt

Den,

mg/cm3

PC,

mm

Mass,

g/cm

Trb

Den,

mg/cm3

SSIPOL,

mm3
Crt

Den,

mg/cm3

PC, mm WB

BMD,

g/cm2

L1-L4

BMD,

g/cm2

THIP

BMD,

g/cm2

Ln(Leptin) m -0.392* -0.234 -0.200 -0.099 -0.222 -0.432* -0.347* -0.254 0.094 -0.363* -0.352* -0.254 -0.342*

f -0.027 0.070 -0.056 -0.084 -0.054 -0.100 0.037 -0.261 -0.140 -0.199 -0.116 0.039 -0.028

Ln(hs-CRP) m -0.122 0.005 -0.306* -0.010 -0.224 -0.171 -0.090 -0.394* 0.319* -0.488** -0.210 -0.200 -0.180

f -0.401* -0.320* -0.136 0.260* -0.335* -0.415* -0.293* -0.359* 0.077 -0.390* -0.374* -0.240 -0.328*

Ln(HOMA) m -0.348* -0.333* -0.366* -0.117 -0.304* -0.382* -0.295* -0.266 -0.113 -0.293* -0.394* -0.372* -0.362*

f -0.262* -0.202 -0.068 0.016 -0.055 0.177 0.173 -0.006 -0.201 0.078 0.017 0.311* 0.105

Ln(Adiponectin) m -0.076 -0.247 0.218 0.069 -0.038 -0.044 -0.170 0.206 0.058 0.225 -0.008 0.099 -0.084

f 0.015 -0.161 0.126 -0.108 0.059 0.189 0.078 0.321* -0.324* 0.404* -0.022 -0.088 -0.100

Ln(25-OHD) m 0.370* 0.089 0.169 0.083 0.211 0.357* 0.227 0.167 0.117 0.248 0.332* 0.273* 0.309*

f -0.042 0.007 -0.129 -0.073 -0.103 0.112 0.239 -0.111 -0.215 -0.007 -0.020 -0.018 -0.008

Ln(PTH) m -0.093 -0.073 -0.033 -0.029 -0.201 -0.102 -0.047 0.026 0.019 -0.132 -0.082 0.022 -0.123

f -0.209 0.060 -0.213 -0.132 -0.126 -0.196 0.098 -0.288* 0.024 -0.271 -0.046 -0.241 0.049

Ln(MMP-8) m 0.147 0.060 0.064 -0.060 0.092 0.152 -0.016 -0.098 0.207 -0.053 -0.040 0.072 0.037

f 0.171 -0.018 0.094 0.009 0.113 0.032 -0.062 0.114 0.109 0.103 0.048 0.082 -0.041

Ln(TIMP-1) m 0.193 0.100 -0.061 0.123 -0.045 0.039 0.054 0.059 0.196 -0.065 0.244 0.156 0.278

f 0.165 0.108 0.156 -0.012 0.077 0.011 -0.085 -0.075 0.294* -0.134 0.106 0.038 0.007

WC, cm m -0.133 -0.169 -0.068 -0.024 0.078 -0.120 -0.287* 0.241 0.110 0.147 -0.044 0.024 -0.122

f -0.030 -0.234 -0.050 0.040 0.093 -0.042 -0.137 0.105 -0.122 0.081 -0.290* -0.154 -0.230

Fat, % 1 m -0.365* -0.211 -0.281* -0.037 -0.238 -0.374* -0.257 -0.070 0.209 -0.158 -0.213 -0.077 -0.209

f -0.359* -0.502** 0.011 0.058 -0.196 -0.073 -0.071 -0.180 0.312* -0.230 -0.223 -0.026 -0.166

m; males, f; females,

*; p<0.05,

**; p<0.001
1n = 51 in males and n = 54 in females for Fat%

https://doi.org/10.1371/journal.pone.0179660.t003
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differed by leptin group: males with HIGH leptin having lower BMDa than males with LOW

LEPTIN (1.209 vs. 1.065 g/cm2, p = 0.043).

After adjusting for other endocrine factors, hs-CRP showed no independent effect on

BTMs nor tibial outcomes in either gender. However, in females radial Mass differed by hs-

Table 4. Difference in bone outcomes with SEM between HIGH and LOW median groups after adjustment in males and females.

Radius Tibia BTM DXA

Sex ΔHIGH-LOW SEM ΔHIGH-LOW SEM ΔHIGH-LOW SEM ΔHIGH-LOW SEM

Mass, g/cm Mass, g/cm Ln(P1NP) WB BMD, g/cm2

Leptin1 m -0.157 0.103 -0.562* 0.255 0.108 0.162 -0.073 0.042

f -0.013 0.052 -0.054 0.137 -0.053 0.138 -0.030 0.021

hs-CRP2 m 0.064 0.088 -0.111 0.221 -0.099 0.146 0.000 0.038

f -0.096* 0.044 -0.138 0.103 -0.012 0.105 -0.026 0.019

HOMA3 m 0.023 0.095 0.023 0.246 -0.192 0.143 -0.015 0.041

f -0.090 0.051 0.047 0.127 0.017 0.902 -0.009 0.023

Trb Den, mg/cm3 Trb Den, mg/cm3 Ln(CTX) LS BMD, g/cm2

Leptin1 m -20.730 15.226 -34.644* 15.319 0.060 0.137 -0.089 0.063

f -8.739 11.067 -8.836 11.827 -0.114 0.134 -0.025 0.040

hs-CRP2 m 5.306 13.503 -11.694 13.286 -0.169 0.118 -0.003 0.057

f -14.283 9.339 -11.329 8.733 -0.020 0.105 -0.085* 0.034

HOMA3 m -6.839 14.710 3.550 14.702 -0.272* 0.114 -0.081 0.061

f 0.109 11.155 14.190 11.026 -0.122 0.340 0.040 0.045

SSIPOL, mm3 SSIPOL, mm3 Ln(BAP) THIP BMD, g/cm2

Leptin1 m 14.247 31.454 -96.717 154.776 0.286 0.177 -0.144* 0.066

f 1.856 23.752 -116.353 102.025 0.211 0.128 -0.027 0.035

hs-CRP2 m 0.738 28.469 -51.554 137.613 -0.054 0.163 0.052 0.059

f -0.392 19.608 -56.028 74.504 0.090 0.100 -0.046 0.031

HOMA3 m -33.707 29.728 46.819 140.765 -0.160 0.158 -0.015 0.064

f 8.454 23.385 -89.207 93.679 0.093 0.443 -0.036 0.038

Crt Den, mg/cm3 Crt Den, mg/cm3 Ln(TRACP5b)

Leptin1 m -13.563 11.446 -2.787 8.674 0.197 0.114

f -4.524 10.201 10.210 8.170 0.127 0.085

hs-CRP2 m -5.359 10.062 5.552 7.621 -0.030 0.104

f 6.062 8.620 -1.348 6.052 0.015 0.066

HOMA3 m 9.536 10.438 1.956 7.685 -0.040 0.105

f -11.882 9.648 1.110 7.914 0.108 0.187

PC, mm PC, mm

Leptin1 m 1.080 1.443 -1.281 1.931

f -0.555 1.208 -0.840 1.729

hs-CRP2 m 0.022 1.301 -2.279 1.723

f -1.210 1.035 -0.403 1.270

HOMA3 m -1.486 1.378 0.888 1.747

f 0.622 1.173 -0.496 1.612

BTM; bone turnover markers, ΔHIGH-LOW; difference between HIGH and LOW, m; male, f; female,

*p < 0.05
1in MANOVA covariates: age, BMI, Ln(hs-CRP), Ln(HOMA) and Ln(Adiponectin)
2in MANOVA covariates: age, BMI, Ln(Leptin), Ln(HOMA) and Ln(Adiponectin)
3in MANOVA covariates: age, BMI, Ln(Leptin), Ln(hs-CRP) and Ln(Adiponectin)

https://doi.org/10.1371/journal.pone.0179660.t004
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CRP: women with HIGH hs-CRP had a lower Mass compared with women with LOW hs-

CRP (1.159 vs 1.063.g/cm, p = 0.034), but this was not seen in males. Moreover, females with

HIGH hs-CRP showed also lower LS BMDa compared with LOW hs-CRP group (1.204 vs

1.155 g/cm2, p = 0.016)

An independent effect was observed also for HOMA, but only in males. Males in HIGH

HOMA group had lower Ln(CTX) (0.147 vs. -0.110 p = 0.029) than males in LOW HOMA

group, but this did not apply to other BTMs or any of the bone characteristics.

To summarize, key drivers of obesity-related bone phenotype were sex-specific: significant

independent effects of leptin on bone characteristics were marked in males, while in females

hs-CRP displayed an independent role.

As delayed pubertal development may have impacted the results especially in males, we per-

formed a sensitivity analysis focusing on boys aged at least 17 years (n = 43), who were consid-

ered to be at a late stage of pubertal development. In the sensitivity analysis, the results

concerning leptin were repeated: males with HIGH LEPTIN had lower Mass (4.370 vs. 3.694

g/cm, p = 0.042, for LOW and HIGH groups, respectively) and lower Trb Den (265 vs. 226

mg/cm3, p = 0.050) in tibia than males with LOW LEPTIN. Correspondingly, THIP BMDa dif-

fered by leptin group: males with HIGH leptin having lower BMDa than males with LOW

LEPTIN (1.235 vs. 1.045 g/cm2, p = 0.023). The results concerning HOMA and BTMs were

similar, but lacked the formal statistical significance: males in HIGH HOMA group had lower

Ln(CTX) (0.018 vs. -0.152 p = 0.074) than males in LOW HOMA group.

Discussion

The main finding in the present study is that in obese young adults HOMA, leptin and hs-CRP

associate inversely with bone turnover markers and bone characteristics both in peripheral

and central skeleton. These associations are more apparent in males, in line with our previous

finding that early-onset obesity is more harmful for the bone strength in males [10].

We observed consistent inverse associations between multiple endocrine factors and P1NP/

CTX/ TRACP5b. However, there were no discordant effects on markers of bone formation

and bone resorption. There might be several explanations for this, but the most evident one

seems to be coupled bone turnover: when inflammatory status decreases bone formation, the

secondary observed effect will be impaired bone resorption, or vice versa. In fact, formation

and resorption markers demonstrated strong positive correlations with each other (r between

0.6 and 0.8, p<0.001, in the whole group, data not shown). The proposed mechanism might

involve suppression of Wnt signaling by sclerostin [25].

Leptin is an adipocyte-derived cytokine that closely reflects the amount of body fat, while

hepatocyte-originated hs-CRP reflects systemic low-grade inflammation typically initiated by

pro-inflammatory factors. In our cohort leptin and hs-CRP showed the strongest correlations

both with BTMs and peripheral and central bone characteristics in both males and females.

However, independent effects of leptin were observed only in males, while in females hs-CRP

showed independent effects. The pro-inflammatory cytokine leptin is proposed to suppress

both bone formation and resorption [14,26]. The long-term skeletal consequences may be sim-

ilar to what was observed here, with males having lower total bone mass and trabecular density

in tibia and areal BMD in the hip.

Obesity is characterized by low-grade inflammation, as reflected by elevated levels of leptin

and hs-CRP. Unsurprisingly, we observed relatively strong cross-correlations between leptin

and hs-CRP. Adipocytes produce and secrete IL-6, which upregulates CRP synthesis in hepa-

tocytes [27]. More recent in vivo data suggest that also leptin promotes CRP synthesis in the

liver as well as in vascular/endothelial cells [28]. In turn, CRP may be able to regulate
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circulating leptin bioavailability by binding to it, which impairs the ability of both leptin and

CRP to bind to their respective receptors [28]. Taken together, there appears a close and com-

plex interplay between leptin and CRP. In males, independent effects of leptin were marked in

several bone characteristics, while in females hs-CRP appeared predominantly. In our cohort,

females were more severely obese than males, with 2.5-fold higher hs-CRP concentrations,

which might explain some of the observed differences.

Insulin resistance affects bone cells and impairs bone formation most likely by inhibiting

Wnt/beta-catenin signaling [29]. In rodent models, obesity accompanied with insulin resis-

tance is demonstrated to decrease osteoblastic proliferation, increase osteoblastic apoptosis,

enhance osteoblastic insulin resistance and increase bone porosity [30] which are marked as

impaired bone quality especially in trabecular bone sites. In the present study, inverse associa-

tions of HOMA with P1NP, CTX, TRAC5b and multiple bone characteristics were observed

almost exclusively in males. However, an independent effect of HOMA was verified only in

CTX: with increased insulin resistance, the bone resorption was impaired in males. This find-

ing is hard to interpret since the prevalence of insulin resistance did not differ between obese

males and females. Our finding is in line with the European Male Ageing Study reporting

HOMA to correlate independently and inversely with BTMs; P1NP and CTX [31]. During

normal bone remodeling resorption and formation are coupled. In our study the findings on

P1NP are supportive, but non-significant. A close relationship between obesity-induced low-

grade inflammation and insulin resistance is reported [32]. In the present study 32% of all sub-

jects and 64% of obese subjects were insulin resistant. Given that our study population was

young, it may have been premature to study the associations between insulin resistance and

bone characteristics. It is possible that longer exposure to insulin resistance may be needed to

observe consistent associations. Clinical findings in pediatric populations suggest insulin resis-

tance to precede bone maturation [18] and impair muscle-bone unit development [16]. This is

supported by recent animal data showing that hyperglycemia reduces responses to mechanical

loading [33].

Despite the predominantly inverse associations, also positive associations were noted

between fat% / hs-CRP / TIMP-1 and cortical density. This illuminates the controversy of our

topic [19]; obesity and early stages of diabetes including hyperinsulinemia may also have ana-

bolic effects on bone. Of the bone characteristics, bone mass and trabecular density are the

most susceptible to the alterations in the metabolic milieu [31]. Evidently, the more abundant

vascularization of trabecular bone compartment compared with cortical bone and in general

more rapid bone turnover may partly explain our findings, while for cortex properties the

loading plays a crucial role. Our findings are in accordance with [34] Romagnoli et al. in

reporting lower trabecular bone score in lumbar spine in obese men compared with over-

weight men.

Our study has some limitations. The number of subjects was relatively low and the study

was of cross-sectional nature. However, we had comprehensive data including various BTMs,

pQCT and DXA characteristics and numerous endocrine factors. Estrogen and testosterone

concentrations were not available. Similarities have been suggested between estrogen and lep-

tin in influencing bone remodeling [12]. The relationship between leptin and BMD may be

age dependent [35], but leptin is reported to associate inversely with cortical thickness and

cross-sectional area in tibia in young adult males [36]. Information on pubertal status was not

collected. As delayed pubertal development may have impacted the results especially in males,

we performed a sensitivity analysis focusing on boys aged at least 17 years. Since the sensitivity

analysis replicated our findings, it is unlikely that different growth pattern between girls and

boys would have explained the observed differences between genders. The primary focus of

our study was solely on metabolic milieu and often it results from sedentary lifestyle and
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unhealthy diet in obese subjects. The strength of the present study is that we included both

sexes and subjects with varying BMI and in statistical analyses we adjusted for these factors.

Thus, our finding could be applied widely to all young subjects.

In conclusion, in a cohort of young obese adults and their controls leptin, hs-CRP and

HOMA associated inversely with BTMs and bone characteristics. The key drivers were sex-

specific: in men the independent effects of leptin were most prominent on total bone mass, tra-

becular BMD in radius and THIP BMDa. In females, independent effects of hs-CRP were dis-

covered in radial bone mass and LS BMDa. Obesity is characterized with co-existing metabolic

disturbances, and of these especially leptin in males and hs-CRP in females associate with

impaired skeletal health.
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