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Cells counteract oxidative stress by altering metabolism, cell
cycle and gene expression. However, the mechanisms that
coordinate these adaptations are only marginally understood.
Here we provide evidence that timing of these responses in yeast
requires export of the polyamines spermidine and spermine. We
show that during hydrogen peroxide (H2O2) exposure, the
polyamine transporter Tpo1 controls spermidine and spermine
concentrations and mediates induction of antioxidant proteins,
including Hsp70, Hsp90, Hsp104 and Sod1. Moreover,
Tpo1 determines a cell cycle delay during adaptation to
increased oxidant levels, and affects H2O2 tolerance. Thus,
central components of the stress response are timed through
Tpo1-controlled polyamine export.
Keywords: oxidative stress response; polyamines; cell cycle
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INTRODUCTION
Oxidants such as hydrogen peroxide (H2O2) originate from
metabolism as well as from environmental exposure, and are
required in redox reactions and signalling [1,2]. However, when
their concentrations exceed normal physiological levels they
damage cellular macromolecules and cause oxidative stress. This
pathological condition is considered a ‘hallmark’ of cancer and
aging, and contributes to related pathologies [3–5]. On the other

hand, the potentially harmful oxidative stress also bears yet
unexplored therapeutic potential. Oxidant production increases
with high metabolic activity. Thus, rapidly proliferating cells, for
example, cancer cells or infective bacterial cells, have to
compensate increased oxidant amounts, rendering them
sensitive to pro-oxidant therapies [6,7].

Cells react to increased oxidant levels by arresting in the cell
cycle, adjusting metabolism and through induction of antioxidant
proteins. Most of our knowledge regarding the regulation of this
response derives from studies of stress-responsive transcription
factors [8,9]. These are activated through redox sensitive signalling
cascades or cysteine oxidation, and induce expression of enzymes
and molecular chaperones that support oxidant tolerance, such as
superoxide dismutase, Hsp70, Hsp90 and Hsp104 [8–11]. Further
gene expression changes are effectuated by altered metabolic
activity [12–14]. The metabolic network is a prime target of the
antioxidant machinery, as it produces both oxidizing and reducing
metabolites, and thus changes in metabolism directly influence the
redox balance. Indeed, during oxidative stress, a flux redirection
from glycolysis to the NADPH-generating pentose phosphate
pathway is established to compensate for the increased need of
this cofactor by the antioxidant machinery [15–17]. As this
redirection is rapidly induced by enzyme oxidation, post-
translational modifications and metabolic feedback loops, it
facilitates an immediate protection of the oxidant-exposed cell
[13,18]. Despite the importance of this mechanism, it is still
however unknown to which extent secondary metabolic fluxes
contribute to achieve stress resistance.

Here, we report evidence that the timing of the stress response
relies on a new metabolic rheostat control mechanism. We
show that H2O2-exposed yeast cells export the polyamine
metabolites spermidine and spermine via their transporter,
Tpo1. This metabolite export times the induction of stress
response proteins, including Hsp70, Hsp90, Hsp104 and
Sod1, mediates overall H2O2 tolerance and prolongs the H2O2-
induced cell cycle arrest. Hence, spermidine and spermine
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concentrations are altered to control the timing of central
components of the oxidative stress response.

RESULTS AND DISCUSSION
Tpo1 exports polyamines during the stress response
Yeast exposed to sub-lethal H2O2 concentrations temporarily
arrests in the cell cycle [19]. We used the duration of this growth
arrest as readout to screen for timing regulators of the stress
response. 5,150 gene deletion strains, equalling the ‘nonessential’
Saccharomyces cerevisiae genome [20], were exposed to
1.25 mM H2O2 and their recovery from the oxidant exposure
was followed photometrically. Compared with wild-type cells,
15 strains re-entered growth at a different time. Extensive quality
tests (supplementary Information online), confirmed a monogenetic
trait in a strain deleted for the plasma membrane transporter gene
TPO1 (YLL028W). Upon H2O2 exposure, Dtpo1 cells recovered
growth faster than wild-type cells (Fig 1A). Conversely, a strain
overexpressing TPO1 (oexTPO1), created by genomic integration of
a second, GPD1 promoter controlled TPO1 copy, arrested for a
longer period (Fig 1A). This growth phenotype correlated with stress
resistance. Dtpo1 cells were more H2O2 resistant than wild-type
cells, whereas oexTPO1 cells were H2O2 sensitive (Fig 1B).

Tpo1 is a plasma membrane exporter for the polyamines,
spermidine and spermine [21,22]. These metabolites were first

identified in seminal fluid [23], but are ubiquitous and highly
concentrated growth factors [24,25]. Their detailed molecular
function is still under debate; however, they influence a broad
range of cellular processes, including translation, transcription
and autophagy [24,26–28]. Moreover, extracellular spermidine
exposure prolongs lifespan of several organisms, including
yeast [27], and polyamines have anti-inflammatory and
antioxidant properties [24,26].

To investigate a potential role of spermidine and spermine in the
antioxidant response, we first determined their effect on yeast’s
stress tolerance by testing for survival of the yeast strains on agar
plates containing H2O2. The presence of spermidine or spermine
in the growth media increased H2O2 resistance (Fig 1C). Next, we
quantified intracellular spermidine and spermine levels by liquid
chromatography tandem mass spectrometry (LC-MS/MS). Consis-
tent with previous results, demonstrating that spermidine and
spermine are exported through Tpo1 [22], TPO1 overexpression
markedly lowered the basal concentrations of both metabolites,
whereas TPO1 deletion had no significant influence on their basal
levels (Fig 1D; supplementary Fig S1A online for spermine,
supplementary Fig S5A–C online for absolute levels). Remarkably,
upon H2O2 exposure, spermidine and spermine concentrations
changed in a Tpo1-dependent manner. In wild-type cells, an
immediate and significant decline in spermidine (Fig 1E), and a
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Fig 1 | Tpo1 exports spermidine during the oxidative stress response. (A) The H2O2-induced growth arrest is shortened in Dtpo1 cells and prolonged in

TPO1 overexpressing (oexTPO1) yeast. Wild-type, Dtpo1 and oexTPO1 cells were grown exponentially in synthetic complete media (SC), exposed to

1.25 mM H2O2. Growth arrest duration was determined by R/grofit [32] and plotted relative to the arrest of untreated cells. Error bars represent s.d.

(n¼ 4). (B) Dtpo1 cells are H2O2 resistant, whereas oexTPO1 cells are H2O2 sensitive. Exponentially growing strains were spotted in 10-fold dilutions

on SC plates containing 1.5 mM H2O2 and incubated at 30 1C for 3 days. (C) Polyamine presence in the growth media increases H2O2 tolerance. Spot

testing as in (B), but with wild-type cells spotted on SC plates containing H2O2 with or without spermidine (Spd) or spermine (Spm). (D) TPO1

overexpression decreases spermidine concentrations. Intracellular spermidine/putrescine level, as determined by LC-MS/MS in exponentially growing

wild-type and TPO1-mutant cells. (E–G) The spermidine concentration during the stress response depends on TPO1. Wild-type and TPO1-mutant

cells were grown exponentially in SC, treated with 1.5 mM H2O2 and sampled in a time course. Error bars represent s.d. (n¼ 4); Student’s t-test:

*¼ Pr0.05, **¼Pr0.01, ***¼ Pr0.001. (E) Spermidine levels in wild-type cells decline upon a H2O2 treatment. Spermidine/putrescine ratio in

H2O2-treated wild-type yeast. (F) TPO1 deletion reverses the spermidine trend and leads to spermidine accumulation. As in E, but with Dtpo1 yeast.

(G) TPO1 overexpression reduces spermidine levels during the stress response. As in (E), but with oexTPO1 yeast. H2O2, hydrogen peroxide; oexTPO1,

overexpressing TPO1; SC, synthetic complete; Spd, spermidine; Spm, spermine.
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statistical trend of the less abundant spermine (supplementary
Fig S1B online) was measured. TPO1 deletion reversed this phenotype;
spermidine and spermine levels did not decline, but instead
accumulated (Fig 1F; supplementary Fig S1C online). In contrast, in
oexTPO1 cells, both polyamines were retained at lower levels and did
not accumulate (Fig 1G; supplementary Fig S1D online).

TPO1 times the induction of the stress response
As polyamine concentrations influence translation [24,28], we
speculated that the time-dependent concentration changes of
spermidine and spermine could be associated with the induction
of the stress response. Using a state-of-the-art technique in
quantitative proteomics, SWATH-MS [29], we determined the
relative expression of 404 proteins in wild-type and TPO1 mutants

during the stress response. Proteome profiles were recorded at
different time points upon H2O2 exposure, and similarity
clustering on the basis of Pearson correlation was used to
identify TPO1-dependent regulatory clusters (Fig 2A). This
analysis revealed that Tpo1 controls the induction of proteins
required for oxidant tolerance [8,10,11]. Hsp90 (genes HSP82/
HSC82 [10]), Hsp70 (SSA1 [30]), Hsp104 [11] and Sod1 [31] were
induced in wild-type cells as previously reported. In Dtpo1 cells,
the induction of these proteins occurred faster. Contrarily, in
oexTPO1 cells, their induction was delayed or their expression
level remained unchanged (Fig 2A). Co-clustering with Hsp104
further identified 18 antioxidant enzymes, ribosomal components,
chaperones and nucleotide synthesis factors (Pnc1) that followed
the same pattern (Fig 2A).
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Fig 2 | TPO1 times the activation of the stress response. (A–F) Wild-type, Dtpo1 and oexTPO1 cells were grown exponentially, treated with 1.5 mM

H2O2 and sampled at indicated time points. (A) Induction of stress response genes is accelerated in Dtpo1 cells, but prevented by TPO1

overexpression. Relative expression level of 404 proteins as determined by SWATH-MS [29] and expressed as fold change (0¼ the median expression

value of the individual protein). The heat map illustrates 20 proteins identified by co-clustering with Hsp104. (B) Polyamine export controls the timing

of stress gene activation. Summary diagram of the relative expression of proteins identified in A as determined by targeted analysis of proteomic data.

(C–F) Expression of heat shock proteins is accelerated in Dtpo1 yeast and delayed in oexTPO1 cells. Relative expression of Hsp70, Hsp104 and Hsp90

as determined by targeted SWATH-MS. Shown are relative changes in abundance of at least four peptides per protein, each monitored by three MS/MS

transitions. Embedded diagrams show chromatograms obtained for a representative peptide (VNQIGTLSESIK (Eno1), TTPSFVAFTDTER (Hsp70),

NPSDITQEEYNAFYK (Hsp90) and VIGATTNNEYR (Hsp104)) after 120 min, where wild-type and TPO1-mutant cells differed most. Eno1, enolase;

H2O2, hydrogen peroxide; oexTPO1, overexpressing TPO1.
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Targeted analysis of the SWATH-MS data confirmed these
results. Spectral information for representative peptides
(supplementary Table S1 online) was extracted from the SWATH
profiles and their peak intensities were normalized to a reference
protein, Tdh1. Individual time course data are illustrated for the
chaperones Hsp70 (Fig 2D), Hsp104 (Fig 2E) and Hsp90 (Fig 2F).
Induction of these proteins was accelerated in Dtpo1 cells, and
delayed in oexTPO1 cells. A similar result was obtained for the
sum of all proteins of the cluster (Fig 2B). In comparison, the
expression of a representative control protein, enolase, was not
influenced by Tpo1 or H2O2 treatment (Fig 2C). Hence, on H2O2

treatment, stress response protein induction is determined in a
Tpo1-dependent manner.

TPO1 extends the oxidant-induced cell cycle arrest
The growth retardation that follows a H2O2 treatment is the
consequence of a G2 arrest in the cell cycle [19]. We therefore
tested whether the accelerated growth of Dtpo1 cells (Fig 1A) is
caused by a deficient cell cycle arrest. However, wild-type and
Dtpo1 cells accumulated comparably in the G2 phase on a H2O2

exposure (Fig 3A), indicating that the arrest was fully established.
Instead, growth assays revealed that cells deleted for TPO1 or

overexpressing differ in the duration of this arrest. We investigated
the growth response of wild-type and TPO1 mutants by exposing
the cells to incremental H2O2 levels. The arrest time was
calculated from the growth curves using R/grofit, employing a
model-free spline fit [32], and was expressed as the time from
treatment until the maximum growth rate was re-established.
Comparing arrest time and oxidant dose, we observed that wild-
type cells abruptly extend the cell cycle arrest (for 64%) when
H2O2 concentrations exceeded 0.75 mM (Fig 3B, left and middle
panels). Both below and above this level, H2O2 level and arrest
time correlated in a linear fashion, resulting in a bi-linear
correlation (Fig 3B, right panel).

This adaptation to high H2O2 concentrations was absent
in Dtpo1 cells (Fig 3C); H2O2 dose and cell cycle arrest
duration remained in linear correlation (Fig 3C, right panel).
The faster growth recapitulation of Dtpo1 cells (Fig 1A) is thus
the consequence of a deficient arrest extension (Fig 3C, left
and middle panels).

In contrast, TPO1 overexpression reversed this phenotype. A
lower H2O2 level was sufficient to prolong the cell cycle arrest in
oexTPO1 cells, and once induced, the arrest lasted longer
(Fig 3D). Hence, TPO1 is required for the adaptation to high
H2O2 levels; cells lacking this gene were deficient in extending
the cell cycle arrest in the presence of increased oxidant levels.

To test the role of polyamines in the arrest extension, we added
spermine after the H2O2 treatment. This treatment restored an
H2O2-induced arrest extension in Dtpo1 cells (Fig 4A,B; middle
panels). Nonetheless, the arrest remained shortened compared
with wild-type cells and required a higher H2O2 level for
induction. Notably, this treatment prolonged the arrest in wild-
type and oexTPO1 cells (Fig 4A, left and right panels; Fig 4B). As
oexTPO1 cells tolerate higher spermidine and spermine
levels [22], but arrested longer on spermine addition, while the
polyamine-sensitive Dtpo1 cells ([22]) recommenced growth
faster, we concluded that the prolonged arrest is not the
consequence of polyamine toxicity. Moreover, a partially
complementation for the arrest extension in Dtpo1 cells was

observed in complex media (YPD), which among other differences
to synthetic media is rich in both polyamines as well
(supplementary Fig S3 online). Therefore, the duration of the
H2O2-induced cell cycle arrest is adapted depending on
the applied H2O2 concentration; and this adaptation necessitates
the presence of Tpo1 or its substrates spermidine and spermine.

CONCLUSION
Survival during stress conditions requires rapid cellular adapta-
tion, achieved through the stress response machinery. Although
important features of this machinery have been identified, its
dynamic and multi-layer hierarchical regulation is still marginally
understood [8,33].

Here, we report that the polyamine exporter Tpo1 controls the
levels of spermidine and spermine during the oxidative stress
response and is involved in the coordination of two central
response features: the induction of antioxidant proteins, including
Hsp70, Hsp90, Hsp104 and Sod1, and the duration of the H2O2-
induced cell cycle arrest. Metabolic export is thus central for
mounting a timed induction of the stress response. In this context,
further antioxidative protection might arise from direct oxidant
depletion, as spermidine and spermine can scavenge free
radicals [26]. Indeed, we detected an in vitro H2O2 depletion in
the presence of spermidine and spermine. However, this effect
was only moderate and non-stoichiometric (supplementary Fig
S4B online), indicating that the direct antioxidant properties of
polyamines have an additional, but presumably minor role during
the H2O2 response.

Dtpo1 recommenced growth faster than wild-type cells,
increasing their fitness during oxidant exposure. However, it is
conceivable that the same behaviour could be deleterious under
other circumstances, that is, when a second exposure would
follow shortly after the first one. The prolongation of the cell cycle
arrest of wild-type cells could thus be the consequence of an
adaptation to defeat a repeated or cycling oxidant exposure. In this
context, despite protein induction and cell cycle arrest being
Tpo1-dependent, they appear to be regulated by functionally
distinct mechanisms. As Dtpo1 cells are polyamine sensitive [22],
and as spermine/spermidine uptake is mainly catalysed by Sam3
and Dur3 [34], indicates that polyamine uptake continues in the
absence of TPO1. It is worth speculating that low intracellular
polyamine concentrations prevent the continuation of the cell
cycle until the stress response is completed and polyamine
levels restored. Furthermore, there is evidence for extracellular
polyamine sensing, as spermidine effects on the cell cycle arrest
extension are additive in both Dtpo1 and oexTPO1, despite the
latter strain has lower intracellular polyamine levels and is more
spermidine/spermine resistant.

The literature contains several evidence that antioxidant
properties of spermidine and spermine are conserved across
species. First, spermidine and spermine are highly concentrated in
cell types that have a high demand on oxidant protection,
such as sperm [35]. Second, tumour cells whose cell growth
is limited by high oxidative loads [6] have higher survival chances
when they produce large amounts of polyamines [25,36].
Third, extracellular spermidine treatment does not only extend
lifespan in yeast, but also in worms and flies [27]. Moreover,
rat neurons trigger polyamine export upon stimulation [37].
Hence, both antioxidant properties and triggered export of
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polyamines are observed in several organisms. It is now required
to identify polyamine export systems in these species, and
to test to which extent their stress response is dependent on
polyamine export.

In conclusion, we identified a biochemical system that regulates
the stress response through Tpo1-mediated export of the poly-
amine metabolites spermidine and spermine. This system appears
to be central for achieving a time dependence in the coordination
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of the stress response, affecting cell cycle progression and protein
expression (Fig 5). Controlled metabolite export is thus a new
regulatory principle in mediating the dynamics of the cellular
stress response.

METHODS
Yeast strains. All strains used are isogenic derivatives of BY4741
and listed in supplementary Table S2 online. Plasmid and yeast
strain generation as well as yeast cultivation was conducted
according to standard procedures as described previously [38].
Screening the MATa gene deletion collection. Four replicates
of the 5150 strains [20] were grown in YPD to mid-log phase
and exposed to 1.25 mM H2O2. Their growth was followed
photometrically using a SpectraMax 250 Microplate reader
(Molecular Devices).
Growth assays. Individual growth curves were determined using
a multimode detector DTX 880 (Beckman Coulter) and analysed
with R/grofit using a model-free spline fit [32].
Flow cytometry. Flow cytometry was performed on an AriaII
SORP FACS (Becton Dickinson).
Polyamine quantification. Quantification of putrescine, spermi-
dine and spermine was performed by LC-MS/MS using RP-HPLC
(1290, Agilent) coupled to a Triple Quadrupole mass spectro-
meter, following derivatization with dansylic acid as described
[39]. Spermidine and spermine concentrations were expressed
relative to their precursor putrescine, which is not substrate
of Tpo1 [22].

SWATH-MS. Samples were prepared according to our previous
procedure [40] and analysed as described in Gillet et al, [29] on a
5600 QqTOF mass spectrometer (AB Sciex). Data were processed
in Skyline [41] and Spectronaut (Biognosys).

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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