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ABSTRACT Recombination is a complex biological process that results from a cascade of multiple events during meiosis.
Understanding the genetic determinism of recombination can help to understand if and how these events are interacting. To tackle
this question, we studied the patterns of recombination in sheep, using multiple approaches and data sets. We constructed male
recombination maps in a dairy breed from the south of France (the Lacaune breed) at a fine scale by combining meiotic recombination
rates from a large pedigree genotyped with a 50K SNP array and historical recombination rates from a sample of unrelated individuals
genotyped with a 600K SNP array. This analysis revealed recombination patterns in sheep similar to other mammals but also genome
regions that have likely been affected by directional and diversifying selection. We estimated the average recombination rate of
Lacaune sheep at 1.5 cM/Mb, identified �50,000 crossover hotspots on the genome, and found a high correlation between historical
and meiotic recombination rate estimates. A genome-wide association study revealed two major loci affecting interindividual variation
in recombination rate in Lacaune, including the RNF212 and HEI10 genes and possibly two other loci of smaller effects including the
KCNJ15 and FSHR genes. The comparison of these new results to those obtained previously in a distantly related population of
domestic sheep (the Soay) revealed that Soay and Lacaune males have a very similar distribution of recombination along the genome.
The two data sets were thus combined to create more precise male meiotic recombination maps in Sheep. However, despite their
similar recombination maps, Soay and Lacaune males were found to exhibit different heritabilities and QTL effects for interindividual
variation in genome-wide recombination rates. This highlights the robustness of recombination patterns to underlying variation in their
genetic determinism.

KEYWORDS recombination rate; genetic maps; QTLs; evolution; sheep

Meiotic recombination is a fundamental biological pro-
cess that brings a major contribution to the genetic

diversity and the evolution of eukaryotic genomes (Baudat
et al. 2013). During meiosis, recombination enables chromo-
somal alignment resulting in proper disjunction and segre-
gation of chromosomes, avoiding deleterious outcomes
such as aneuploidy (Hassold et al. 2007). Over generations,
recombination contributes to shaping genetic diversity in
a population by creating new allelic combinations and

preventing the accumulation of deleterious mutations.
Over large evolutionary timescales, divergence in recombina-
tion landscapes can lead to speciation; the action of a key
factor in the recombination process in many mammals, the
gene PRDM9, has been shown to have a major contribution
to the infertility between two mouse species, making it the
only known speciation gene in mammals today (Mihola et al.
2009).

Genetics studies on recombination were first used to infer
the organization of genes along the genome (Sturtevant
1913). With advances in molecular techniques, more de-
tailed physical maps and eventually whole-genome assem-
blies are now available in many species. The establishment
of highly resolutive recombination maps remains of funda-
mental importance for the validation of the physical order-
ing of markers obtained from sequencing experiments
(Groenen et al. 2012; Jiang et al. 2014). From an evolutionary
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perspective, the relevant distance between loci is the genetic
distance and recombination maps are essential tools for the
genetic studies of a species, for estimation of past demogra-
phy (Li and Durbin 2011; Boitard et al. 2016), detection of
selection signatures (Sabeti et al. 2002; Voight et al. 2006),
QTL mapping (Cox et al. 2009), and imputation of genotypes
(Howie et al. 2009) for genome-wide association studies
(GWAS) or genomic selection. Precise recombination maps
can be estimated using different approaches. Meiotic recom-
bination rates can be estimated from the observation of
markers’ segregation in families. Although this is a wide-
spread approach, its resolution is limited by the number of
meioses that can be collected within a population and the
number of markers that can be genotyped. Consequently,
highly resolutive meiotic maps have been produced
in situations where large segregating families can be studied
and genotyped densely (Shifman et al. 2006; Mancera et al.
2008; Groenen et al. 2009; Rockman and Kruglyak 2009;
Kong et al. 2010) or by focusing on specific genomic re-
gions (Cirulli et al. 2007; Stevison and Noor 2010; Kaur
and Rockman 2014). In livestock species, the recent availabil-
ity of dense genotyping assays has fostered the production of
highly resolutive recombination maps (Tortereau et al. 2012;
Johnston et al. 2016, 2017), particularly by exploiting refer-
ence population data from genomic selection programs
(Sandor et al. 2012; Ma et al. 2015; Kadri et al. 2016).

Another approach to study the distribution of recombina-
tion on a genome is to exploit patterns of correlation between
allele frequencies in a population (i.e., linkage disequilibrium,
LD) to infer past (historical) recombination rates (McVean
et al. 2002; Li and Stephens 2003; Chan et al. 2012). Because
the LD-based approach in essence exploits meioses accumu-
lated over many generations, it can provide more precise
estimates of local variation on recombination rate. For exam-
ple, until recently (Pratto et al. 2014; Lange et al. 2016) this
was the only known indirect approach allowing the detection
of fine-scale patterns of recombination genome-wide in
species with large genomes. Several highly recombining in-
tervals (recombination hotspots) were detected from histor-
ical recombination rate maps and confirmed or completed
those discovered by sperm-typing experiments (Crawford
et al. 2004; Myers et al. 2005). One important caveat of
LD-based approaches is that their recombination rate esti-
mates are affected by other evolutionary processes, especially
selection that affects LD patterns unevenly across the ge-
nome. Hence, differences in historical recombination be-
tween distant genomic regions have to be interpreted with
caution. Despite this, historical and meiotic recombination
rates usually exhibit substantial positive correlation (Rockman
and Kruglyak 2009; Brunschwig et al. 2012; Chan et al. 2012;
Wang et al. 2012).

The LD-based approach does not allow the study of
individual phenotypes to directly identify loci influencing
interindividual variation in recombination rates. In contrast,
family-based studies in human (Kong et al. 2008; Chowdhury
et al. 2009), Drosophila (Stevison and Noor 2010; Chan et al.

2012) mice (Shifman et al. 2006; Brunschwig et al. 2012),
cattle (Sandor et al. 2012; Ma et al. 2015; Kadri et al. 2016),
and sheep (Johnston et al. 2016) have demonstrated
that recombination exhibits interindividual variation and
that this variation is partly determined by genetic factors.
Two recombination phenotypes have been described: the
number of crossovers per meiosis (genome-wide recombina-
tion rate, GRR herein) and the fine-scale localization of cross-
overs (Individual Hotspot Usage, IHU). GRR has been shown
to be influenced by several genes. For example, a recent
GWAS found evidence for association with six genome re-
gions in cattle (Kadri et al. 2016). Among them, one of the
genomic regions consistently found associated with GRR in
mammals is an interval containing the RNF212 gene. In con-
trast to GRR, the IHU phenotype seems mostly governed by a
single gene in most mammals: PRDM9. This zinc-finger pro-
tein has a key role in recruiting SPO11, thereby directing DNA
double-strand breaks (DSBs) that initiate meiotic recombina-
tion. Because PRDM9 recognizes a specific DNA motif, the
crossover events happen in hotspots carrying this motif. How-
ever, this PRDM9-associated process is not universal as it is
only active in some mammals; canids, for example, do not
carry a functional copy of PRDM9 and exhibit different pat-
terns for the localization of recombination hotspots (Auton
et al. 2013).

As mentioned above, recombination was studied recently
in sheep (Johnston et al. 2016), which lead to the production
of precise genome-wide recombination maps, revealed a sim-
ilar genetic architecture of recombination rates in sheep as in
other mammals, and identified two major loci affecting indi-
vidual variation. Quite interestingly, one of the QTL identified
in this study, localized near the RNF212 gene, was clearly
demonstrated to have a sex-specific effect. This study was
performed in a feral population of sheep that is quite distantly
related to continental populations (Kijas et al. 2012) and has
not been managed by humans for a long time. To understand
how recombination patterns and genetic determinism can
vary across populations, in this work we conducted a study
in another sheep population, the Lacaune, from the south of
France. The Lacaune breed is the main dairy sheep popula-
tion in France, its milk being mainly used for the production
of Roquefort cheese. Starting in 2011, a large genotyping
effort started in the breed to implement a genomic selection
program (Baloche et al. 2014), and young selection candi-
dates are now routinely genotyped for a medium-density
genotyping array (�50K SNP). This constitutes a large data
set of genotyped families that can be used to study recombi-
nation, although limited to one sex as only males were used
for genomic selection in this population. This data set offers
an opportunity to study variation in recombination and its
genetic determinism between very diverged populations of
the same species. Hence, a first objective of this study was to
elucidate whether these two sheep populations had similar
distribution of recombination on the genome and whether
they shared the same genetic architecture of the trait, and
in particular the same QTL effects.

768 M. Petit et al.



The second objective of this studywas to compare different
approaches to study recombination from independent data in
the same population. To this end, in addition to the pedigree
data,weexploitasampleof51unrelated individualsgenotyped
with a high-density genotyping array (�500KSNP).While, the
family data were used to establish meiotic recombination
maps, the sample of densely genotyped individuals was used
to create historical recombination maps of higher resolution.
This offered the opportunity to evaluate to what extent sheep
ancestral recombination patterns match contemporary ones.

Materials and Methods

Study population and genotype data

In thiswork,weexploited twodifferentdata sets of sheep from
theLacaunebreed: apedigreedata set of 8085 relatedanimals
genotypedwith themedium-density IlluminaOvine Beadchip
including54,241SNPs, andadiversitydata setof70unrelated
Lacaune individuals selected as to represent population ge-
netic diversity, genotyped with the high-density Illumina
Ovine Infinium HD SNP Beadchip (Moreno-Romieux et al.
2017; Rochus et al. 2017).

Standard data cleaning procedureswere carried out on the
pedigree data set using plink 1.9 (Chang et al. 2015) exclud-
ing animals with call rates below 95% and SNPs with call
frequency , 98%. After quality controls, we exploited geno-
types at 46,813 SNPs and 5940 meioses. For these animals,
we only selected the sires that had their own sire known and
at least two offspring and the sires that did not have their own
sire known but at least four offspring. Eventually, 345 male
parents, called focal individuals (FIDs) hereafter, met these
criteria: 210 FIDs had their father genotype known while the
remaining 135 did not (Figure 1).

Recombination maps

Meiotic recombination maps from pedigree data:
Detection of crossovers: Crossover locations were detected

using LINKPHASE (Druet and Georges 2015). From the
LINKPHASE outputs (recombination_hmm files), we extract-
ed crossovers boundaries. We then identified crossovers
occurring in the same meiosis , 3 Mb apart from each other
(that we call double crossovers) and considered them as du-
bious. This number was chosen as it corresponded to clear
outliers in the distribution of intercrossover distances. They
are also quite unlikely under crossover interference. We
applied the following procedure: given a pair of double cross-
overs, we set the genotype of the corresponding offspring as
missing in the region spanned by the most extreme bound-
aries and reran the LINKPHASE analysis. After this quality
control step, we used the final set of crossovers identified
by LINKPHASE to estimate recombination rates. This data
set consisted of 213,615 crossovers in 5940 meioses.

Estimation of recombination rates: Based on the inferred
crossover locations, meiotic recombination rates were esti-
mated in windows of 1 Mb and between marker intervals of

the medium SNP array using the following statistical model,
inspired by Cheung et al. (2007). For small genetic intervals
such as considered here, the recombination rate (termed c
in the following), is usually expressed in centimorgans per
megabase and the probability that a crossover occurs in one
meiosis in an interval j (measured in morgans) is 0:01  cjlj
where lj is the length of the interval expressed in megabases.
When considering M meioses, the expected number of cross-
overs in the interval is 0:01  cjljM: When combining observa-
tions in multiple individuals, we want to account for the fact
that they have different average numbers of crossovers per
meiosis (termed Rs for individual s). To do so, wemultiply the
expected number of crossovers in the interval by an individ-
ual-specific factor equal to (Rs=R), where R is the average
number of crossovers per meiosis among all individuals. Fi-
nally, for individual s in interval j, the expected number of
crossovers is 0:01  cjljMs   Rs=R: Given this expected number, a
natural distribution to model the number of crossovers ob-
served in an interval is the Poisson distribution so that the
number ysj of crossovers observed in the interval j for an in-
dividual s is modeled as:

ysjjcj � Poissonð0:01 cjljMsRs=RÞ: (1)

To combine crossovers across individuals, the likelihood for cj
is the product of Poisson likelihoods from Equation 1.

We then specify a prior distribution for cj :

cj � Gða;bÞ: (2)

To set a and b, first raw cj estimates are computed using the
method of Sandor et al. (2012) across the genome and then a
g distribution is fitted to the resulting genome-wide distribu-
tion (Supplemental Material, Figure S1 in File S11). Combin-
ing the prior (2) with the likelihoods in Equation (1), the
posterior distribution for cj is:

cjjy•j � G

 
aþ

X
s

ysj;bþ 0:01  lj
X
s

MsRs=R

!
: (3)

As the localization of crossovers was usually not good enough
toassign themwith certainty toa single genomic interval,final
estimates of cj are obtained as follows:

Figure 1 Families used to infer crossover (CO) events. COs were identi-
fied in meioses of 345 focal individuals (FIDs). Two-hundred and ten FIDs
had their father known (left) while 135 FIDs did not (right).
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1. For each crossover overlapping interval j and localizedwithin
a window of size L, let xc be an indicator variable that takes
value 1 if the crossover occurred in interval j and 0 otherwise.
Assuming that, locally, recombination rate is proportional to
physical distance, set Pðxc ¼ 1Þ ¼ minðlj=L; 1Þ:

2. Using the probability in step 1, sample xc for each cross-
over overlapping interval j and set ysj ¼

P
cxc:

3. Given ysj; sample cj from Equation (3).

For each interval considered, perform step 2 and 3 above
1000 times to draw samples from the posterior distribution of
cj, thereby accounting for uncertainty in the localization of
crossovers.

Historical recombination maps from the diversity data:
The diversity data contains 70 Lacaune individuals genotyped
for a high-density (HD) SNP array comprising 527,823 auto-
somal markers (Rochus et al. 2017). Nineteen of these indi-
viduals are FIDs in the pedigree data. To perform the
LD-based analysis on individuals unrelated to the pedigree
study, these individuals were therefore removed from the
data set and the subsequent analyses performed on the
51 remaining individuals. Population-scaled recombination
rates were estimated using PHASE (Li and Stephens 2003). For
computational reasons and to allow for varying effective pop-
ulation size along the genome, estimations were carried out
in 2 Mb windows, with an additional 100 kb on each side
overlapping with neighboring windows, to avoid a border
effect in the PHASE inference. PHASE was run on each win-
dow with default options, except that the number of main
iterations was increased to obtain larger posterior samples
for recombination rate estimation (option -X10) as recom-
mended in the documentation.

From thePHASEoutput, 1000 sampleswere obtained from
the posterior distribution of:

The background recombination rate: rw ¼ 4Nwcw; where Nw

is the effective population size in the window, cw is the
recombination rate comparable to the family-based
estimate.

An interval-specific recombination intensity lj; for each
marker interval j of length lj in the window, such that
the population scaled genetic length of an interval is:
dj ¼ rwljlj:

The medians were used as point estimates of parameters
lj and dj; computed over the posterior distributions
flðkÞj ; l

ðkÞ
j r

ðkÞ
w lj   ; k 2 ½1; 1000�g:

Intervals that showed an outlying lj value compared to the
genome-wide distribution of lj were considered as harboring
a crossover hotspot. Specifically, a mixture of Gaussian distri-
bution was fitted to the genome-wide distribution of log10ðljÞ
using the mclust R package (Fraley and Raftery 2002; Fraley
et al. 2012), considering that the major component of the
mixture modeled the background distribution of lj in non-
hotspot intervals. From this background distribution, a
P-value was computed for each interval that corresponded

to the null hypothesis that it does not harbor a hotspot. Fi-
nally, hotspot-harboring intervals were defined as those for
which false discovery rate (FDR) (lj) , 5%, estimating FDR
with the Storey and Tibshirani (2003) method, implemented
in the R qvalue package. This procedure is illustrated in Fig-
ure S2 in File S11.

Combination of meiotic and historical recombination
rates and construction of a high-resolution recombination
map: To construct ameiotic recombinationmapof theHDSNP
array requires that the historical recombination rate estimates
be scaled by four times the effective population size. Due to
evolutionary pressures, the effective population size varies
along the genome, so it must be estimated locally. This
can be done by exploiting the meiotic recombination rate
inference obtained from the pedigree data analysis, as
explained below.

Consider a window of 1 Mb on the genome; using the
approach described above, we can sample values cjk (window
j, sample k) from the posterior distribution of the meiotic
recombination rate cj: Similarly, using output from PHASE,
we can extract samples rjk from the posterior distribution of
the historical recombination rates (rj ¼   rw   lj). Now, consid-
ering that rj ¼ 4Nejcj where Nej is the local effective popula-
tion size of window j, we get logðrjÞ ¼ logð4NejÞ þ logðcjÞ:
This justifies using a model on both cjk and rjk values:

yijk ¼ mþ xijkaþ bj þ nij þ eijk (4)

where yijk is logðcjkÞ when i = 1 (meiotic-recombination rate
sample) and yijk is logðrjkÞ when i= 2 (historical recombina-
tion rate sample). In this model, m estimates the log of the
genome-wide recombination rate, xijk=1 if i= 2 and 0 other-
wise, so that a estimates log(4Ne), where Ne is the average
effective population size of the Lacaune population, mþ bj
estimates log(cj) combining population and meiotic recom-
bination rates, and aþ ðn2j 2 n1jÞ estimates log(4Nej). m and
ai were considered as fixed effects while bj and nij were
considered as independent random effects. Using this ap-
proach allows us to combine, in a single model, LD- and
pedigree-based inferences, while accounting for their re-
spective uncertainties as we exploit posterior distribution
samples.

Model 4 was fitted on 20 samples of the posterior distri-
butions of cj and rj for all windows of 1 Mb covering the
genome, with an additional fixed effect for each chromo-
some, using the lme4 R package (Bates et al. 2015). Windows
lying , 4 Mb from each chromosome end were not used
because inference on cj was possibly biased in these regions
(see Results). After estimating this model, historical recombi-
nation rate estimates of HD intervals were scaled within each
window by dividing them by their estimated local effective
population size (i.e., expðâþcn2j 2 cn1jÞ for window j). For
windows lying within 4 Mb of the chromosome ends, histor-
ical recombination rate estimates were scaled using the
genome-wide average effective population size exp(â). This
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led eventually to estimates of the meiotic recombination
rates, expressed in centimorgans per megabase, for all inter-
vals of the HD SNP array, which we termed a high-resolution
recombination map.

For each interval of the medium-density SNP array, we
computed the number of significant hotspots detected as
explained above and the hotspot density (number of hotspots
per unit of physical distance). After having corrected for the
chromosome effect, the GC content effect and for windows
farther than 4 Mb of the chromosome end, we fitted a linear
regression model to estimate the effect of hotspot density on
the meiotic recombination rate.

Comparison with Soay sheep recombination maps and
integration of the two data sets to produce new male
recombination maps in sheep: To compare the recombina-
tion maps in Lacaune with the previously established maps in
Soay sheep (Johnston et al. 2016), we downloaded the raw
data from the dryad data repository (doi: 10.5061/dryad.
pf4b7) and the additional information available on https://
github.com/susjoh/GENETICS_2015_185553. As the ap-
proach used in Johnston et al. (2016) to establish recombi-
nationmaps differs from the one used here, we chose to apply
the method of this study to the Soay data to perform a com-
parison that would not be affected by differences in themeth-
ods. As the Lacaune data consist only of male meioses, we
also only considered male meioses in the Soay data. The final
Soay data set used consisted of 3445 individuals, among
which were 299 male FIDs, defined as in the Lacaune analy-
sis. After detecting crossovers with LINKPHASE, one FID
exhibited a very high average number of crossover per mei-
osis (. 100) and was not considered in the analyses (Soay
individual ID: RE4844), leaving 298 FIDs. The final data set
consisted of 88,683 crossovers in 2609 male meiosis and was
used to estimated meiotic recombination maps using the ex-
act same approach as described above, both on intervals of
1 Mb and on the same intervals as the ones considered in the
Lacaune meiotic maps on the medium-density SNP array.
Note that the Soay sheep are not necessarily polymorphic
for the same markers as the Lacaune, but that our method
is flexible and can nonetheless estimate recombination rates
in intervals bordered by monomorphic markers: in such a
case adjacent intervals will have the same estimated recom-
bination rate. As the two populations were found to have very
similar meiotic recombination maps (see Results), the two
sets of crossovers were finally merged to create a combined
data set of 302,298 crossovers in 8549 male meioses and to
estimate newmale sheep recombinationmaps, again on 1Mb
intervals and on intervals of the medium-density SNP array.

GWAS on recombination phenotypes: GRR

The set of crossovers detected was used to estimate the GRR
of each FID in the family data set from their observed number
of crossovers per meiosis, adjusting for covariates: year of
birth of the parent, considered as a cofactor with 14 levels for
years spanning from1997 to2010, and inseminationmonthof

the offspring’s ewe, treated as a cofactor with seven levels for
months spanning from February to August. We used a mixed
model for estimating the population average GRR m, covari-
ates fixed effects b, and individual breeding values us; while
controlling for nongenetic individual-specific effects as :

yso ¼ mþ xsobþ as þ us þ eso

with us � Nð0;As2
s Þ; as � Nð0; Is2

aÞ, and eso � Nð0; Is2
e Þ;

where yso is the number of crossovers in the meiosis between
FID s and offspring o, A is the pedigree-based relationship
matrix between FIDs, and xso the line of the corresponding
design matrix for observation yso: We fitted this model using
BLUPf90 (http://nce.ads.uga.edu/software/) and extracted:
(i) estimates of variance components s2

e ; s
2
a, and s2

s ; which
allows the estimation of the heritability of the trait (calcu-
lated as s2

s =ðs2
s þ s2

a þ s2
e Þ) and (ii) prediction eus of GRR

deviation for each FID.

Genotype imputation

Nineteenof the345FIDs arepresent in thediversity data set of
HD genotypes. For the 336 remaining FIDs, their HD geno-
types at 507,784 SNPs were imputed with BimBam (Servin
and Stephens 2007; Guan and Stephens 2008) using
the 70 unrelated Lacaune individuals as a panel. To impute,
BimBam uses the fastPHASE model (Scheet and Stephens
2006), which relies on methods using clusters of haplotypes
to estimate missing genotypes and reconstruct haplotypes
from unphased SNPs of unrelated animals. BimBam was
run with 10 expectation-maximization (EM) starts, each
EM was run for 20 steps on panel data alone, and an addi-
tional step was run on cohort data, with a number of clusters
of 15. After imputation, BimBam estimates an average num-
ber of alleles for each SNP in each individual, termed mean
genotype, computed from the posterior distribution of the
three possible genotypes. This mean genotype has been
shown to be efficient for performing association tests (Guan
and Stephens 2008). In subsequent analyses, we used the
mean genotypes provided by BimBam of the 345 FIDs at all
markers of the HD SNP array. To assess the quality of geno-
type imputation at the most associated regions, 10markers of
the HD SNP array, one in the chromosome 6-associated re-
gion and nine in the chromosome 7-associated region (see
Results) were genotyped for 266 FIDs for which DNA samples
were still available. We evaluated the quality of imputation
for the most significant SNPs by comparing each possible
genotype’s posterior probability estimated by BimBam to
the error rate implied by calling it. We observed a very good
agreement between the two measures (Figure S3 in File
S11), which denoted good calibration of the imputed geno-
types at top GWAS hits.

Single- and multi-QTL GWAS on GRR

We first tested association of individual estimated breeding
values eus (EBVs) with mean genotypes at 503,784 single
SNPs imputed with BimBam. We tested these associations
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using the univariate mixed model approach implemented
in the Genome-wide Efficient Mixed Model Association
(Gemma) software (Zhou and Stephens 2012). To account
for polygenic effects on the trait, the centered genomic re-
lationship matrix calculated from the mean genotypes was
used. The P-values reported in the results correspond to the
Wald test.

To go beyond single SNP association tests, we also esti-
mated a Bayesian sparse linear mixed model (Zhou et al.
2013) as implemented in Gemma. This method allows the
consideration of multiple QTL in the model, together with
polygenic effects at all SNPs. The principle of the method is
to have, for each SNP l, an indicator variable gl that takes
value 1 if the SNP is a QTL and 0 otherwise. The strength of
evidence that a SNP is a QTL is measured by the posterior
probability Pðgl ¼ 1Þ; called posterior inclusion probability
(PIP). Note that all SNPs are included in the model when
doing so. Inference of the model parameters is performed
using an iterative MCMC algorithm: the number of iterations
was set to 10 million and inference was made on samples
extracted every 100 iterations. When a genome region har-
bors a QTL, multiple SNPs in the region can have elevated
PIPs. To summarize the strength of evidence for a region to
carry a QTL, we calculated a rolling sum of PIPs over 50 con-
secutive SNPs using the rollsum function of the R zoo package
(Zeileis and Grothendieck 2005). Given that the average
physical distance between SNPs on the high-density SNP
array is �5 kb, this procedure interrogates the probability
of the presence of a QTL in overlapping windows of�250 kb.

For the univariate analysis, the FDR was estimated using
the ash package (Stephens 2017), and SNPs corresponding to
an FDR , 10% were deemed significant and annotated. For
the multivariate analysis, regions where the rolling sum of
PIPs were. 0.15 were further annotated. The annotation of
the QTL regions consisted of extracting all genes from the
Ensembl annotation v87 along with their Gene Ontology
(GO) annotations and interrogating for their possible in-
volvement in recombination.

Variant discovery and additional genotyping in RNF212:
identification and assignation of the RNF212 sheep
genome sequence

The RNF212 gene was not annotated on the Ovis aries v3.1
reference genome. Nevertheless, a full sequence of RNF212
was found in the scaffold01089 of O. orientalis [assembly
Oori1, National Center for Biotechnology information (NCBI)
accession NW_011943327]. By BLAST alignment of this scaf-
fold, ovine RNF212 could be located with confidence on chro-
mosome 6 in the interval OAR6:116426000–116448000 of
the Oari3.1 reference genome (Figure S4 in File S11). This
location was confirmed by BLAST alignment with the bovine
RNF212 gene sequence. We also discovered that the Oari3.1
unplaced scaffold005259 (NCBI accession JH922970) con-
tained the central part of RNF212 (exons 4–9) and could be
placed within a large assembly gap. Moreover, we also ob-
served that automatically annotated noncoding RNA in the

RNF212 interval matched the exonic sequence of RNF212
(Figure S4 in File S11).

Variant discovery in RNF212 in the Lacaune population

Based on the genomic sequence and structure of the RNF212
gene annotated in O. orientalis (NCBI accession NW_011943327),
a large set of primers were designed using PRIMER3 software
(Table S1 in File S11) for amplification of each annotated exon
and some intron parts corresponding to exonic regions anno-
tated in Capra hircus (Chir_v1.0). PCR amplification (GoTaq;
Promega, Madison, WI) with each primer pair was realized on
50 ng of genomic DNA from four selected homozygous
Lacaune animals exhibiting the GG and AA (nonimputed)
genotypes at the most significant SNP of the medium-density
SNP array of the chromosome 6 QTL (rs418933055, P-value
2.56e217). Each PCR product was sequenced via the BigDye
Terminator v3.1 Cycle Sequencing kit and analyzed on an
ABI3730 sequencing machine (Applied Biosystems, Foster
City, CA). Sequenced reads were aligned against theO. orientalis
RNF212 gene using CLC Main Workbench Version 7.6.4
(QIAGEN, Valencia, CA) to identify polymorphisms.

Genotyping of mutations in RNF212

The genotyping of 266 genomic DNAs from Lacaune ani-
mals for the four identified polymorphismswithin the ovine
RNF212 gene was done by Restriction Fragment Length
Polymorphism after PCR amplification using dedicated pri-
mers (Table S1 in File S11) (GoTaq; Promega), restriction
enzyme digestion (BsrBI for SNP_14431_AG; RsaI for
SNP_18411_GA; and Bsu36I for both SNP_22570_CG and
SNP_22594_AG; New England Biolabs, Beverley, MA), and
resolution on a 2% agarose gel.

Data availability

Genotype data and pedigree information on Lacaune individ-
uals after quality controls are deposited on Zenodo (Astruc
et al. 2017) as well as high-density genotypes of 70 unrelated
Lacaune individuals (Moreno-Romieux et al. 2017). Com-
puter code and scripts needed to reproduce all results are
available on Github (https://github.com/BertrandServin/
sheep-recombination) and described in supporting material
File S10. Additional data, including output from PHASE,
LINKPHASE, BimBam, and Gemma, are provided on the
Zenodo repository (DOI: 10.5281/zenodo.821569) (Petit
et al. 2017).

Results

High-resolution recombination maps

Meiotic recombination maps: genome-wide recombination
patterns:We studiedmeiotic recombination using a pedigree
of 6230 individuals, genotyped for a medium-density SNP
array (50K) comprising �54,000 markers. After quality con-
trols, we exploited genotypes at 46,813 SNPs and identified
213,615 crossovers in 5940meioses divided among 345male
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parents (FIDs) (see Materials and Methods). The pedigree
information available varied among FIDs (Figure 1); 210 FIDs
had their father genotype known while the remaining
135 did not. Having a missing parent genotype did not affect
the detection of crossovers as the average number of cross-
overs per meiosis in the two groups was similar (36.1 with
known father genotype and 35.8 otherwise) and the statisti-
cal effect of the number of offspring on the average number of
crossovers per meiosis was not significant (P . 0.23). This
can be explained by the fact that individuals that lacked fa-
ther genotype information typically had a large number of
offspring (17.4 on average, ranging from 4 to 111), allowing
us to infer correctly their haplotype phase from their offspring
genotypes only. Overall, given that the physical genome size
covered by the medium-density SNP array is 2.45 Gb, we
estimate that the mean recombination rate in our population
is �1.5 cM/Mb.

Based on the crossovers identified, we developed a statis-
tical model to estimate meiotic recombination rates (seeMa-
terials and Methods) and constructed meiotic recombination
maps at two different scales: for windows of 1 Mb and for
each interval of the medium-density SNP array. As this statis-
tical approach allowed us to evaluate the uncertainty in re-
combination rate estimates, we provide them in File S1 and
File S2, along with the recombination rate estimates in each
interval, their posterior variance, and 90% credible intervals.
Graphical representation of the meiotic recombination maps
of all autosomes are given in File S3.

The recombination rate onaparticular chromosome region
was found to depend highly on its position relative to the
telomere and to the centromere for metacentric chromo-
somes, i.e., chromosomes 1, 2, and 3 in sheep (Figure S5 in
File S11). Specifically, for acrocentric and metacentric chro-
mosomes, recombination rate estimates were elevated near
telomeres and centromeres, but very lowwithin centromeres.
In our analysis, recombination rate estimates were found to
be low in intervals lying within 4 Mb of chromosome ends.
While this could represent genuine reduction in recombina-
tion rates near chromosome ends, it is also likely due to
crossovers being undetected in our analysis as only a few
markers are informative to detect crossovers at chromosome
ends. In the following analyses, we therefore did not consider
regions lying within 4 Mb of the chromosome ends.

From local recombination rate estimates in 1-Mbwindows
or medium SNP array intervals, we estimated chromosome-
specific recombination rates (Figure S6 in File S11). Differ-
ence in recombination rates between chromosomes was
relatively well-explained by their physical size, with larger
chromosomes exhibiting smaller recombination rates. Even
after accounting for their sizes, some chromosomes showed
particularly low (chromosomes 9, 10, and 20) or particularly
high (chromosomes 11 and 14) recombination rates. In low
recombining chromosomes, large regions had very low re-
combination, between 9 and 14 Mb on chromosome 9 and
36, 46 Mb on chromosome 10, and between 27 and 31 Mb
on chromosome 20. In highly recombining chromosomes,

recombination rates were globally higher on chromosome 14,
while chromosome 11 exhibited two very high-recombination
windows between 7 and 8 Mb and between 53 and 54 Mb.
In addition, we found, consistent with the literature, that
GC content was quite significantly positively correlated
with recombination rate both in medium SNP array intervals
(P-value, 10216, r= 0.20) and in 1 Mb intervals (P-value,
10216, r = 0.28).

Estimation of historical recombination rates and identi-
fication of crossover hotspots: We used a different data set,
with 51 unrelated individuals from the same Lacaune pop-
ulation genotyped for the Illumina HD SNP array (600K)
comprising 527,823 autosomal SNPs after quality controls.
Using a multipoint model for LD patterns (Li and Stephens
2003), we estimated, for each marker interval of the HD SNP
array, historical recombination rates r (see Materials and
Methods). Compared to meiotic maps, these estimates offer
a greater precision as they in essence exploit meioses cumu-
lated over many generations. However, the historical recom-
bination rates obtained are scaled by the effective population
size (r  ¼ 4  Nec, where Ne is the effective population size and
c the meiotic recombination rate), which is unknown and
may vary along the genome due to evolutionary pressures,
especially selection. Thanks to the higher precision in estima-
tion of recombination rate, LD-based recombination maps
offer the opportunity to detect genome intervals likely to
harbor crossover hotspots. A statistical analysis of historical
recombination rates (see Materials and Methods) identi-
fied �50,000 intervals exhibiting elevated recombination
intensities (Figure S2 in File S11) as recombination hotspots,
corresponding to an FDR of 5%. From our historical recom-
bination map, we could conclude that 80% crossover events
occurred in 40% of the genome and that 60% of crossover
events occurred in only 20% of the genome (Figure S7 in
File S11).

High-resolution recombination maps combining family
and population data: Having constructed recombination
maps with two independent approaches and having data sets
in the same population of Lacaune sheep,wefirst evaluated to
what extent historical crossover hotspots explain meiotic re-
combination, and second estimated the impact of evolution-
ary pressures on the historical recombination landscape of the
Lacaunepopulation.Wepresentour resultson thesequestions
in turn.

We studied whether variation in meiotic recombination
can be attributed to the historical crossover hotspots detected
fromLDpatterns only. For each interval between two adjacent
SNPs of the density array, we (i) extracted the number of
significant historical hotspots and (ii) calculated the historical
hotspot density (in number of hotspots per unit of physical
distance). We found both covariates to be highly associ-
ated with meiotic recombination rate estimated on family
data [r=0.15 with hotspot density (P, 10216) and r=0.19
with the number of hotspots (P, 10216)]. These correlations
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hold after correcting for chromosome and GC content effects
[respectively, r=0.14 (P, 10216) and r=0.18 (P, 10216)].
Figure 2 illustrates this finding in two 1-Mb intervals from
chromosome 24: one that exhibits a very high recombination
rate (7.08 cM/Mb) and the second a low one (0.46 cM/Mb). In
this comparison, the highly recombiningwindow carries 36 re-
combination hotspots while the low recombinant one exhibits
none. As the historical background recombination rates in
the two windows are similar (0.7/kb for the one with a high
recombination rate, and 0.2/kb for the other), the difference in
recombination rate between these two regions is largely due to
their contrasted number of historical crossover hotspots.

To studymoreprecisely the relationship betweenhistorical
and meiotic recombination rates, we fitted a linear mixed

model (see Materials and Methods) that allowed us to esti-
mate the average effective population size of the population,
the correlation betweenmeiotic and historical recombination
rates, and to identify genome regions where historical and
meiotic recombination rates were significantly different. We
found the effective population size of the Lacaune population
to be �7000 individuals and a correlation of 0.73 between
meiotic and historical recombination rates (Figure 3). We
discovered seven regions where historical recombination
rates were much lower than meiotic ones and three regions
where they were much higher (FDR, 0.02, Figure S8 in File
S11 and Table 1).

Seven of these 10 regions have extreme recombination
rates compared to other genomic regions. To quantify towhat
extent a window is extreme, we indicate in Table 1, for each
window, the proportion of the genome with a lower recom-
bination rate (qw). For six of these seven regions, the histor-
ical recombination rate is more extreme than the meiotic
rate: four regions have very low meiotic recombination rate
and even lower historical recombination rates (the two re-
gions on chromosome 3 and two regions on chromosome 10,
between 36 and 37 Mb and between 42 and 44 Mb), while
two regions have very high meiotic recombination rates and
even higher historical recombination rates (on chromosome
12 and on chromosome 23). For these six regions, the dis-
crepancy between meiotic recombination and historical re-
combination estimates can be explained by the fact that we
used a genome-wide prior in our model to estimate meiotic
recombination rates that has the effect of shrinking our esti-
mates toward the mean. Because historical estimates were
not shrunk in the same way, for these six outlying regions
the two estimates did not concur and it is possible that our
meiotic recombination rate estimates were slightly overesti-
mated (or, respectively, underestimated).

Out of the four remaining outlying windows, three had a
lowhistorical recombination rate but didnot haveparticularly
extreme meiotic recombination rates, so that the effect of
shrinkage is not likely to explain the discrepancy between
meiotic and historical recombination rates. Indeed, these
three regions corresponded to previously identified selection
signatures in sheep: a region on chromosome 6 spanning two
intervals between 36 and 38 Mb contains the ABCG2 gene,
associated with milk production (Cohen-Zinder et al. 2005),
and the LCORL gene associated to stature [recently reviewed
in Takasuga (2016)]. This region has been shown to have
been selected in the Lacaune breed (Fariello et al. 2014;
Rochus et al. 2017). A region spanning one interval on chro-
mosome 10, between 29 and 30 Mb, contains the RXFP2
gene, which is associated with polledness and horn pheno-
types (Johnston et al. 2013), is found to be under selection in
many sheep breeds (Fariello et al. 2014), and a region on
chromosome 13 between 63 and 64 Mb that contains the
ASIP gene is responsible for coat color phenotypes in
many breeds of sheep (Norris and Whan 2008), and again
was previously demonstrated to have been under selec-
tion. For these three regions, we explain the low historical

Figure 2 Comparison between population-based recombination rate
and meiotic recombination rate for two 1-Mb windows on Sheep chro-
mosome 24. Top: meiotic recombination rate along chromosome 24.
Two windows with high (left, red) and low (right, blue) meiotic recombi-
nation rates estimates are zoomed in. Each panel represents, from top to
bottom: meiotic recombination rate estimates (c) in SNP intervals of the
50K SNP array, population-based recombination rate estimates (r) in SNP
intervals of the 50K SNP array, and population-based recombination rate
estimates (r) in SNP intervals of the High-Density (600K) SNP array.
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recombination estimates by a local reduction of the effective
population size due to selection.

Finally, one of the three regions with a high historical
recombination rate, on chromosome 20 between 28 and
29 Mb, had a low meiotic recombination rate, so that the
effect of shrinkage cannot explain the discrepancy. This region
harbors a cluster of olfactory receptor genes and its high
historical recombination rate could be explained by selective
pressure for increased genetic diversity in these genes (i.e., di-
versifying selection), a phenomenon that has been shown in
other species [e.g., pig (Groenen et al. 2012), human (Ignatieva
et al. 2014), and rodents (Stathopoulos et al. 2014)]. Finally,
we used the meiotic recombination rates to scale the historical
recombination rate estimates and produce high-resolution re-
combination maps on the HD SNP array (File S4).

Improved male recombination maps by combining Lacaune
and Soay sheep data:Recently, recombinationmapshavebeen
estimated in another sheep population, the Soay (Johnston
et al. 2016). Soay is a feral population of ancestral domestic
sheep living on an island located northwest of Scotland. The
Lacaune and Soay populations are genetically very distant,
their genome-wide Fst, calculated using the sheep HapMap
data (Kijas et al. 2012), being �0.4. Combining our results
with results from the Soay offered a rare opportunity to study
the evolution of recombination over a relatively short time-
scale as the two populations can be considered to have been
separated at most dating back to domestication, �10,000
years ago. The methods used in the Soay study are different
from those used here, but the two data sets are similar, al-
though the Soay data has fewer male meioses (2604 vs.

5940 in the present study). To perform a comparison that
would not be affected by differences in estimation methods,
we ran themethod developed for the Lacaune data to estimate
recombination maps on the Soay data. As the Soay study
showed a clear effect of sex on recombination rates, we esti-
mated recombination maps on male meioses only. Figure 4
presents the comparison of recombination rates between the
two populations in marker intervals of the medium-density
SNP array. The left panel shows that the two populations ex-
hibit very similar recombination rates (r = 0.82, P , 10216),
although Soay recombination rates appear higher for low
recombining intervals (c , 1.5 cM/Mb in gray on the figure).
We explain this by the shrinkage effect of the prior, which is
more pronounced in the Soay as the data set is smaller: the
right panel on Figure 4 shows that the posterior variance of the
recombination rates are clearly higher in Soays for low recom-
bining intervals while they are similar for more recombining
intervals. Overall, our results on the comparison of the recom-
bination maps in the two populations are consistent with the
two populations having the same amplitude and distribution
of recombination on the genome, at the scale of the medium-
density SNP array. Therefore,we analyzed the two populations
together to create new male recombination maps based on
302,298 crossovers detected in 8549 meioses (File S5). Com-
bining the two data sets together led to a clear reduction in the
posterior variance of the recombination rates, i.e., an increase
in their precision (Figure S9 in File S11).

Genetic determinism of genome-wide recombination
rate in Lacaune sheep

Ourdata set provides informationon thenumberof crossovers
for a set of 5940 meioses among 345 male individuals.
Therefore, it allows us to study the number of crossovers
per meiosis (GRR) as a recombination phenotype.

Genetic and environmental effects on GRR:Weuseda linear
mixed model to study the genetic determinism of GRR.
The contribution of additive genetic effects was estimated
by including a random FID effect with covariance structure

Figure 3 Population-based and meiotic recombination rates in windows
of 1 Mb. The dashed line is the regression for population-based recom-
bination rate on the family recombination rate. Values are shown on a
logarithmic scale.

Table 1 Genome regions where meiotic and population-based
recombination rates differ significantly

Chromosome Window Span (Mb) qw P-Value rs=c

3 103–104 0.06 1.6 1025 0.28
3 109–110 0.04 1.8 1025 0.28
6a 36–38 0.14 1.2 1027 0.22
10a 29–30 0.77 8.8 1025 0.31
10 36–37 0.01 2.1 1025 0.29
10 42–44 , 0.01 1.2 10214 0.11
13a 63–64 0.33 7.4 1026 0.31
12 4–5 0.92 7.4 1026 3.7
20a 28–29 0.01 1.7 1025 3.6
23 10–11 0.97 5.1 1026 3.8

rs=c : ratio of population to meiotic recombination rate. qw : proportion of genome
regions with lower meiotic recombination rate. Details on the estimation of these
parameters are given in the text. Regions with P-values , 1024 were considered
outliers (FDR = 0.02).
a Regions corresponding to potential selection signatures.
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proportional to the matrix of kinship coefficients calculated
from pedigree records (see Materials and Methods). We also
included environmental fixed effects in the model: year of
birth of the FID and insemination month of the ewe for each
meiosis. We did not find significant differences between the
FID year of birth; however, the insemination month of the
ewe was significant (P = 1.3 1023). There was a trend in in-
creased recombination rates fromFebruary toMay followed by
a decrease until July and a regain in August, although the
number of inseminations in August is quite low, leading to a
high SE for this month (Figure S10 in File S11). Based on the
estimated variance components (Table 2), we estimated the
heritability of GRR in the Lacaune male population at 0.23.

GWAS identifies three major loci affecting GRR in Lacaune
sheep: The additive genetic values of FIDs, predicted from the
abovemodel were used as phenotypes in a GWAS. Among the
345 FIDs with at least two offspring, the distribution of
the phenotype was found to be approximately normally dis-
tributed (Figure S11 in File S11). To test for association of this
phenotype with SNPs markers, we used a mixed model ap-
proach correcting for relatedness effects with a genomic re-
lationship matrix (see Materials and Methods). Using our
panel of 70 unrelated Lacaune, we imputed the 345 FIDs
for markers of the HD SNP array. With these imputed geno-
types, we performed two analyses. The first was an associa-
tion test with univariate linear mixed models, which tested
the effect of each SNP in turn on the phenotype (results in
File S6); the second fitted a Bayesian sparse linear mixed
model, allowing multiple QTL to be included in the model
(results in File S7).

Figure 5 illustrates the GWAS results: the top plot shows
the P-values of the single SNP analysis and the bottom plot

the posterior probability that a region harbors a QTL, calcu-
lated on overlapping windows of 20 SNPs. The single SNP
analysis revealed six significant regions (FDR , 10%): two
on chromosome 1, one on chromosome 6, one on chromo-
some 7, one on chromosome 11, and one chromosome 19.
Regions of chromosomes 6 and 7 exhibited very low P-values
whereas the other three showed less-intense association sig-
nals. The multi-QTL Bayesian analysis was conclusive for two
regions (regions on chromosome 6 and chromosome 7) while
the rightmost region on chromosome 1was suggestive (Table
3). Two additional suggestive regions were discovered on
chromosome 3. Use of the multi-QTL approach of Zhou et al.
(2013) led to estimate that, together, QTL explain�40%of the
additive genetic variance for GRR,with a 95% credible interval
ranging from 28 to 53%.

Themost significant regionwas located on the distal end of
chromosome 6 and corresponded to a locus frequently asso-
ciated with variation in recombination rate. In our study, the
significant region contained 10 genes: CTBP1, IDUA, DGKQ,
GAK, CPLX1, UVSSA,MFSD7, PDE6B, PIGG, and RNF212. For
each of these genes except RNF212, which was not annotated
on the genome (see below), we extracted their gene GO of
the Ensembl v87 database, but none was clearly annotated as
potentially involved in recombination. However, two genes
were already reported as having a statistical association with
recombination rate: CPLX1 and GAK (Kong et al. 2014).
CPLX1 has no known function that can be linked to recombi-
nation (Kong et al. 2014) but GAK has been shown to form a
complex with cyclin-G, which could impact recombination
(Nagel et al. 2012). However, RNF212 can be deemed a more
likely candidate due to its function and given that this gene
was associated with recombination rate variation in human
(Kong et al. 2008; Chowdhury et al. 2009), cows (Sandor et al.

Figure 4 Comparison of recombination (rec.) rates in Soay and Lacaune populations. Left: scatterplot of posterior means of rec. rates (on a log scale).
The green line is the line y = x and the red line is a lowess smoothed line (f = 0.05). Right: Scatterplot of the ratio of posterior variance (Soay/Lacaune) as
a function of the average of the posterior mean rec. rates in the two populations (on a log scale). The green line corresponds to equal variances and the
red line is a lowess smoothed line (f = 0.05). Points in gray on both panels correspond to intervals with average rec. rate , 1.5 cM/Mb.
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2012; Ma et al. 2015; Kadri et al. 2016), and mice (Reynolds
et al. 2013). RNF212 is not annotated in the sheep genome
assembly oviAri3; however, this chromosome 6 region corre-
sponds to the bovine region that contains RNF212 (Figure S4
in File S11). We found an unassigned scaffold (scaffold01089,
NCBI accession NW_011943327) ofO. orientalis musimon (as-
sembly Oori1) that contained the full RNF212 sequence and
that could be placed confidently in the QTL region. To confirm
RNF212 as a valid positional candidate, we further studied the
association of its polymorphismswithGRR in results presented
below.

The second most significant region was located between
22.5and23.1Mbonchromosome7.All significantSNPs in the
region were imputed, i.e., the association would not have
been found based on association of the medium-density array
alone. It matched an association signal on GRR in Soay sheep
(Johnston et al. 2016). Consistent with our finding, in the
Soay sheep study, this association was only found using re-
gional heritability mapping and not using single SNP associ-
ations with the medium-density SNP array. This locus could
match previous findings in cattle (association on chromo-
some 10 at �20 Mb on assembly btau3.1); however, the
candidate genes mentioned in this species (REC8 and
RNF212B) were located 2 and 1.5 Mb away from our stron-
gest association signal, respectively. In addition, none of the
SNPs located around these two candidate genes in cattle
were significant in our analysis. Eleven genes were present
in the region: OR10G2, OR10G3, TRAV5, TRAV4, SALL2,
METTL3, TOX4, RAB2B, CHD8, SUPT16H, and RPGRIP1.
The study of their GO, extracted from the Ensembl v87 data-
base, revealed that none of them were associated with
recombination, although SUPT16H could be involved in mi-
totic DSB repair (Kari et al. 2011). However, another func-
tional candidate, CCNB1IP1, also named HEI10, was located
between positions 23,946,971 and 23,951,850 bp, �500 kb
from our association peak. This gene is a good functional
candidate as it has been shown to interact with RNF212:
HEI10 allows the elimination of the RNF212 protein from
early recombination sites and the recruitment of other re-
combination intermediates involved in crossover maturation
(Qiao et al. 2014; Rao et al. 2016). Again, SNPs located at the
immediate proximity of HEI10 did not exhibit significant as-
sociations with GRR. Hence, our association signal did not
allow us to pinpoint any clear positional candidate among
these functional candidates (see Figure S12 in File S11).
However, it was difficult to rule them out completely for three
reasons. First, with only 345 individuals, our study may not
be powerful enough to localize QTL with the required pre-
cision. Second, the presence of causal regulatory variants,
even at distances of several 100 kb, is possible. Finally, the

associated region of HEI10 exhibited apparent rearrange-
ments with the human genome, possibly due to assembly
problems in oviAri3. These assembly problems could be
linked to the presence of genomic sequences coding for the
T-cell receptor a chain. This genome region is in fact rich in
repeated sequences, making its assembly challenging. Over-
all, identifying a single positional and functional candidate
gene in this gene-rich misassembled genomic region was not
possible based on our data alone.

Our third associated locus was located on chromosome
1between268,600 and268,700kb. In cattle, the homologous
region, located at the distal end of cattle chromosome 1, has
also been shown to be associated with GRR (Ma et al. 2015;
Kadri et al. 2016). In these studies, the PRDM9 gene has been
proposed as a potential candidate gene, especially because it
is a strong functional candidate given its proven effect on
recombination phenotypes. In sheep, PRDM9 is located at
the extreme end of chromosome 1, �275 Mb, 7 Mb away
from our association signal (Ahlawat et al. 2016). Hence,
PRDM9 was not a good positional candidate for association
with GRR in our sheep population. However, the associated
region on chromosome 1 contains a single gene, KCNJ15,
which has been associated with DNA DSB repair in human
cells (Słabicki et al. 2010).

Finally, the two regions on chromosome 3 were analyzed.
The first was located between 75,162 and 75,319 kb and
contains only one annotated gene coding for the receptor for
follicle-stimulating hormone (FSHR). Although it does not
affect recombination directly, it is necessary for the initiation
and maintenance of normal spermatogenesis in males
(Tapanainen et al. 1997). The second region on the chromo-
some 3 was located between 201,198 and 201,341 kb but
does contain any annotated gene.

Mutations in the RNF212 gene are strongly associated to
genome-wide recombination rate variation in Lacaune
sheep: TheQTLwith the largest effect in our association study
corresponded toa locusassociatedwithGRRvariation inother
species and harboring the RNF212 gene. As it was a clear
positional and functional candidate gene, we carried out fur-
ther experiments to interrogate specifically polymorphisms
within this gene. As stated above, we used the sequence in-
formation available for the RNF212 gene from O. orientalis,
which revealed that RNF212 spanned 23.7 kb on the genome
and may be composed of 12 exons by homology with bovine
RNF212. However, mRNA annotation indicated multiple al-
ternative exons. Surprisingly, the genomic structure of ovine
RNF212 was not well-conserved with goat, human, and
mouse syntenic RNF212 genes (Figure S4 in File S11). As a
first approach, we designed primers for PCR amplification

Table 2 Genetic parameters of the interindividual variation in GRR

Number of Sires Additive Genetic Variance Phenotypic Variance Heritability

345 6.86 (0.75) 29.73 (0.84) 0.23 (0.02)
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(seeMaterials and Methods) and sequencing of all annotated
exons and some intronic regions corresponding to exonic
sequences of C. hircus RNF212. By sequencing RNF212 from
four carefully chosen Lacaune animals homozygous for GG
or AA at the most significant SNP of the medium-density
SNP array on chromosome 6 QTL (rs418933055, P-value
2.56 10217), we evidenced four polymorphisms within the
ovine RNF212 gene (two SNPs in intron 9 and two SNPs in
exon 10). The four mutations were genotyped in 266 individ-
uals of our association study. We then tested their association
with GRR using the same approach as explained above (re-
sults in File S8) and computed their LD (genotypic r2) with
the most associated SNPs of the high-density genotyping
array (see Figure S13 in File S11) (Table 4). Two of these
mutations were found to be highly associated with GRR, their
P-values being of the same order of magnitude (P , 10216)
as the most associated SNP (rs412583165), and one of them
was even more significant than the most significant imputed
SNP (P = 6.25 10217 vs. P = 9.8 10217). We found a clear
agreement between the amount of LD between a mutation
and the most associated SNPs and their association P-value
(see Figure S13 in File S11). Overall, these results showed
that polymorphisms within the RNF212 gene were strongly
associated with GRR, and likely tagged the same causal
mutation as the most associated SNP. This confirmed that
RNF212, a very strong functional candidate, was also a very
strong positional candidate gene underlying our association
signal.

The genetic determinism of recombination differs
between Soay and Lacaune males

GWAS in the Soay identified two major QTL for GRR, with
apparent sex-specific effects. These two QTL were located in
the same genomic regions as our QTL on chromosome 6 and
chromosome 7. The chromosome 6 QTL was only found to be
significant in Soay females, while we detected a very strong
signal in Lacaune males. Although the QTL was located in the
same genomic region, themost significant SNPs were different
in the two GWAS (Figure 6). Two possible explanations could
be offered for these results: either the two populations have
the same QTL segregating and the different GWAS hits corre-
spond to different LD patterns between SNPs and QTL in the
two populations, or the two populations have different causal
mutations in the same region. Denser genotyping data, for
example by genotyping the RNF212 mutations identified in
this work in the Soay population, would be needed to have a
clear answer. For the chromosome 7 QTL, the signal was only
found using regional heritability mapping (Nagamine et al.
2012) in the Soay, and after genotype imputation in our study,
which makes it even more difficult to discriminate between a
shared causal mutation or different causal mutations at the
same location in the two populations.

Discussion

In this work, we studied the distribution of recombination
along the sheep genome and its relationship to historical

Figure 5 Genome-wide association study identifies three main QTL for GRR. Top: 2log10 (P-value) for single SNP tests for association. The genome-
wide significance level (FDR = 5%) is represented by the horizontal dotted line. Bottom: posterior probability that a region of 20 SNPs harbors a QTL,
using a Bayesian multi-QTL model. FDR, false discovery rate; GRR, genome-wide recombination rate.
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recombination rates. We showed that contemporary patterns
of recombination are highly correlated to the presence of
historical hotspots. We showed that the recombination
patterns along the genome are conserved between distantly
related sheep populations but that their genetic determin-
ism of genome-wide recombination rates differ. In partic-
ular, we showed that polymorphisms within the RNF212
gene are strongly associated to male recombination in
Lacaune, whereas this genomic region shows no associa-
tion in Soay males. Hence, combining three data sets, two
pedigree data sets in distantly related domestic sheep pop-
ulations and a densely genotyped sample of unrelated an-
imals, revealed that recombination rate and its genetic
determinism can evolve at short timescales, as we discuss
below.

Fine-scale recombination maps

In thiswork,wewere able to constructfine-scale geneticmaps
of the sheep autosomes by combining two independent infer-
ences on recombination rate. Our study on meiotic recombi-
nation from a large pedigree data set revealed that sheep
recombination exhibits general patterns similar toothermam-
mals (Shifman et al. 2006; Chowdhury et al. 2009; Tortereau
et al. 2012). First, sheep recombination rateswere elevated at
the chromosome ends, both on acrocentric and metacentric
chromosomes. In the latter, our analysis revealed a clear re-
duction in recombination near centromeres. Second, recom-
bination rate depended on the chromosome physical size,
consistent with an obligate crossover per meiosis irrespective
of the chromosome size. These patterns were consistent with
those established in a very different sheep population, the
Soay (Johnston et al. 2016), and indeed when reanalyzing
the Soay data with the same approach as used in this study,
the results showed a striking similarity between recombina-
tion rates in the two populations. Hence, our results show
that recombination patterns were conserved over many gen-
erations, despite the very different evolutionary histories of
the two populations and clear differences in the genetic de-
terminism of GRR in males of the two populations. This sim-
ilarity allowed us to combine the two data sets to create more

precise male sheep recombination maps than any of the two
studies taken independently.

Our historical recombination maps revealed patterns of
recombination at the kilobase scale, with small, highly recom-
bining intervals interspaced by more wide, low recombining
regions. This result was consistent with the presence of re-
combination hotspots in the highly recombinant intervals. A
consequence was that, as observed in other species, the
majority of recombination took place in a small portion of
the genome: we estimated that 80% of recombination takes
place in 40% of the genome. Kaur and Rockman (2014) sug-
gested the use of a Gini coefficient as a measure of the het-
erogeneity in the distribution of recombination along the
genome to facilitate interspecies comparisons. When calcu-
lated on the historical recombination data, the Lacaune sheep
has a coefficient of 0.52, which is similar to what is observed
in Drosophila but lower than that measured in humans or
mice. However, the coefficient calculated here is likely an
underestimate due to our limited resolution (a few kilobases
on the HD SNP array) compared to the typical hotspot width
(a few hundred base pairs). Overall, we identified 50,000
hotspot intervals, which was twice the estimated number of
hotspots in humans (International HapMap Consortium et al.
2007). This difference can be explained by different nonmu-
tually exclusive reasons. First, it is possible that what we de-
tect as crossover hotspots are due to genome assembly errors,
and we indeed found a significant albeit moderate effect
(odds ratio = 1.4) of the presence of assembly gaps in an
interval on its probability of being called a hotspot. Second,
our method to call hotspots could be too liberal. Indeed, a
more stringent threshold (FDR = 0.1%) would lead to
�25,000 hotspots, which would be similar to what is found
in humans. Third, selection has been shown to impact hot-
spot discoveries, although not with the methods that we used
here (Chan et al. 2012). Finally, there exists the possibility
that sheep historically exhibit more recombination hotspots
than humans. In any case, the strong association between
meiotic recombination rate and density in historical hotspots
showed that our historical recombination maps were gener-
ally accurate. We tried to find enrichment in sequence motifs

Table 3 SNPs associated with GRR (P-values correspond to the single-SNP Wald test)

Rs Number Chr Position (bp) Minor Allele p b P-Value pQTL

rs430436336 1 180044043 A 0.11 2.19 8.08 1026 0.006
rs400472211 1 268670581 A 0.33 0.86 9.41 1026 0.03
rs418551122 3 75216491 A 0.3 0.76 2.42 1025 0.04
rs407545143 3 201298545 G 0.24 1.13 9.36 1024 0.07
rs411987057 6 116517201 C 0.22 22.3 1.31 10216 0.19
rs401206888 6 116440663 G 0.14 21.95 2.04 10216 0.16
rs412583165 6 116525709 G 0.27 22.38 9.80 10217 0.15
rs429477322 6 116509403 A 0.18 22.17 3.94 10216 0.11
rs161854895 6 116491013 G 0.22 22.17 2.53 10216 0.11
rs398811467 6 116472870 A 0.13 21.94 2.51 10216 0.14
rs407110999 7 22859168 G 0.25 1.37 8.71 1027 0.1
rs413147562 7 22798236 A 0.23 1.61 1.20 1027 0.71

b corresponds to the effect of SNP (in number of crossover per meiosis) on GRR and pQTL is the probability of the SNP to be a QTL estimated using a Bayesian Sparse Linear
Mixed Model (see Materials and Methods). Chr, chromosome; GRR, genome-wide recombination rate.
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in the detected hotspots or specify their position relative to
TSS (data not shown), but with no success mainly due to (i)
the relative large hotspot intervals (�5 kb) compared to typ-
ical hotspot motifs and (ii) the quality of the sheep genome
assembly, which still contains many small gaps that make
such analyses difficult. Ultimately, these questions would
need an improved genome assembly and better resolution
of crossover hotspots, which should be addressed in the fu-
ture from LD-based studies on resequencing data.

We combined, using a formal statistical approach, meiotic-
and LD-based recombination rate estimates. Using an ap-
proach conceptually similar to that of O’Reilly et al. (2008)
led us to assess the impact of selection events on the sheep
genome, in particular suggesting the possibility of an effect of
diversifying selection at olfactory receptor genes. Based on
this comparison, the correlation between historical and mei-
otic recombination rates was found to be high (r 0.7), but less
than could be expected from previous results in humans,
where the correlation was 97% on 5 Mb (Myers et al. 2006).
However, it was closer to that of worms(Rockman and
Kruglyak 2009), mice (Brunschwig et al. 2012), or Drosophila
(Chan et al. 2012), 69, 47, and 50%, respectively. Again, more
precise estimates of both meiotic and historical recombination
rates could change this number but other causes can be put
forward.

Afirst explanation could come from the fact that themodel
we used to estimate historical recombination rates is based on
the assumption of a constant effective population size, both in
the past and along the genome. To allow for varying popu-
lation size along the genome,we estimated themodel in 2-Mb
intervals, but there is still a possibility that varying population
size in the past affected our historical recombination rate
estimates, as the method has been shown to be somewhat
influenced by demography, although much less so for the
identification of crossover hotspots (Li and Stephens 2003).
Also, as already mentioned above, selection has been shown
to have a substantial impact on the estimation of recombina-
tion rates with other approaches (Chan et al. 2012), although
it has not been evaluated for the Li and Stephens (2003)
model to our knowledge.

Second,ourmeiotic recombinationmapsarebasedonmale
meioses only, while historical recombination rates are aver-
aged over both male and female meioses. The fact that male
and female recombination differ substantially, particularly in

sheep (Johnston et al. 2016), could also explain this relatively
lower correlation.

Third, it is also possible that selective pressure due to
domestication and later artificial breeding had the impact
of modifying extensively LD patterns on the sheep genome,
degrading the correlation between the two approaches. In-
deed, the historical recombination estimates summarize an-
cestral recombinations that took place in the past and it is
possible that recombination hotspots that were present in an
ancestral sheep population are no longer active in today’s
Lacaune individuals. This could arise, for example, if domes-
tication led to a reduction in the diversity of hotspots defining
genes, such as PRDM9, and hence a reduction in the number
of motifs underlying hotspots, which would in turn change
the distribution of recombination on the genome. For exam-
ple, this has been shown in humans, where patterns of re-
combination differ between populations due to their different
diversity at PRDM9 (Baudat et al. 2010; Berg et al. 2010,
2011). Eventually, such a phenomenon would degrade the
correlation between present day recombination (measured
by the meiotic recombination rates) and past recombination
(measured by historical recombination rates). Further stud-
ies on the determinism of hotspots in sheep, their related
genetic factors, and their diversity would be needed to eluci-
date this question.

Despite these different effects, the substantial correlation
betweenmeiotic and historical recombination ratesmotivates
the creation of scaled recombination maps that can be useful
for interpreting statistical analysis of genomic data. As an
illustration of the importance of fine-scale recombination
maps for genetic studies, we found an interesting example
in a recent study on the adaptation of sheep and goats (Kim
et al. 2016). In this study, a common signal of selection was
found using the integrated Haplotype Score (iHS) statistic
(Voight et al. 2006) in these two species (Figure 5 in Kim
et al. (2016)). This signature precisely matches the low
recombining regions that we identified on chromosome 10.
However, the iHS statistic has been shown to be strongly
influenced by variation in recombination rates, and in partic-
ular to tend to detect low recombining regions as selection
signatures (O’Reilly et al. 2008; Ferrer-Admetlla et al. 2014).
Precise genetic maps such as the one we provide in this work
could thus help in annotating and interpreting such selection
signals.

Table 4 Association of GRR with mutations in the RNF212 gene

Mutation Name Base Change

Positions on
OA Musimon Genome

(Scaffold 01089)

Predicted Positions
on v3.1 Sheep
Genome (OAR6) p b P-Value pQTL

RNF212_14431_AG A .G 132229 116438514 0.18 23.98 6.25 10217 0.23
RNF212_18411_GA G .A 136209 116442624 0.17 25.58 4.93 10215 0.02
RNF212_22570_CG C .G 140368 116446753 0.18 23.94 4.61 10216 0.09
RNF212_22594_AG A .G 140392 116446777 0.17 0.57 0.54 0.004

Association of mutations in the RNF212 gene with GRR in 345 individuals. Positions on different reference sequences as well as predicted positions on OAR v3.1 are
indicated. p: allele frequency b: allele substitution effect. pQTL: probability that the SNP is a QTL after fitting a Bayesian sparse linear mixed model on the region (see details in
the text). OA, O. aries reference genome; GRR, genome-wide recombination rate.
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Determinism of recombination rate in
sheep populations

As mentioned in the introduction, two phenotypes have been
studies with respect to the recombination process, but only
one was studied here, GRR. We found that our data were
not sufficient to study the Individual Hotspot Usage, which
requires either a larger number of meioses per individual
(Sandor et al. 2012; Ma et al. 2015; Kadri et al. 2016) or
denser genotyping in families (Coop et al. 2008).

Our approach to study the genetic determinism of GRR in
the Lacaune population was first to estimate its heritability,
using a classical analysis in a large pedigree. This analysis also
allowed us to extract additive genetic values (EBVs) for the
trait in 345 male parents, which we used for a GWAS in a
second step. The EBVs are, by definition, only determined by

genetic factors, as environmental effects onGRRare averaged
out. Indeed, we found that the proportion of variance in EBVs
explained by genetic factors in the GWASwas essentially one.
A consequence was that, although this sample size could be
deemed lowbycurrent standards, thepowerofourGWASwas
greatly increased by the high precision on the phenotype. We
estimated the heritability of GRR at 0.23, which was similar
to estimates from studies on the samephenotype in ruminants
[e.g., 0.22 in cattle (Sandor et al. 2012) or 0.12 in male Soay
sheep (Johnston et al. 2016), but see below for a discussion
on the comparison with Soay sheep]. We had little informa-
tion on the environmental factors that could influence recom-
bination rate, but did find a suggestive effect of the month of
insemination on GRR; in particular, we found increased GRR
in the month of May. Confirmation and biological interpreta-
tion of this result would need dedicated studies, but it was
consistent with the fact that fresh (i.e., not frozen) semen is
used for insemination in sheep and that the reproduction of
this species is seasonal (Rosa and Bryant 2003).

The genetic determinism of GRR discovered in our study
closely resembles what has been found in previous studies,
especially in mammals. Two major loci and two suggestive
ones affected the recombination rate in Lacaune sheep. The
two main QTL are common to cattle and Soay sheep. The
underlying genes andmutations for these twoQTL are not yet
resolved, but the fact that the two regions harbor interacting
genes [RNF212 andHEI10 (Qiao et al. 2014; Rao et al. 2016)]
involved in the maturation of crossovers makes these two
genes likely functional candidates. Indeed, these two genes
were identified as potential candidates underlying QTL for
GRR in mice (Wang and Payseur 2017). The third gene iden-
tified here, KCNJ15, is a novel candidate, and its role and
mechanism of action in the repair of DSBs needs to be con-
firmedand elucidated. Interestingly, these three genes are linked
to the reparation of DSBs and crossover maturation process-
es. Finally, the fourth candidate FSHR has well-documented ef-
fects on gametogenesis but has not previously been linked to
recombination.

In our study, 60% of the additive genetic variance in GRR
remained unexplained by large-effect QTL and were due to
polygenic effects. This could be interpreted in the light of
recent evidence that has shown that other mechanisms, in-
volved in chromosomeconformationduringmeiosis, explaina
substantial part of the variation in recombination rate be-
tween mouse strains (Baier et al. 2014) and bovids (Ruiz-
Herrera et al. 2017). Furthermore, the variations at the major
mammal recombination loci (RNF212, CPLX1, and REC8 or
the Human inversion 17q21.31) explain only 3 to 11% (Ritz
et al. 2017) of the phenotypic variance among individuals.
Elucidating the genetic determinism of these different
processes would thus require much larger sample sizes or
different experimental approaches (Baier et al. 2014; Ruiz-
Herrera et al. 2017).

The combination of data sets from the Lacaune population
and one from the recent study of recombination in Soay sheep
(Johnston et al. 2016) allowed us to study the evolution of

Figure 6 Comparison of GWAS results for the chromosome 6 QTL in
Lacaune Males (top), Soay Males (middle), and Soay Females (bottom)
The shaded area highlights the predicted position of the RNF212 gene.
Circle dots are markers tested in both populations. Red dots are the new
mutations within the RNF212 gene discovered in this study and geno-
typed in the Lacaune population. GWAS results in the Soay are from
Johnston et al. (2016). GWAS, genome-wide association study.
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recombination at relatively short timescales. One of the most
striking differences between our two studies is that the two
QTL that were detected to be in common had no effect in
Soay males, whereas they had strong effects in Lacaune
males. However, the two populations had very similar poly-
genic heritability; accounting for the fact that the Lacaune
QTL explain�40% of the additive genetic variance, we could
estimate the polygenic additive genetic variance in Lacaune
males at 0.16, very similar to the 0.12 found in Soay males.
Combined with our results that the two populations exhibit
very similar male recombination maps, both in terms of in-
tensity and genome distribution, the combination of the
two studies shows that recombination patterns are conserved
between populations under distinct genetic determinism,
highlighting the robustness of mechanisms that drive them.
We note that this robustness concerns recombination at a rel-
atively broad scale (in the order of 10–100 kb), so it does not
necessarily mean that the two breeds share recombination
hotspots. Furtherwork is needed to get amore detailed picture
of the genetic control of recombination in sheep and will likely
require the combination of multiple inferences from genetics,
cytogenetics, molecular biology, and bioinformatics analyses.
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