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Abstract: In health monitoring systems, the base station (BS) and the wearable sensors communicate
with each other to construct a virtual multiple input and multiple output (VMIMO) system. In real
applications, the signal that the BS received is a distributed source because of the scattering, reflection,
diffraction and refraction in the propagation path. In this paper, a 2D direction-of-arrival (DOA)
estimation algorithm for incoherently-distributed (ID) and coherently-distributed (CD) sources
is proposed based on multiple VMIMO systems. ID and CD sources are separated through the
second-order blind identification (SOBI) algorithm. The traditional estimating signal parameters
via the rotational invariance technique (ESPRIT)-based algorithm is valid only for one-dimensional
(1D) DOA estimation for the ID source. By constructing the signal subspace, two rotational invariant
relationships are constructed. Then, we extend the ESPRIT to estimate 2D DOAs for ID sources.
For DOA estimation of CD sources, two rational invariance relationships are constructed based
on the application of generalized steering vectors (GSVs). Then, the ESPRIT-based algorithm is
used for estimating the eigenvalues of two rational invariance matrices, which contain the angular
parameters. The expressions of azimuth and elevation for ID and CD sources have closed forms,
which means that the spectrum peak searching is avoided. Therefore, compared to the traditional
2D DOA estimation algorithms, the proposed algorithm imposes significantly low computational
complexity. The intersecting point of two rays, which come from two different directions measured
by two uniform rectangle arrays (URA), can be regarded as the location of the biosensor (wearable
sensor). Three BSs adopting the smart antenna (SA) technique cooperate with each other to locate
the wearable sensors using the angulation positioning method. Simulation results demonstrate the
effectiveness of the proposed algorithm.

Keywords: health monitoring systems; virtual multiple input and multiple output (VMIMO);
direction-of-arrival (DOA) estimation; incoherently-distributed (ID) and coherently-distributed
(CD) sources

1. Introduction

Wearable health-monitoring systems (WHMS) have emerged as an effective way of improving
the performance of remote diagnoses and patients’ monitoring [1]. As the world population is aging,
the healthcare costs will increase, as well. There has been a need to monitor a patient’s status while he
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or she is out of the hospital in his or her personal environment [2]. Motivated by recent technological
advances in microelectronics and wireless communication, the wearable sensors of body area networks
(BANs), which are parts of the wireless sensor networks (WSN) [3,4], can be used to locate and monitor
patient’s status. Then, the feedback information about patient’s health condition can be provided to
caregivers, i.e., medical center, supervising professional physician or even the user himself or herself [5].
The localization of the patient (wearable sensor) is an important parameter for the medical center or
caregiver, especially for patients with cardiovascular diseases.

For the 5G link, the peak data rate will likely be in the range of tens of Gbps, which is suitable
for real-time communication between wearable sensors and caregivers via a base station (BS), etc. [6].
A general WHMS architecture consisting of the system’s functionality and components is depicted
in Figure 1. The patients in the hospital or geracomium are relatively intensive. The wearable
sensors of patients can be grouped together, and they can communicate with a BS simultaneously
on the same resource block. Thus, the BS and the patients construct a virtual multiple input and
multiple output (VMIMO) system. At present, the BS mostly adopts a smart antenna (SA) to reduce
interference, increase coverage and provide geographic information [7]. The fixed multi-beam antenna
and the adaptive array of antennas are two basic types of SA. The former turns the beams on or
off while the patient is moving; the latter processes and combines received signals to maximize the
signal-to-interference and noise ratio (SINR) [8,9]. The intersecting point of two rays, which come
from two different directions measured by two uniform rectangle arrays (URA), can be regarded as the
patient’s location. Thus, the accuracy of direction-of-arrival (DOA) estimation [10,11] is crucial in both
types of SA.

Figure 1. Architecture of a wearable health-monitoring system.

In real applications, the effect of angular spread cannot be ignored due to the scattering, reflection,
diffraction and refraction of the transmitted signal. If the signal model is regarded as a point source,
the DOA estimation performance of the VMIMO system [12,13] will degrade significantly. Generally, a
spatially-distributed source consists of hundreds of point sources [14]. The distributed source can be
categorized into incoherently-distributed (ID) and coherently-distributed (CD) sources corresponding
to rapidly and slowly time-varying channels, respectively. For ID source estimation, several DOA
estimation algorithms have been proposed in [15–18]. A new subspace-based algorithm without
eigendecomposition of the covariance matrix has been proposed based on the Capon estimator [15]
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and the property of the inverse of the covariance matrix [16]. However, the 2D nominal DOA of the
user terminal (UT) has to be estimated based on spectrum peak searching, and the computational
complexity is relatively high [15,16]. The maximum likelihood (ML) estimator, which has the
optimal estimation performance, has been proposed in [17,18]. However, only one distributed source
can be estimated in [18]. For CD source estimation, many DOA estimation algorithms have been
proposed, as well [19–21]. The 2D DOA estimation for two distributed source models (parametric
and nonparametric) has been solved based on the MUSIC-based method [19]. A two-step procedure
enabling decoupling the estimation of DOA from that of the angular spread has been proposed in [20].
For 2D DOA estimation, the sequential one-dimensional searching (SOS) method has been proposed
based on uniform circular arrays (UCA) [21]. However, 1D searching is needed, as well.

In this paper, we adopt the angulation positioning method for patients’ (wearable sensors)
localizations based on three BSs with the cooperation of multiple VMIMO systems. To the best of our
knowledge, there have been few reports about DOA estimation for ID and CD sources jointly. Thus,
we propose a 2D DOA estimation algorithm under the coexistence of ID and CD sources. To be more
specific, the main contributions of this paper are listed as follows.

(1) Based on the spatiotemporal separation technique, including the second-order blind identification
(SOBI) algorithm and the minimum description length (MDL) criterion, the mixed array manifold
matrix, including ID and CD sources, is obtained. ID and CD sources can be separated from the
amplitude information of the elements of the mixed array manifold matrix.

(2) Based on first-order Taylor series expansion of the steering vector and signal subspace algorithm,
we extend the ESPRIT to 2D DOA estimation. Three sub-arrays are constructed to form two
rotational invariant relationships, and then, the ESPRIT algorithm is used for DOA estimation of
ID sources.

(3) Based on the application of generalized steering vectors (GSVs), two rotational invariant
relationships are constructed, as well. We use ESPRIT to estimate eigenvalues of the two rotational
invariant matrices. The DOAs of CD sources contained in the eigenvalues can be obtained finally.

(4) Compared to the MUSIC-based method, the proposed algorithm bypasses the spectrum peak
searching because of the closed expression of the proposed estimator. Thus, the proposed
algorithm has much lower computational complexity, which is suitable for real-time application.

(5) The Cramér-Rao bound (CRB) containing ID and CD sources is derived, whereas the known CRB
is only valid for the estimation of CD or ID sources.

This paper is organized as follows. The localization scheme and problem formulation are
introduced in Section 2. The source separation algorithm is given in Section 3. The proposed DOA
estimation algorithm under the coexistence of ID and CD sources is proposed in Section 4. The
simulation results are shown and analyzed in Section 5. The conclusions are drawn in Section 6.

Notation: In this paper, the operator (·)T , (·)H and E {·} denote the transpose, conjugate transpose
and expectation, respectively. The boldface uppercase letters and boldface lowercase letters denote
matrices and column vectors, respectively. The symbol diag{z1, z2} stands for a diagonal matrix whose
diagonal entries are z1 and z2. The symbol blkdiag{Z1, Z2} stands for a block diagonal matrix, whose
diagonal entries are matrices Z1 and Z2.

2. The Localization Scheme Based on VMIMO Systems

2.1. The Localization Framework

The localization scheme of wearable sensors is shown in Figure 2. Three URAs are installed
at the top of three BSs, respectively. There are three resource blocks in Figure 2. The green circles
(biosensors) and the BS1 construct VMIMO1; the yellow circles (biosensors) and the BS2 construct
VMIMO2; the blue circles (biosensors) and the BS3 construct VMIMO3. These biosensors (wearable
sensors) can measure significant physiological parameters, like oxygen saturation, heart rate, body and
skin temperature, respiration rate, electrocardiogram, etc. Generally, the obtained data measured by
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biosensors are delivered to the BS based on a wireless link via a central node, such as a mobile phone
in the same resource block; then, the BS transmits the aggregated vital signs to a medical center or a
caregiver. The doctor and caregiver can realize the patient’s physical condition via a user interface,
such as a PC, mobile phone, etc.

Figure 2. Localization scheme based on VMIMO systems.

In theory, the intersecting point of two rays, which come from two different directions measured
by two uniform rectangle arrays (URA), can be regarded as the patient’s (wearable sensor) location.
However, for one biosensor, the BS can only give one estimated result of DOA in one resource block. We
need the help of another BS to give another estimated result of DOA. Thus, multiple VMIMO systems
(more than two) should cooperate with each other to locate the positions of biosensors. Generally, we
use three BSs to locate the positions of biosensors. The third estimated result of BS3 is to guarantee the
estimated accuracy and stability. Each biosensor has a unique ID, and the information of all IDs of
biosensors has already been stored in the data processing center (DPC). We can match two different
rays estimated by two different BSs according to the unique ID. Thus, the position of the biosensor can
be located. The DOA estimation algorithm can estimate multiple DOAs simultaneously. Thus, multiple
positions of biosensors can be obtained simultaneously. The details can be found in Appendix A1.

2.2. The Problem Formulation of DOA Estimation

In VMIMO systems, the rapidly time-varying and slowly time-varying channels corresponding to
ID and CD sources both exist. Thus, the mixed distributed sources, which are a more general case,
should be considered. In this subsection, the received data model of mixed distributed sources is
constructed, and it is adopted in the separation and 2D DOA estimation of ID and CD sources.

Assume that K narrowband uncorrelated distributed sources impinge on a URA with the number
of elements M = Mx My, where Mx and My are the number of elements respectively placed along x
and y directions, as shown in Figure 3, i.e., a BS of a VMIMO system with M elements communicates
with K UTs simultaneously using SA technique [8]. The inter-element spacing along the x and y
direction is half the wavelength. In a cellular mobile communication system, due to the reflection and
scattering in the multipath propagation, the angular spread cannot be ignored. The point source model
is replaced by a distributed source model. Thus, the M× 1 received data of a BS can be expressed
as [14]:
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x (t) =
KID

∑
k=1

sk (t)
Li

∑
j=1

γk,j (t) a
(

θk,j (t) , φk,j (t)
)
+

K

∑
k=KID+1

sk (t) ∫ ∫ a (θk, φk) ρk (θ, φ, µk) dθdφ

= AIDsID (t) + ACDsCD (t) + n (t) = As (t) + n (t) ∈ CM×1

(1)

where t = 1, . . . , T is a discrete series corresponding to the sampling points from one to T, and T is the
snapshot number. The matrix A = [AID, ACD] =

[
h1, . . . , hKID , hKID+1, . . . , hK

]
∈ CM×K is the array

manifold matrix with the source (biosensor) number K = KID + KCD, where KID is the source number
of ID sources and KCD is the number of CD sources; hk is the steering vector of the k-th signal source.

x
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Figure 3. The array configuration of the uniform rectangle array (URA) in a BS.

AID =

[
L1

∑
j=1

γ1,j (t) a
(
θ1,j (t) , φ1,j (t)

)
, . . . ,

LKID

∑
j=1

γKID ,j (t) a
(
θKID ,j (t) , φKID ,j (t)

) ∈ CM×KID

(2)

and:
ACD =

[
∫ ∫ a

(
θKID+1, φKID+1

)
ρ1
(
θ, φ, µKID+1

)
dθdφ

, . . . , ∫ ∫ a (θK, φK) ρK (θ, φ, µK) dθdφ] ∈ CM×KCD
(3)

are the array manifold matrices corresponding to ID and CD sources, respectively. The
signals vector s (t) =

[
sT

ID (t) , sT
CD (t)

]T ∈ CK×1 is the signal transmitted by biosensors.
sID (t) =

[
s1 (t) , . . . , sKID (t)

]
∈ CKID×1 and sCD (t) =

[
sKID+1 (t) , . . . , sK (t)

]
∈ CKCD×1 are the signal

vectors corresponding to ID and CD sources, respectively. γk,j (t), θk,j (t) and φk,j (t) are the complex
gain, azimuth and elevation of the j-th path for the k-th ID source, respectively, which satisfy
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0 ≤ θk,j (t) ≤ π, 0 ≤ φk,j (t) ≤ π/2, k = 1, . . . , KID, j = 1, . . . , Lk. Lk is the number of multipaths of
the k-th ID source.

The steering vector a
(

θk,j (t) , φk,j (t)
)
∈ CM×1 is the array response corresponding to θk,j (t) and

φk,j (t). The m-th element of the array is given by:[
a
(

θk,j (t) , φk,j (t)
)]

m
= exp

(
iω sin

(
φk,j (t)

)
[(mx − 1)

× cos
(

θk,j (t)
)
+
(
my − 1

)
sin
(

θk,j (t)
)])

,

m =
(
my − 1

)
+ Mx, mx = 1, . . . , Mx, my = 1, . . . , My

(4)

where ω = 2πd
/

λ, d and λ are the inter-sensor spacing and the wavelength, respectively. The azimuth
and elevation can be respectively written in another form as:

θk,j (t) = θ̄k + θ̃k,j (t) (5)

φk,j (t) = φ̄k + φ̃k,j (t) (6)

where θ̄k and φ̄k are nominal azimuth and elevation of the k-th ID source, respectively, θ̃k,j (t) and
φ̃k,j (t) are referred to as the angular spreads, which correspond to random angular deviations with
zero mean and standard deviations σθk and σφk , respectively. ρi (θ, φ, µi) is a deterministic angular
distribution function of the k-th ID source, k = KID + 1, . . . , K. The parameterized vector µi is expressed
as µi =

(
θi, σθi , φi, σφi

)
. n (t) ∈ CM×1 is the additive noise.

In addition, some assumptions are considered throughout this paper.

(1) ID sources are uncorrelated with CD sources, and they are uncorrelated with the noise.
(2) The complex gains γk,j (t), k = 1, . . . , KID, j = 1, . . . , Lk, t = 1, . . . , T, are independent and

identically distributed (i.i.d.) complex-valued zero-mean random variables:

E
{

γk,j (t) γ∗k,j (t̃)
}
=

σ2
γk

Lk
δ
(
k− k̃

)
δ
(

j− j̃
)

δ (t− t̃) (7)

where E
{

γk,j (t) γ∗k,j (t̃)
}

is the covariance.
(3) The noise n (t), t = 1, . . . , T is an i.i.d. random variable both in temporally- and

spatially-complex-valued circularly symmetric zero-mean Gaussian variables, whose covariance
matrix is given by:

E
{

n (t)nH (t̃)
}
= σ2

nIMδ (t− t̃) (8)

where E
{

n (t)nH (t̃)
}

is the covariance matrix.
(4) The number of multipaths Lk is sufficiently large, k = 1, . . . , KID.
(5) The BS equipped with M elements is much larger than the number of biosensors K [22].
(6) The signal powers SIDk = |sIDk (t)|2, k = 1, . . . , KID of ID sources are known as a prior; the

cellular area of the same resource block is not large; thus the power loss can be ignored.

Finally, we emphasize that the task is to estimate 2D nominal DOA θ̄k and φ̄k for ID and CD
sources, respectively, k = 1, . . . , K, based on the received snapshot data x (t), t = 1, . . . , T.

3. The Distributed Source Classification Based on SOBI

In this section, we will separate the ID and CD sources from the received signals with the help of
the SOBI algorithm [23,24].

The covariance matrix of the k-th ID source can be modeled as [25]:

RIDk ≈ SIDkak (θ, φ) aH
k (θ, φ)� B (Φk) (9)
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where B (Φk) is the real-valued symmetric Toeplitz matrix (the derivation is given in Appendix A2).
The channel of the k-th CD source is defined as [26]:

hCDk = ∫ ∫ a (θk, φk) ρk (θ, φ, µk) dθdφ ≈ a (θk, φk)� g (µk) , k = KID + 1, . . . , K (10)

where g (µk) is a real-valued term.
The SOBI algorithm is a blind signal processing technique based on a second-order statistic

characteristic. For the k-th source sk (t), the covariance matrix with nonzero time lag e can be expressed
as [23]:

fk = E {sk (t) s∗k (t− e)} (11)

Then, the correlation covariance of x (t) with time lag e is given by:

R (e) = E
{

x (t) xH (t− e)
}
=

K

∑
k=1

fk (e)hkhH
k = ADeAH (12)

where De = diag ([f1 (e) , . . . , fK (e)]). Note that R (el), l = 1, . . . , L contain the identical array manifold
with respect to different e ∈ {e1, . . . , eL}. It can be proven that if the difference among the diagonal
entries of De is obvious and A is full column rank, then multiple R (el) can be joint diagonalized using
A or its permutation matrix. Then, the array manifold matrix A can be accurately estimated using
R (el) with different time lag e. Assume that there are two correlation covariance matrices R (e1) and
R (e2); we have:

R (e1)R−1 (e2) = ADe1D−1
e2

AH (13)

Because De1D−1
e2

is a diagonal matrix, the unique estimate of array manifold matrix A can be
obtained by taking the eigenvalue decomposition (EVD) of De1D−1

e2
.

In real applications, R (e) can be estimated by the limited sample, which is given by:

R̂ (el) =
1
T

T+p+1

∑
i=p+1

E
{

x (i) xH (i− l)
}

, l = 0, . . . , L, p = 1, . . . , P (14)

Then, the SOBI algorithm is summarized as Algorithm 1 [24].

Algorithm 1 Implementation of the SOBI Algorithm.

1: Estimate the sampling covariance matrix R̂ (0) using T snapshot number;
2: Take EVD of R̂ (0); λ1, . . . , λn are n large eigenvalues, and u1, . . . , un are their corresponding

eigenvectors;
3: Average M− n small eigenvalues of R̂ (0), the noise variance σ̂2

n can be obtained; the whitened
signal z (t) = [z1 (t) , . . . , zn (t)] can be obtained with zi (t) =

(
λi − σ̂2

n
)

u∗i x (t). It is equivalent to

construct a whitened matrix Ŵ =
[(

λ1 − σ̂2
n
)−(1/2)u1, . . . ,

(
λ1 − σ̂2

n
)−(1/2)un

]H
;

4: Calculate the sampling covariance matrix R̂ (el) of z (t) with fixed time lag e ∈ {e1, . . . , eL}, L is
the group number of the sampling covariance matrix;

5: Take the joint diagonalization of R̂ (e1) , . . . , R̂ (eL) as shown in (13), then a unitary matrix Û is
obtained by taking the EVD of result matrix of joint diagonalization;

6: Estimate the generalized array manifold matrix A using Â = Ŵ†Û.

As shown in Equation (9), for the ID source, the amplitude of the entries of the covariance matrix
are getting smaller as angular spreads increase; as shown in Equation (10), the amplitude of entries of
generalized steering vectors are getting smaller as angular spreads increase.

For distributed sources, the amplitude of entries of array manifold matrix A is usually less
than one. However, if n (source number (SN)) is larger than the actual source number, after the signals’
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separation, the amplitude of entries of array manifold matrix A is usually lager than one based on
experiment. When SN is equal to the actual source number, the amplitude of entries of array manifold
matrix A is usually not larger than one. Usually, only the ID source may cause this phenomenon. If
the ID sources exist, SN is larger than the actual source number based on the minimum description
length (MDL) criterion [27]. Thus, the amplitude of any entries of array manifold matrix A is larger
than one, and SN > 1; we can distinguish it as an ID source. Then, SN is reduced by one, and the SOBI
is applied again. This procedure can be done iteratively until all ID sources are separated. Based on
the discussion above and Algorithm 1 , the separation algorithm for ID and CD sources is summarized
as Algorithm 2.

Algorithm 2 The Separation Algorithm for ID and CD Sources.

1: initialize RSN = 0,
2: ESN = 0;
3: SN = n;
4: while Âi (1 : ESN) > 1 do
5: if Âi > 1 then
6: ÂID =

[
Âi, ÂID

]
;

7: RSN = RSN + 1;
8: ESN = SN − RSN;
9: n = n− 1

10: Repeat: Algorithm 1;
11: end if
12: end while;

return RSN;
return RSN.

4. The Proposed Algorithm

4.1. DOA Estimation for ID Source

For the VMIMO system, the existing subspace-based and covariance matching-based algorithms
are sophisticated for 2D DOA estimation, because of their tremendous computational complexity
of multidimensional searching. In this section, based on the array manifold matrix estimated in
the previous section, an ESPRIT-based algorithm is proposed to deal with the problem of 2D DOA
estimation with low computational complexity.

Based on first-order Taylor series expansion of a
(

θk,j (t) , φk,j (t)
)

, the steering vector in
Equation (4) can be approximated as:

a
(

θk,j (t) , φk,j (t)
)
= a

(
θ̄k + θ̃k,j (t) , φ̄k + φ̃k,j (t)

)
≈ a

(
θ̄k, φ̄k

)
+

∂a
(
θ̄k, φ̄k

)
∂θ̄k

θ̃k,j (t) +
∂a
(
θ̄k, φ̄k

)
∂φ̄k

φ̃k,j (t)
(15)

where the terms after the second term are ignored. If standard deviations σθk and σφk are sufficiently

small, the first-order Taylor series expansion is almost equal to a
(

θk,j (t) , φk,j (t)
)

. Then, the received
data of ID source can be rewritten as:

xID (t) ≈
KID

∑
k=1

(
a
(
θ̄k, φ̄k

)
ck,1 (t) +

∂a
(
θ̄k, φ̄k

)
∂θ̄k

ck,2 (t) +
∂a
(
θ̄k, φ̄k

)
∂φ̄k

ck,3 (t)

)
+ n(t) ∈ CM×1 (16)

where ck,1 (t) = sk (t)
Nk
∑

j=1
Dk,j (t), ck,2 (t) = sk (t)

Nk
∑

j=1
Dk,j (t) θ̃k,j (t) and ck,3 (t) = sk (t)

Nk
∑

j=1
Dk,j (t) φ̃k,j (t), k = 1, . . . , KID.
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It can be seen from Equation (16) that the relationship between the received data of the ID source
and a

(
θk,j (t) , φk,j (t)

)
is linear; so is its partial derivatives. Thus, the received data of ID sources can

be rewritten as:
xID (t) ≈ BID (t) c (t) + n (t) (17)

where:

BID (t) =
[
a
(
θ̄1, φ̄1

)
, . . . , a

(
θ̄KID , φ̄KID

)
,

∂a
(
θ̄1, φ̄1

)
∂θ̄1

, . . . ,
∂a
(
θ̄KID , φ̄KID

)
∂θ̄KID

,
∂a
(
θ̄1, φ̄1

)
∂φ̄1

, . . . ,
∂a
(
θ̄KID , φ̄KID

)
∂φ̄KID

]
∈ CM×3KID

(18)

Then, the new array manifold matrix is expressed as:

c (t) =
[
c1,1 (t) , . . . , cKID ,1 (t) , c1,2 (t) , . . . , cKID ,2 (t) , . . . , c1,3 (t) , . . . , cKID ,3 (t)

]
∈ C3KID×1 (19)

the elements of c(t) are functions of the incident signal, the path gains and angular deviations. It can
be known that A is only determined by the nominal DOAs, θ̄k and φ̄k, k = 1, . . . , KID. Thus, we can
obtain the DOA of ID sources from A, and the covariance matrix of c (t) can be expressed as:

Pc = E
{

c (t) cH (t)
}
∈ R3KID×3KID (20)

It is a diagonal matrix with SIDk = |sIDk (t)|2, [Pc]K+k,K+k = [Pc]k,kσ2
θk

, [Pc]2K+k,2K+k = [Pc]k,kσ2
φk

,
k = 1, . . . , KID.

Based on Algorithm 2, the steering vectors of ID sources are separated. The estimator of ÂID is
obtained. Then, the estimator of snapshot data x̂ID (t) for ID sources can be obtained by:

x̂ID (t) ≈ ÂIDs (t) (21)

Then, the covariance matrix of ÂID is expressed as:

R̂ID = E
{

x̂ID (t) x̂H
ID (t)

}
= ÂIDR̂IDsÂH

ID ≈ BIDPcBH
ID + σ2

nIM ∈ CM×M (22)

where R̂IDs = diag
{

SID1, . . . , SIDKID

}
. It can be known that R̂IDs is a normal and positive diagonal

matrix. In general, BID is a full column rank matrix; the EVD of R̂ID is given by:

R̂ID ≈ [Us, Un]

[
Qs 03KID×(M−3KID)

0(M−3KID)×3KID
σ2

nIM−3KID

]
[Us, Un]

H

= UsQsUH
s + σ2

nUnUH
n ≈ UsQ̃sUH

s + σ2
nIM,

(23)

where Qs ∈ C3KID×3KID is a diagonal matrix with the entries of 3KID large eigenvalues of R̂ID.
The remaining M− 3KID small eigenvalues of R̂ID equal to σ2

n . Their corresponding subspace are signal
subspace Us ∈ CM×3KID and noise subspace Un ∈ CM×(M−3KID), respectively. Q̃s = Qs − σ2

nI3K ∈
R3KID×3KID . Based on Equations (22) and (23), we can know that:

BIDPcBH
ID ≈ UsQ̃sUH

s (24)

Since Q̃s is a diagonal matrix, as well, there exists a nonsingular matrix T ∈ C3KID×3KID ,
which satisfies:

BID ≈ UsT (25)

The linear relationship between BID and Us will be used to estimate the nominal DOAs.
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In order to obtain 2D angle estimation, azimuth and elevation, two rotation-invariant relationships
have to be constructed [28]. As shown in Figure 4, the whole URA is divided into three sub-arrays.
Although more sub-arrays can be divided, the computation complexity increases rapidly in the VMIMO
system. In order to reduce the computational complexity, only two rotation-invariant relationships
are adopted. This is different from the conventional ESPRIT algorithm; this rotational-invariant
relationship contains a

(
θ̄k, φ̄k

)
and its partial derivatives. The array manifold matrices of sub-arrays

have the same form as that of URA. The steering vector of the l-th sub-array is defined as
al
(
θ̄k, φ̄k

)
∈ C M̃×1, l = 1, 2, 3 and M̃ = (Mx − 1)

(
My − 1

)
.

x

y

O x
M

yM

Figure 4. The sub-arrays of URA.

In order to estimate the subspaces UID1, UID2 and UID3 of three sub-arrays, we need to construct
a selection matrix as follows:

[Jl ]m,n =

{
1, n = m +

⌊
m−1

Mx−1

⌋
+ dl , m = 1, . . . , M̃

0, otherwise
(26)

where d1 = 0, d2 = 1 and d3 = Mx. In (26), the floor operator makes bm− 1/Mx − 1c = n,
∀n = 0, . . . , My − 2 when m = n (Mx − 1) + 1, . . . , (n + 1) (Mx − 1). It can be seen that for the m-th
row of Jl , only the (m + bm− 1/Mx − 1c+ dl)-th entry is one, and the other entries are zeros. Thus, Jl
assigns the (m + bm− 1/Mx − 1c+ dl)-th of Us into the subspaces UID1, UID2 and UID3 belonging to
three sub-arrays, respectively. This coincides with the relationships between the sub-arrays and the
URA. Then, the estimators of subspaces UID1, UID2 and UID3 can be expressed as:

UIDl = JlUs, l = 1, 2, 3 (27)

Proposition 1. The subspaces UID1, UID2 and UID3 belonging to three sub-arrays have the relationships
as follows: UID1V1 = UID2

UID1V2 = UID3
(28)

where:
V1 = TW2,1T−1 ∈ C3KID×3KID

V2 = TW3,1T−1 ∈ C3KID×3KID
(29)

Proof. See Appendix A3.
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Thus, eigenvalues of V1 and V2 are diagonal entries of W2,1 and W3,1, respectively. However,
W2,1 and W3,1 are not diagonal matrices, but upper triangular matrices. Then, the conventional
ESPRIT algorithm cannot be used directly. Therefore, in order to estimate the diagonal elements
of W2,1 and W3,1, V1 and V2 need to be estimated from the three subspaces UID1, UID2 and UID3.
According to Equation (28), the estimators of V1 and V2 can be obtained by employing the well-known
total least-squares (TLS) method. Referring to the similar derivation in [29], we construct a new matrix:

ŨID1
∆
= [UID1, UID2] ∈ C M̃×6KID (30)

and the rank of ŨID1 is 6KID. The EVD of ŨID1 is expressed as:

[UID1, UID2]
H [UID1, UID2] = UxPxUH

x ∈ C6KID×6KID (31)

where Ux ∈ C6KID×6KID and Px ∈ C6KID×6KID are eigenvectors and eigenvalues of ŨID1, respectively.
Then, Ux ∈ C6KID×6KID can be partitioned into four block matrices as:

Ux =

[
Ux11 Ux12

Ux21 Ux22

]
(32)

where Uxab ∈ C3KID×3KID , a, b = 1, 2. The estimator of V1 is expressed as:

V̂1 = −Ux12U−1
x22 ∈ C

3KID×3KID (33)

In order to estimate nominal DOAs, the EVD of V̂1 is expressed as:

V̂1 = T1P1TH
1 (34)

where T1 ∈ C3KID×3KID and P1 ∈ C3KID×3KID are eigenvectors and eigenvalues of V̂1, respectively.
Similar to the process of estimating V̂1, the estimator of V2 is expressed as:

V̂2 = T2P2TH
2 (35)

where T2 ∈ C3KID×3KID and P2 ∈ C3KID×3KID are the eigenvectors and eigenvalues of V̂2, respectively.
However, the EVDs of V̂1 and V̂2 are completed separately. The eigenvalues between P1 and P2

have to be matched. Denote the k-th diagonal entry of Pd as Pdk, d = 1, 2. The eigenvectors
of the identical source are strongly correlated; thus, we can construct the sequencing matrix
G = TH

1 T2 to match P1k and P2i. According to the coordinate of the maximal entry in the
columns (or rows) of matrix G, we adjust the order of eigenvectors. Then, the parameter pairing
is completed. The estimators of [W2,1]k+(l−1)K,k+(l−1)K and [W3,1]k+(l−1)K,k+(l−1)K, which are the

eigenvalues P1,3(k−1)+l and P2,3(k−1)+l , l = 1, 2, 3 of V̂1 and V̂2, respectively, are obtained. According
to Equations (34) and (35), we have:

λ1,3(k−1)+l ≈ exp
(
iω sin (φ̄k) cos

(
θ̄k
))

(36)

λ2,3(k−1)+l ≈ exp
(
iω sin (φ̄k) sin

(
θ̄k
))

(37)

The estimators of the nominal 2D DOAs θ̄k and φ̄k for ID sources are given by:

ˆ̄θk =
1
3

3

∑
l=1

arctan

(
λ2,3(k−1)+l

λ1,3(k−1)+l

)
(38)
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ˆ̄φk =
1
3

3

∑
l=1

arcsin

 1
ω

√√√√− 2

∑
a=1

(
ln
(

λa,3(k−1)+l

))2
 (39)

where k = 1, . . . , KID. Thus, the 2D DOA estimation for ID sources is completed. The pseudo-code is
summarized as Algorithm 3.

Algorithm 3 The DOA Estimation Algorithm for ID Sources.

1: Estimate the covariance matrix R̂ID according to Equation (25);
2: Take the EVD of R̂ID; Qs is a diagonal matrix with the entries of 3KID; large eigenvalues of R̂ID,

Us ∈ CM×3KID are the corresponding signal subspace;
3: Divide the URA into three sub-arrays; calculate the selection matrix according to

Equations (A5)–(A7); construct two different rotational invariant relationships according to
Equation (46);

4: Construct new matrix ŨID1; perform the EVD of Equation (31), partitioning the matrix Ux into
four blocks; the eigenvalues of V̂1 and V̂2 can be obtained according to Equation (33);

5: Estimate 2D DOA for ID sources according to Equations (38) and (39).

4.2. DOA Estimation for the CD Source

We first define three M̃×M selection matrices:

S1 =
[
J̃0, 0M̃×M

]
S2 =

[
0M̃×M, J̃0

]
S3 =

[
J̃1, 0M̃×M

] (40)

where J̃i = blkdiag {JM×i, . . . , JM×i}, i = 0, 1. The received data of the three sub-arrays for CD sources
can be expressed as:

xCD1 (t) =
KCD

∑
k=1

∫ ∫
S1a (θk, φk) sk (t)× ρk (θk, φk; µk) dθdφ + n1 (t) ∈ C M̃×M

xCD2 (t) =
KCD

∑
k=1

∫ ∫
S2a (θk, φk) sk (t)× ρk (θk, φk; µk) dθdφ + n2 (t) ∈ C M̃×M

xCD3 (t) =
KCD

∑
k=1

∫ ∫
S3a (θk, φk) sk (t)× ρk (θk, φk; µk) dθdφ + n3 (t) ∈ C M̃×M

(41)

where n1, n2, n3 are additive noise vectors and sk (t) is a random process of the k-th signal source.
The generalized steering vectors [30] of the k-th CD source belonging to three sub-arrays can be

respectively expressed as:

bCD1 (θk, φk; µk) =
∫ ∫

S1a (θk, φk) ρk (θk, φk; µk) dθdφ ∈ C M̃×1

bCD2 (θk, φk; µk) =
∫ ∫

S2a (θk, φk) ρk (θk, φk; µk) dθdφ ∈ CM̃×1

bCD3 (θk, φk; µk) =
∫ ∫

S3a (θk, φk) ρk (θk, φk; µk) dθdφ ∈ CM̃×1

(42)

where k = 1, . . . , KCD.
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Proposition 2. For a small angular extension, there is an approximate rotational invariant relationships
between bCD1 (θk, φk; µk) and bCD2 (θk, φk; µk),

bCD2 (θk, φk; µk) =F2 (θk, φk) bCD1 (θk, φk; µk)

bCD3 (θk, φk; µk) =F3 (θk, φk) bCD1 (θk, φk; µk)
(43)

where k = 1, . . . , KCD.

Proof. see Appendix of [30].

Then, we can rewrite them in matrix form as:

BCD2 ≈ BID1Wx

BCD3 ≈ BID1Wy
(44)

where:
BCD1 = [bCD1 (θk, φk; µk) , . . . , bCD1

(
θKCD , φKCD ; µKCD

)]
∈ C M̃×KCD (45)

BCD2 = [bCD2 (θk, φk; µk) , . . . , bCD2
(
θKCD , φKCD ; ¯KCD

)]
∈ C M̃×KCD (46)

BCD3 = [bCD3 (θk, φk; µk) , . . . , bCD3
(
θKCD , φKCD ; µKCD

)]
∈ C M̃×KCD (47)

Wx = diag [F2 (θ1, φ1) , . . . , F2
(
θKCD , φKCD

)]
∈ CKCD×KCD (48)

Wy = diag [F3 (θ1, φ1) , . . . , F3
(
θKCD , φKCD

)]
∈ CKCD×KCD (49)

Based on Algorithm 2, the array manifold matrix for CD sources, which is denoted as ÂCD, can
be estimated. By multiplying the selection matrices in Equation (40), the array manifold matrices of
three sub-arrays can be respectively expressed as:

B̂CD1 = S1ÂCD ∈ C M̃×KCD

B̂CD2 = S2ÂCD ∈ C M̃×KCD

B̂CD3 = S3ÂCD ∈ C M̃×KCD

(50)

According to Equation (50), two rotational invariant relationships can be respectively expressed as:

Ŵx = B̂†
CD1B̂CD2

Ŵy = B̂†
CD1B̂CD3

(51)

The k-th diagonal entries of Ŵx and Ŵy are defined as εxk and εyk, respectively. The estimators of
the nominal 2D DOA θk and φk for CD sources are respectively given by:

θk = arctan

(
εxk
εyk

)
(52)

φ̂k = arcsin

(
1
u

√
−
[
ln2 (εxk) + ln2

(
εyk

)]2
)

(53)

where k = 1, . . . , KCD. Thus, the 2D DOA estimation for CD sources are completed. The pseudo-code
is summarized as Algorithm 4.
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Algorithm 4 The DOA Estimation Algorithm for CD Sources.

1: Define three M̃×M selection matrices according to Equation (40);
2: Based on Algorithm 2, the array manifold matrix ÂCD for CD sources is estimated;
3: Divide the URA into three sub-arrays; the array manifold matrix of these can be obtained by

multiplying the corresponding selection matrix based on Equation (50);
4: Calculate the two rotational invariant relationships, Ŵx and Ŵy, according to Equation (51);
5: Estimate 2D DOA for CD sources according to Equations (52) and (53).

Thus, the 2D DOA estimation for ID and CD sources can be summarized as follows.

Algorithm 5 The DOA Estimation Algorithm for Mixed Sources.

1: Separate the ID and CD sources based on SOBI algorithms Algorithm 1 and Algorithm 2;
2: Estimate the 2D DOA for ID sources according to Algorithm 3;
3: Estimate the 2D DOA for CD sources according to Algorithm 4;

Remark: The proposed algorithm can estimate 2D DOAs of ID or CD sources or joint ID and CD
sources. If only ID or CD sources exist in the incident signals, the separation of ID and CD sources can
be avoided. It is worth noting that the part of the proposed approach for 2D DOA estimation of ID
sources can also be applied to other scenarios by exploiting the rotational invariance property of the
array’s structure, such as uniform linear arrays (ULAs) and uniform cylindrical arrays (UCyA) [13].
The part of the proposed approach for 2D-DOA estimation of the CD source has a similar characteristic,
i.e., the rotational invariance property of the antenna array’s structure is exploited. Thus, the proposed
approach can be applied to other scenarios by exploiting the rotational invariance property of the
array’s structure, i.e., there exist three sub-arrays (the array’s structure can be arbitrary), which can
construct two different rotational invariance relationships; the 2D DOA estimation for ID and CD
sources can be achieved with little modification of the proposed algorithm.

5. Simulation Results

In this section, we will illustrate the performance of the proposed algorithm. The MUSIC-based
method is used after source separation. The PM [30], MUSIC-based algorithm [31] and the CRB are
considered for the performance comparison. In the simulation, the proposed algorithm is called the
ESPRIT-based algorithm.

The simulation condition is introduced as follows. The snapshot number is T = 1000. The group
number of the sampling covariance matrix is L = 10 in the SOBI algorithm. The numbers of the
elements are 100, i.e., there are Mx = 10 and My = 10 in the x-axis and y-axis, respectively. The
number of biosensors is K = 5, i.e., one ID source and one CD source. The number of multipaths
for the ID source is N = 50. The nominal azimuth and elevation for the ID source are 20◦, 30◦,
30◦, 50◦, respectively. The azimuth and elevation angular spreads for ID source are both equal to
σϑID = σφID = 1◦. For the CD source, the nominal azimuth and elevation for the CD source are 60◦, 40◦,
70◦, 50◦ and 80◦, 40◦, respectively. The azimuth and elevation angular spreads for the CD source are
both equal to σϑ2 = σφ2 = 2◦. The ID source and the CD source both satisfy the Gaussian-shaped
distribution. The noise is the additive Gaussian white noise, and it is not correlated with signals. Five
hundred Monte Carlo trials are taken in the simulation. The average root mean square error (RMSE) is
defined as:

RMSE =

√√√√ 1
500

500

∑
m=1

(κ̂k (m)− κk)
2 (54)

where κ stands for θ̂k (m) and φ̂k (m), which are the estimates of θk and φk of the m-th Monte Carlo
trials, respectively.
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As shown in Figure 5, the RMSE of the azimuth estimation for the ID source versus SNR is depicted.
It can be seen that the RMSE of the ESPRIT algorithm is larger than that of the MUSIC algorithm, and
the CRB has a low SNR. When the SNR increases, the RMSE of the ESPRIT algorithm decrease rapidly.
However, the MUSIC algorithm varies slowly as the SNR changes. The PM has the largest RMSE of all
of the algorithms. This is mainly caused by the signal and noise subspaces not being orthogonal. The
subspace method has the lowest RMSE. However, the computational complexity is tremendous.
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Figure 5. The RMSE of azimuth for the ID source versus SNR.

The RMSE of the elevation estimation for the ID source versus SNR is depicted in Figure 6. The
RMSE of the azimuth and elevation estimation for the CD source versus SNR is depicted in Figures 7
and 8, respectively. The curve trend of the PM, the ESPRIT algorithm, the MUSIC and subspace
algorithm and the CRB in Figures 6–8 are similar. It can be seen that when SNR is low, the RMSE of the
ESPRIT algorithm is larger than that of MUSIC, the subspace algorithms and the CRB. The RMSE of
the MUSIC and subspace algorithms become smaller as the SNR increases, but the reduced amplitude
is not obvious.
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Figure 6. The RMSE of the elevation for the ID source versus SNR.
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Figure 7. The RMSE of the azimuth for the CD source versus SNR.
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Figure 8. The RMSE of the elevation for the CD source versus SNR.

As shown in Figure 9, the RMSE of the azimuth estimation for ID source versus snapshot number
is depicted. It can be seen that the RMSE of the ESPRIT algorithm is larger than that of the MUSIC and
subspace algorithms.

The RMSE of the elevation estimation for the ID source versus snapshot number from UTs is
depicted in Figure 10. The RMSE of the azimuth and elevation estimation for the CD source versus
snapshot number is depicted in Figures 11 and 12, respectively. The curve trends of the PM, ESPRIT,
MUSIC and subspace algorithms and the CRB in Figures 10–12 are similar, as well. It can be seen that
the RMSE of the ESPRIT algorithm is larger than that of the MUSIC and subspace algorithms and
the CRB.
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Figure 9. The RMSE of azimuth for the ID source versus snapshot number.
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Figure 10. The RMSE of elevation for the ID source versus snapshot number.
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Figure 11. The RMSE of azimuth for the CD source versus snapshot number.
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Figure 12. The RMSE of elevation for the CD source versus snapshot number.

We evaluate the averaged CPU times of PM, MUSIC, the subspace algorithm and ESPRIT in the
following experiment. The simulation condition is the same as Figure 1. The snapshot number is fixed
at 2000, and the SNR is fixed at 3 dB. The experiment is carried out in MATLAB v.8.3.0 on a PC with a
Windows 7 system and a 3-GHz CPU. Table 1 presents the the averaged CPU times of PM, MUSIC,
the subspace algorithm and ESPRIT. The MUSIC and subspace method is the most time consuming,
since the spectrum peak searching is needed. PM costs the least time of all, since the spectrum peak
searching is not needed. Thus, ESPRIT is chosen as the DOA estimation algorithm for the biosensor’s
localization, since it performs well in the estimated accuracy and resolution probability, and it does not
cost much time to execute the algorithm.

Table 1. Averaged CPU times. Time unit: s.

PM ESPRIT MUSIC Subspace

0.28 0.61 1.20 2.5

It should be noted that the curve of the MUSIC algorithm does not change much in the above
figure. This phenomenon is mainly caused by the MUSIC algorithm being directly used by multiplying
the estimated array manifold matrix without any form transformation.

The proposed algorithm does not perform well when the SNR is low. However, as we all know,
the BS of VMIMO is equipped with a large number of elements. We can deal with this problem
by increasing the number of elements equipped in the BS as a trade-off. The proposed algorithm
has a larger RMSE than that of the MUSIC algorithm, but the proposed algorithm has much lower
computational complexity compared to the MUSIC algorithm.

6. Conclusions

For the location of the biosensor (wearable sensor) in health monitoring systems, first, a
localization scheme based on a multiple VMIMO system is constructed. The intersecting point
of two rays, which come from two different directions measured by two uniform rectangle arrays
(URA), can be regarded as the location of the biosensor (wearable sensor). Then, a 2D DOA estimation
algorithm under the coexistence of ID and CD sources is proposed. The computational complexity
of the proposed algorithm is much lower than that of other multidimensional parameter searching
algorithms, such as the MUSIC algorithm. The ID and CD sources are processed separately. Three
sub-arrays are selected to construct rotational-invariant matrices. The simulation result confirms that
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the proposed algorithm outperforms the MUSIC-based algorithm when the SNR is larger than a certain
threshold value. In future work, we will focus on the effective separation method between the ID and
CD sources with low computational complexity. In addition, the angular spreads’ estimation should
be considered in our future work.
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Appendix A

A1. The Localization Method Based on Multiple VMIMO

A similar scheme has been proposed in our previous work [32,33]. It is used for the localization
of patients in the emergency healthcare system and partial-discharge source diagnosis and localization
in an industrial high-voltage insulation system. The effectiveness of the proposed scheme in [32,33]
has been verified. The real test has been done for partial-discharge source localization [33]. In order to
have an intuitive impression, we give the localization method of the proposed scheme as follows.

As shown in Figure A1, three URAs cooperate with each other to locate the biosensors’ positions.
The azimuths θ1, φ1 and θ2, φ2 can be estimated by using the algorithm proposed in Section 4.
The coordinates of reference Points A, B and C corresponding to VMIMO1(URA1), VMIMO2(URA2)
and VMIMO3(URA3) are (xA, 0, z), (0, 0, z) and (0, yC, 0), respectively. Based on the measurements of
URA1 and URA2, we have:

xs =
xA

tan θ2
tan θ1

+ 1
(A1)

ys =
xA

tan−1θ1 + tan−1θ2

√
1 + tan−2θ1 tan φ1 (A2)

zs = z− xA

tan−1θ1 + tan−1θ2
(A3)
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Figure A1. The localization of the biosensor.
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Based on the measurements of URA2 and URA3, we would have another estimated result. These
two results can be used to improve the estimated stability of the proposed scheme.

A2. The Derivation of Equation (9)

Assume the k-th ID source impinges on the array; the covariance matrix of received data can be
modeled as:

RIDk =2πSIDk

∫ ∫ ∫ ∫
{p (α) ak (θi, φi) aH

k
(
θj, φj

)
× qk

(
(θi, φi) ,

(
θj, φj

)
; σθ , σφ

)}
dθidφidθjdφj + σ2

nI
(A4)

where qk
(
(θi, φi) ,

(
θj, φj

)
; σθ , σφ

)
is the kernel function of angular auto-correlation. p (α) is the von

Mises angular function, whose definition is:

p (α) =exp
(
α cos

(
(θi, φi)−

(
θj, φj

)))/
2π J0 (α) (A5)

where J0 (α) is first kind zero-order Bessel function, whose definition is:

J0 (α) =
∞

∑
n=0

(
k
/

2
)2i
/
(n!)2 (A6)

When α=∞, we have p (α) =δ
(
(θi, φi)−

(
θj, φj

))
. If σθ > 0 and σφ > 0, we have:

RIDk=SIDk

∫ ∫
ak (θ, φ) aH

k (θ, φ) pI
(
θ, φ, σθ , σφ

)
dθdφ

≈ SIDkak (θ, φ) aH
k (θ, φ)� B (Φk)

(A7)

where pI
(
θ, φ, σθ , σφ

)
is the angular power density of the ID source and B (Φk) is a real-valued

symmetric Toeplitz matrix.

A3. The Proof of Proposition 1

Two (a− 1)× a selection matrices Ja×0 =
[
Ia−1, 0(a−1)×1

]
and Ja×1 =

[
0(a−1)×1, Ia−1

]
are defined,

where 0a×b is an a× b zero matrix. Thus, the steering vector of Sub-array 1, Sub-array 2 and Sub-array
3 can be respectively expressed as:

bID1 =
(

JMy×0ay

)
⊗ (JMx×0ax) (A8)

bID2 =
(

JMy×1ay

)
⊗ (JMx×0ax) (A9)

bID3 =
(

JMy×0ay

)
⊗ (JMx×1ax) (A10)

From Equations (A8)–(A10), we can obtain the relationships among the steering vector
of sub-arrays:

bIDq
(
θ̄k, φ̄k

)
= Fq

(
θ̄k, φ̄k

)
bID1

(
θ̄k, φ̄k

)
(A11)

where q = 2, 3 and:
F2
(
θ̄k, φ̄k

)
= exp

(
iω sin (φ̄k) cos

(
θ̄k
))

(A12)

F3
(
θ̄k, φ̄k

)
= exp

(
iω sin (φ̄k) sin

(
θ̄k
))

(A13)

where F2
(
θ̄k, φ̄k

)
and F3

(
θ̄k, φ̄k

)
are two different rotational-invariant relationships containing the

information of 2D nominal DOAs. Then, the partial derivation of bIDq
(
θ̄k, φ̄k

)
can be respectively

expressed using b1
(
θ̄k, φ̄k

)
and its partial derivation as:
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∂bIDq
(
θ̄k, φ̄k

)
∂θ

= Fq
(
θ̄k, φ̄k

) ∂bID1
(
θ̄k, φ̄k

)
∂θ

+
∂Fq

(
θ̄k, φ̄k

)
∂θ

bID1
(
θ̄k, φ̄k

)
(A14)

and:
∂bIDq

(
θ̄k, φ̄k

)
∂φ

= Fq
(
θ̄k, φ̄k

) ∂bID1
(
θ̄k, φ̄k

)
∂φ

+
∂Fq

(
θ̄k, φ̄k

)
∂φ

bID1
(
θ̄k, φ̄k

)
(A15)

Based on Equation (18), the array manifold matrix of the q-th sub-array can be expressed as:

BIDl =
[
al
(
θ̄1, φ̄1

)
, . . . , al

(
θ̄KID , φ̄KID

)
,

∂al
(
θ̄1, φ̄1

)
∂θ̄1

, . . . ,
∂al
(
θ̄KID , φ̄KID

)
∂θ̄KID

,
∂al
(
θ̄1, φ̄1

)
∂φ̄1

, . . . ,
∂al
(
θ̄KID , φ̄KID

)
∂φ̄KID

] (A16)

Then, there exist two rotational invariant matrices Wq,1 satisfying BID1Wq,1 = BIDq, where:

Wq,1 =

 Pq,1 Pq,2 Pq,3

0KID×KID Pq,1 0KID×KID

0KID×KID 0KID×KID Pq,1

 ∈ C3KID×3KID (A17)

Pq,1 = diag
[
Fq
(
θ̄1, φ̄1

)
, . . . , Fq

(
θ̄K, φ̄K

)]
∈ C3KID×3KID (A18)

Pq,2 = diag

[
∂Fq

(
θ̄1, φ̄1

)
∂θ̄1

, . . . ,
∂Fq

(
θ̄1, φ̄1

)
∂θ̄1

]
∈ C3KID×3KID (A19)

Pq,3 = diag

[
∂Fq

(
θ̄1, φ̄1

)
∂φ̄1

, . . . ,
∂Fq

(
θ̄1, φ̄1

)
∂φ̄1

]
∈ C3KID×3KID , q = 2, 3 (A20)

Based on Equations (A14), (A15) and (A17), we can know that diagonal entries of Wq,1 contain
the 2D nominal DOAs:

[W2,1]k+(l−1)K,k+(l−1)K = F2
(
θ̄k, φ̄k

)
(A21)

[W3,1]k+(l−1)K,k+(l−1)K = F3
(
θ̄k, φ̄k

)
(A22)

where l = 1, 2, 3. Thus, diagonal entries of Wq,1 can be used for estimating the 2D nominal DOAs.
From Equation (25), we can obtain the signal subspace UIDl corresponding to the array manifold

matrix of the l-th sub-array:
BIDl = UIDlT, l = 1, 2, 3 (A23)

Because 2D nominal DOAs’ information is contained in Wq,1, the relationship BID1Wq,1 = BIDq
can be used to estimate DOA, and they are substituted in Equation (A20); we have:

BID1 = UID1T
BID1W2,1 = UID2T
BID1W3,1 = UID3T

(A24)

Based on the ESPRIT algorithm, we have Equation (28). Thus, the proof is completed.

A4. Cramér-Rao Bound

In this section, the CRB of 2D DOA estimation, including ID and CD sources, is derived. Generally,
the received data of URA can be expressed as:

x (t) =
K

∑
k=1

sk (t) hk (t) = Hs (t) (A25)
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where x (t), a complex Gaussian vector with zero mean, hk (t) is the k-th channel parameter, H ∈ CM×K

is the channel parameter matrix and s (t) ∈ CK×1 is the signal vector. The covariance matrix of x (t) is
expressed as:

Rx = E
{

x (t) x(t)H
}
= HRsHH (A26)

For T statistically-independent observations of x (t), the unknown DOAs vector of Rx is defined as:

κ =
[
θT , φT

]T
(A27)

where θ =
[
θ1, . . . , θKID , θKID+1, . . . , θK

]T and φ =
[
φ1, . . . , φKID , φKID+1, . . . , φK

]T . The general
expression of the (m, n)-th element in the Fisher information matrix (FIM) can be expressed as:

Fκmκn = Ttr
{

R−1
x

∂Rx

∂κm
R−1

x
∂Rx

∂κn

}
(A28)

In the following derivation, Ḣϑm
∆
= ∂H

/
∂ϑm. Based on Equation (A26), the partial derivation of

Rx is:
∂Rx

∂θm
= Ḣϑm RsHH + HRsḢH

ϑm
(A29)

Based on tr
{

R + RH} = 2Re {tr {R}}, we have:

Fθmθn =Ttr
{

R−1
x

∂Rx

∂θm
R−1

x
∂Rx

∂θn

}
=Ttr

{
R−1

x

(
Ḣϑm RsHH + HRsḢH

ϑm

)
R−1

x

(
Ḣϑn RsHH + HRsḢH

ϑn

)}
=2TRe

{
tr
{

R−1
x Ḣϑm RsHHR−1

x Ḣϑn RsHH
}

tr
{

R−1
x Ḣϑm RsHHR−1

x HRsḢH
ϑn

}} (A30)

Since only the m-th column of Ḣϑm is nonzero, then it can be represented as Ḣϑm = HθDm
K
(

Dm
K
)T ,

where the m-th column of the identity matrix is defined as γm
K . Hθ is the derivative matrix of the

channel parameter matrix, which is expressed as:

Hθ =

[
dh1

dθ1
, . . . ,

dhKID

dθKID

,
dhKID+1

dθKID+1
, . . . ,

dhK
dθK

]
(A31)

Then, Equation (A30) can be rewritten as:

Fθmθn =2TRe
{

tr
{

R−1
x HθDm

K (Dm
K )

TRsHH R−1
x HθDn

K(Dn
K)

TRsHH

+ R−1
x HRsDm

K (Dm
K )

THH
θ R−1

x HθDn
K(γ

n
K)

TRsHH
}}

=2TRe
{(

(Dm
K )

TRsHHR−1
x HθDn

K

) (
(Dn

K)
TRsHHR−1

x HθDm
K

)
+
(
(Dm

K )
T HH

θ R−1
x HθDn

K

) (
(Dn

K)
TRsHHR−1

x HRsDm
K

)}
(A32)

The FIM corresponding to θ can be expressed as:

Fθθ =2TRe
{(

RsHHR−1
x Hθ

)
�
(

RsHHR−1
x Hθ

)T

+
(

HH
θ R−1

x Hθ

)
�
(

RsHHR−1
x HRs

)T
} (A33)
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Similarly, the FIM corresponding to φ can be expressed as:

Fφφ =2TRe
{(

RsHHR−1
x Hφ

)
�
(

RsHHR−1
x Hφ

)T

+
(

HH
φ R−1

x Hφ

)
�
(

RsHHR−1
x HRs

)T
} (A34)

where:

Hφ =

[
dh1

dφ1
, . . . ,

dhKID

dφKID

,
dhKID+1

dφKID+1
, . . . ,

dhK
dφK

]
(A35)

The FIM corresponding to the cross-terms between θ and φ are respectively expressed as:

Fθφ =2TRe
{(

RsHHR−1
x Hφ

)
�
(

RsHHR−1
x Hθ

)T

+
(

HH
θ R−1

x Hφ

)
�
(

RsHHR−1
x HRs

)T
} (A36)

and:
Fφθ =2TRe

{(
RsHHR−1

x Hθ

)
�
(

RsHHR−1
x Hφ

)T

+
(

HH
φ R−1

x Hθ

)
�
(

RsHHR−1
x HRs

)T
} (A37)

Based on the derivation above, the entire FIM can be expressed as:

Fκκ =

[
Fθθ Fθφ

Fφθ Fφφ

]
2K×2K

(A38)

Define a new matrix G = F−1
κκ ; we can obtain the CRBs of θ and φ for the ID and CD sources,

respectively, as:

CRBθID =

√√√√KID

∑
k=1

Gkk/KID (A39)

CRBθCD =

√√√√ K

∑
k=KID+1

Gkk/KCD (A40)

CRBφID =

√√√√K+KID

∑
k=K+1

Gkk/KID (A41)

CRBφCD =

√√√√ 2K

∑
k=K+KID+1

Gkk/KCD (A42)
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