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Abstract: This paper introduces an energy management strategy for an off-grid hybrid energy system.
The hybrid system consists of a photovoltaic (PV) module, a LiFePO4 battery pack coupled with a
Battery Management System (BMS), a hybrid solar inverter, and a load management control unit.
A Long Short-Term Memory network (LSTM)-based forecasting strategy is implemented to predict
the available PV and battery power. The learning data are extracted from an African country with
a tropical climate, which is very suitable for PV power applications. Using LSTM as a prediction
method significantly increases the efficiency of the forecasting. The main objective of the proposed
strategy is to control the different loads according to the forecasted energy availability of the system
and the forecasted battery state of charge (SOC). The proposed management algorithm and the
system are tested using Matlab/Simulink software. A comparative study demonstrates that the
reduction in the energy deficit of the system is approximately 53% compared to the system without
load management. In addition to this, the reliability of the system is improved as the loss of power
supply probability (LPSP) decreases from 5% to 3%.

Keywords: energy management; forecasting; renewable energy; PV system; load side management;
hybrid energy system

1. Introduction

The increase in using renewable energies can bring many advantages and oppor-
tunities; it can substantially contribute to the development of local communities. The
expansion of renewable energy increases the reliability of energy systems and reduces the
different impacts on the environment. In addition to this, the integration of renewable
energy technologies can enhance energy security by adding variety to the overall electricity
generation resources and reducing the risk of fuel spills [1].

Successful stand-alone systems typically take advantage of a combination of tech-
niques and technologies to produce reliable energy, reduce costs, and minimize incon-
venience. Some of these strategies involve the use of hybrid systems based on fossil or
renewable fuels and/or reducing the amount of electricity required to meet energy needs.

Battery storage plays a basic role in stand-alone and stationary applications, and
the improvement of the battery manufacture process and management can significantly
increase the reliability of stand-alone energy systems [2].

The integration of renewable energy technologies requires adaptative control and
management strategies due to the variable nature of the input energy (such as solar
radiation and wind speed) [3].

Many research papers have studied various hybrid renewable power production struc-
tures. Jihane Kartite et al. [4] present a review of the different structures of hybrid systems
in renewable energies. The main aim of their work was to present a brief explanation of
the different renewable energy structures.
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Murugaperumal et al. [5] proposed an optimum design of a hybrid renewable en-
ergy system through load forecasting. Their results showed that the optimum energy
configuration consists of three main renewable energy sources (PV, wind, bio).

Khanand Iqbal [6] introduced an investigation on a wind–hydrogen hybrid stand-
alone power system. The main objective of their research was to test the system perfor-
mance under variable stress such as sudden load variation and wind speed variation.

Load energy management plays a very important role in the reliability of renewable
energy systems; many research papers [7–11] deal with different energy management
strategies. Alnejaili et al. [12] present the dynamic control and advanced load management
of a stand-alone hybrid renewable power system for remote housing. The main aim of
their work was to control the power flow and optimize the operation of the energy system.

Alnejaili et al. [13] present a new energy management strategy for a (PV–wind–diesel)
hybrid system. Their results show that using the proposed strategy can reduce the peak
consumption of the system.

Liu et al. [14] introduced a load-adaptive real-time energy management strategy for
a battery/ultracapacitor hybrid energy storage system. Their results demonstrated the
effectiveness of the real-time management on the energy balance of the power system.

The authors of [15] proposed the optimal sizing of a PV and battery energy storage
system (BESS) for a grid-connected house. Their management algorithm was based on the
flat and time-of-use (TOU) electricity rate in Australia. Their comparative study showed
that the hybrid battery–PV system yields better performance in comparison with PV
systems. In [16], the authors proposed a peak shaving algorithm for a micro-grid equipped
with a BESS. Their proposed algorithm could shift the peak demand of the day based on
a decision tree algorithm. Their results illustrate the cost benefit of their proposed peak
shaving method in comparison with conventional peak shaving methods.

Control and management systems that depend on power forecasting are gaining
greater significance nowadays. They allow us to achieve a better decision-making and
management strategy. The forecasting is greatly important with renewable energy-based
systems, which are strongly affected by the metrological conditions and the availability of
these different energy sources.

Dongho Lee et al. [17] used linear regression and classical methods for short-term
load forecasting for energy management systems; their study was based on small- and
medium-sized office buildings in South Korea.

The authors of [18] presented a review on the topic of Intelligent Systems for Power
Load Forecasting; different algorithms and methods were implemented in the literature
on load profile forecasting. They came to the conclusion that neural networks and fuzzy
set predictions give better results in the field of power and load forecasting than the other
methods.

The authors of [19] have compared ARIMA-based methods with recurrent network-
based algorithms; they also concluded that neural networks yield better performance than
classical methods.

The authors of [20] presented an electricity consumption framework based on an
Adaptive Neural Network Inference System (ANFIS). Their ANFIS algorithm was config-
ured using a Multi Objective Genetic Algorithm, and their results were validated in a real
user-side context with real load changes. V.A. Boicea in [21] presented a medium-term
load forecast (MTLF) at power system level, based on the Big Data concept and Convolu-
tional Neural Networks (CNNs). However, ref. [12–16] did not include a prediction of the
produced power or a prediction of the batteries’ SOC, which are important factors in our
proposed algorithm.

The main aim of this work was to enforce the capability of battery protection and
energy-saving under unknown load patterns. We introduce a stand-alone hybrid power
system that consists of a PV panel as the main energy source and a LiFePO4 battery pack for
energy storage; the management algorithm will take into consideration the meteorological
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conditions (temperature and lightning), the occupancy of the building, and the forecasted
production and battery state of charge during the next day.

A Long Short-Term Memory network (LSTM) is used as a forecasting method. Using
LSTM as a prediction method can significantly increase the efficiency of the forecasting
and enhance the overall system efficiency. The system and the management algorithm
are tested by the means of simulation using Matlab/Simulink, and the simulation results
demonstrate the efficiency and security improvement of the system.

The rest of this paper is divided into five main parts. In Section 2, we illustrate the
system; then, the system modeling is presented. We present the management algorithm,
and in Section 3, we present the forecasting and power management results. The discussion
is presented in Section 4; finally, the conclusions are presented in Section 5.

2. Materials and Methods
2.1. System Description

The proposed configuration of the energy system shown in Figure 1 is composed of
a PV module and a LiFePO4 battery pack coupled with a Battery Management System
(BMS). The BMS ensures the safe operation of the battery; it protects the battery against the
overcurrent, the over-temperature, and the overvoltage. In addition to this, it monitors the
battery cell’s voltage and communicates with the battery charger.

The PV is connected to a hybrid solar MPPT inverter that controls the battery charging
and discharging process.

A central load management unit is added to the system, which controls the AC outputs
of the system and communicates with the BMS and the solar inverter.

The different load types are connected to the AC bus via relays to manage the loads
depending on the energy state of the system. The studied system characteristics are given
in Table 1.
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Table 1. System characteristics.

Component Characteristics

Battery 1300 Whr
PV 400 Wc

Inverter 1 kW
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2.2. Modeling
2.2.1. Modeling of the Photovoltaic Generator

The PV power is modeled according to the following equation [13,22]:

PPV = ηp.G.SPV (1)

where ηp is the instantaneous efficiency of the PV, G is the irradiance (w/m2), and SPV is
the surface area of the PV module. The ηp can be expressed as:

ηp=ηr.ηpt
[
1 − βp(TM − 25)

]
(2)

where ηr is the efficiency of the module at the reference temperature, ηpt is the power
tracking efficiency, βp is the thermal efficiency coefficient of the PV generator material, and
TM is the temperature of the cell and can be expressed as:

TM = TA +
NOCT − 20

800
.G (3)

where TA is the ambient air temperature and NOCT is the nominal operating cell tempera-
ture. Table 2 summarizes the parameters used in the PV modeling.

Table 2. Parameters of the photovoltaic system.

Symbol Value

SPV 2.3 m2

ηr 16%
ηpt 0.98
βp 0.5%/◦C

NOCT 25 ◦C

2.2.2. Inverter Modeling

The inverter can be modeled according to its output power as follows [9]:

Pac = η.Pdc (4)

where Pdc is the inverter input power and η is the inverter efficiency and can be expressed
as [9,12].

η =

(
Pac

Pimax

)
k0 + (1 + k1)

(
Pac

Pimax

)
+ k2(

Pac
Pimax

)
2 (5)

where k0 is the no load loss coefficient, k1, k2 are linear and quadratic current loss coeffi-
cients, and Pimax is the inverter maximum input power. Table 3 summarizes the parameters
that are used in the mathematical modeling of the inverter.

Table 3. Inverter simulation parameters.

Symbol Value

η 95%
Pimax 1 kW

k0 0.005
k1 0.005
k2 0.06
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2.2.3. Battery Energy Modeling

The instant power of the battery can be expressed as [10,22]:

Pbattery(t) = PPV(t)− Pload(t) (6)

where Pload(t) is the instant load power. The battery state of charge (SOC) can be expressed
as [23,24]:

SOC(t) = SOC(t − 1) + Pbattery(t)/Pbattery_nominal (7)

where Pbattery_nominal is the nominal power capacity (Wh) of the battery.

2.3. Power Flow Control and Management
2.3.1. Power Control

The central controller is designed to manage the energy flow of the system. Indeed, it
controls the battery charging–discharging cycles and introduces a second security level for
the LiFePO4 battery. Figure 2 presents the operation strategy used in the central controller
and can be described as follows.

If the power generated by the PV is less than the load power, the difference will be
provided by the battery. If the battery state of charge (SOC) is below its minimum level,
the different loads will be disconnected.

In case of power excess, the surplus power will be transferred to the battery. In fact, if
the battery SOC is higher than its maximum level, the power excess will be used to power
a water pump. In this way, the surplus or lost energy will be highly limited.
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2.3.2. Load Management Strategy

The main objective of the load management strategy is to optimize the operation of
the solar energy system and reduce any power deficit. The AC load is divided into three
main types depending on their priorities:

• Loads type 01: These are the loads that have priority over the other load types. They
include the different lamps and the refrigerator.

• Loads type 02: These loads are less important than the load type 01 and include fans
and TV.

• Loads type 03: This load is mainly a water pump that will be used to redirect any
energy excess, which increases the energy efficiency of the system.

The proposed management strategy takes into consideration the following inputs:

• The ambient temperature (Ta);



Sensors 2021, 21, 6427 6 of 16

• The natural irradiance (Ga);
• The occupancy—OC = 1 if the house is occupied and OC = 0 if not;
• The predicted battery state of charge (PSOC) at time t + ∆ta;
• The predicted PV generated energy PEpv at time t + ∆ta.

The three inputs Ta, Ga, and OC are measured directly in real time via their appropriate
measurement tool, and the predicted data are based on their previous values only and are
independent of time. The load management algorithm is presented in Figure 3.

The refrigerator is the most important load and its operation is subject to the following
condition:

• PSOC(t + ∆ts) ≥ SOCmin

The control of the different lamps is subjected to the manual control; they are controlled
according the occupancy and the irradiance and can be expressed as follows:

• (OC = 1) & (Ga ≤ Gare f )

The control of the Tv is subject to the following conditions:

• PEPV (t+∆ta)
EPV (nominal)

∗ 100% > PEPV_security & PSOC(tr) > SOCsecurity

The first condition is that the PV generated energy during the next day must be greater
than a pre-selected limit (PEPV_security). This parameter and the nominal energy production
EPV (nominal) can give the control system a good view of the availability of the solar energy
during this time period.

The second condition is that the predicted battery SOC at tr = 18 h must be greater
than a pre-selected battery SOC limit. This parameter at this specified hour can give the
control system a perfect illustration of the energy availability of the system, as the load
peak consumption occurs at night.

Along with the other limits (Table 4), the security limits (PEPV_security, SOCsecurity) are
chosen to guarantee the continuous operation of the critical loads and to avoid any power
deficit. In addition to this, applying these limits will increase the service life of the battery
as the DOD of the battery will be limited.

The fan operation is controlled according to the ambient temperature and occupancy
as follows:

• Ta ≥ Tare f & Oc = 1

The water pump will be enabled according to the prediction of the power excess; this
condition can protect the battery lifetime and prevents overheating:

• PSOC(t + ∆ts) ≥ SOCmax

Table 4. Parameters of the management system.

Constant Value

SOCmin 10%

PEPV_security 30%

SOCsecurity 30%

SOCmax 95%

Tare f 20 ◦C

Gare f 100 W/m2
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2.3.3. LSTM and Forecasting Algorithm

The LSTM networks are a type of recurrent neural network that has the ability to cope
with hard nonlinear approximation tasks of time series. They are far superior to recurrent
neural networks and classical forecasting methods that depend on time series analysis. Due
to their specific internal architecture, they are very reliable in short-term and long-term
forecasting without having to deal with the vanishing gradient problem [14].

The internal structure of an LSTM network is composed of many perceptrons that
are connected in a well-organized manner, as shown in Figure 4. Each perceptron can be
modeled as a gate, and these gates can feed forward the information contained in them;
they are the input gate, output gate, and cell gate. Another type of gates is called the forget
gates, which have the ability to remove information from the next time step output. The
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gates are controlled via sigmoidal() and tan h() activation functions. Another important
element is the cell state, which is directly connected to the LSTM output, and the other
gates are used to control the information flow to this cell.

The equations that describe the relations between the output of the LSTM, the cell,
and the different gates can be expressed as follows [19,25]:

at = σ(wa ∗ xt + ua ∗ Yt−1 + ba)
it = tanh(wi ∗ xt + ui ∗ Yt−1 + bi)

ft = σ
(

w f ∗ xt + u f ∗ Yt−1 + b f

)
ot = σ(wo ∗ xt + uo ∗ Yt−1 + bo)

statet = at ∗ it + ft ∗ statet−1
Yt = tanh(statet) ∗ ot

. (8)

where xt is the LSTM inputs, at, it is the input gates, Ft is the forget gates, gt is the output
gates, statet is the cell state, and the LSTM output is Yt, statet is the cell state, σ is the
sigmoidal activation function, w =

[
wa wi w f wo

]
are the network feed forward weights,

u =
[
ua ui u f uo

]
are the network recurrent weights, and b =

[
ba bi b f bo

]
are the network

bias weights.
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3. Simulation Results

The main objective of the long-term simulation process is to explore the behavior
of the energy system under various stresses. The effectiveness of the proposed energy
management strategy will be evaluated in terms of loss of power supply probability (LPSP).

3.1. Application Site and Load Profile

Figure 5 shows a typical load profile of a selected location (an African tropical country
with a high-quality natural irradiance). It is characterized by a peak consumption during
the night period. It has 160 W of peak power consumption and 1.475 kWh/day of daily
energy consumption.
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Figure 5. Daily load profile.

The simulation is performed over one year and uses the collected weather data of
the selected location. The weather data are obtained using a Photovoltaic Geographical
Information System (PVGIS). Figure 6 shows the monthly production of the PV panels,
while Figure 7 shows the monthly load consumption.
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Figure 7. Load monthly consumption.

3.2. Forecasting Results

Figure 8 presents the forecasted PV power (Figure 8a) and the battery SOC (Figure 8b).
We used the well-known LSTM neural network prediction; with our technique, we can
predict 24 h from the data of four previous consecutive days.
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A more general view of the SOC and PPV forecasted values over 25 days in the future
is presented in Figures 9a and 10a. In Figure 9b, we present the PSOC(tr) at tr = 18 h for each
subsequent day. In Figure 10b, we present the value of the total generated power on the
next day PEPV (t + ∆ta). These values will be critical in our decision-making algorithm.

In Figure 11a,b, we present a yearly histogram of the LSTM forecasting error of the
SOC and PPV, respectively.
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Figure 10. PV panel power forecasting results over 25 days using LSTM network: (a) PV panel power real and forecasted
data; (b) forecasted PV panel power at the next day.
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Figure 11. Yearly forecasting error: (a) histogram of PPV power forecasting error; (b) histogram of battery SOC forecasting
error.
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3.3. Management Algorithm Results

With the results, we conduct a comparative study between the system with load
management and without load management. Figure 12a shows the load cutoff duration
and Figure 12b shows the energy deficit of the system. Figure 13 shows the monthly
average state of charge of the battery.
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Figure 12. (a) Load cutoff duration, (b) energy deficit.
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Figure 13. Battery SOC.

4. Discussion

From Figures 8–11, we can clearly see that the forecasting error is generally around
zero, with inevitable small errors.

Figure 12a shows that the load cutoff duration is highly decreased using the proposed
load management. The total cutoff duration of the system without load management is
366.7 min (15.25 days), while it is equal to 169.6 (7 days) minutes in the case of the system
with energy management.

The system with load management reduces the energy deficit of the system. The
reduction is approximately 53% compared to the system without load management; see
Figure 12b.

Figure 13 shows that the monthly average state of charge of the system is considerably
improved using the proposed management strategy. In addition to this, the reliability of
the system is improved as the LPSP decreases from 5% to 3%.
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5. Conclusions

This paper presents an energy management strategy for an off-grid (PV battery) energy
system. Its main objective was to control the different loads according to the forecasting of
the energy availability of the system and the prediction of the battery SOC at peak hour
and the total power to be delivered the next day by the PV panels. Finally, the forecasting
results are encouraging and the LSMT network shows its efficiency in tracking the future
time series data. The proposed system has been tested using Matlab/Simulink software.
The result demonstrates the efficiency of the control algorithm: it reduces the energy deficit
of the system, and the decrease was around 53% compared to the system without load
management. In addition to this, the reliability of the system is improved as the LPSP
decreases from 5% to 3%.
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Nomenclature

Description Symbol Unit
Photovoltaic PV -
State of charge SOC -
Loss of power supply probability LPSP -
Battery management system BMS -
Alternative current AC -
Maximum power point tracking MPPT -
PV power PPV W
PV efficiency ηp %
Irradiance G w/m2

Surface SPV m2

Efficiency of the module at the reference temperature ηr %
Power tracking efficiency ηpt %
Thermal efficiency coefficient βp %/◦C
The temperature of the cell TM

◦C
The ambient air temperature TA

◦C
Nominal operating cell temperature NOCT ◦C
Inverter output power Pac W
Inverter efficiency η %
Inverter input power Pdc W
Inverter maximum input power Pimax W
No load losses coefficient k0, k1, k2 -
The instant power of the battery Pbattery,Pnet W
The instant load power Pload W
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The nominal capacity of the battery Pbattery_nominal Wh
The battery state of charge SOC %
The predicted SOC PSOC %
The predicted energy of the PV Pepv W
The nominal irradiance Gare f w/m2

The nominal temperature Tare f
◦C
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