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INTRODUCTION 
 
Asthma is a common and heterogeneous chronic 
respiratory disease characterized by variable symptoms 
of wheeze, shortness of breath, chest tightness and/or 
cough, and variable expiratory airflow limitation [1]. 
According to epidemiological investigations, asthma 
affects approximately 1–18% of the population in 
different countries. 
 
Type 2 inflammation is an important molecular 
mechanism in asthma. Recently, T helper type 2 (Th2)  

 

cells and type 2 innate lymphoid cells (ILC2s) were 
recognized as important cells involved in allergic 
eosinophilic asthma [2, 3]. These two types of cells 
contribute to increases in eosinophilic inflammation, 
immunoglobulin E (IgE) production, airway 
hyperresponsiveness (AHR), and mucus hypersecretion 
through the production of Th2 cytokines (interleukins  
4, 5, and 13) [4, 5]. 
 
The long-term goals for asthma management are to 
achieve good symptom control, maintain normal activity 
levels, reduce the future risk of exacerbations, prevent 
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ABSTRACT 
 
Asthma is a type of chronic lung inflammation with restrictions in effective therapy. NF-κB pathway activation 
has been suggested to play an important role in the pathogenesis of asthma. Baicalein, one of the major active 
flavonoids found in Scutellaria baicalensis, exhibits potent anti-inflammatory properties by inhibiting NF-κB 
activity. Herein, we report that Baicalein significantly reduces OVA-induced airway hyperresponsiveness (AHR), 
airway inflammation, serum IgE levels, mucus production, and collagen deposition around the airway. 
Additionally, western blot analysis and immunofluorescence assay showed that Baicalein attenuates the 
activation of NF-κB, which was mainly reflected by IκBα phosphorylation and degradation, p65 nuclear 
translocation and downstream iNOS expression. Furthermore, in human epithelial cells, Baicalein blocked TNF-
α-induced NF-κB activation. Our study provides evidence that Baicalein administration alleviates the 
pathological changes in asthma through inactivating the NF-κB/iNOS pathway. Baicalein might be a promising 
potential therapy agent for patients with allergic asthma in the future. 
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fixed airflow limitation and minimize side effects. 
Currently, control-based asthma management consists of 
nonpharmacological approaches, such as allergen 
avoidance, and pharmacological approaches. The 
mainstay of pharmacological approaches to treat asthma 
is daily inhaled corticosteroids (ICS) combined together 
with long-acting β2 agonists (LABA). Although great 
achievements in pharmacological approaches to treat 
asthma have been made, some patients (approximately 
10 to 25%) remain symptomatic after undergoing the 
optimal ICS + LABA therapy [6]. In addition, 
corticosteroids do not function directly on pulmonary 
structural changes, nor are they sufficient to suppress  
IL-13-induced mucus dysfunction [7]. Furthermore,  
as corticosteroids may contribute to pneumonia, 
hypertension, hyperlipidemia, peptic ulcers, myopathy, 
cataracts and growth inhibition in children during the 
first year of treatment, their side effects cannot be 
ignored [8]. 
 
Except for the treatment regime mentioned above, the 
widespread application of complementary or alternative 
medicine (CAM) in patients with asthma has increased 
the demand for research on its use in asthma. CAM in 
asthma treatment consists of acupuncture, herbal 
medicine, yoga, breathing exercises, relaxation 
therapies, and nutritional therapies, among others [9]. 
Among these, herbal medicine is the most popular CAM 
in asthma treatment. A study reported that 11–40%  
of people with asthma are inclined to use herbal 
remedies [10]. 
 
In China, many herbs have long been used to treat 
asthma and airway inflammation. Furthermore, 
substantial evidence has shown the efficacy and safety of 
many traditional Chinese medicines (TCMs), such as 
Mai-men-dong-tang and Dingchuan-tang [11], in 
patients with asthma in China and in many other 
countries [12, 13]. Boswellia, an herb used in Ayurvedic 
medicine (a traditional Indian system of healthcare), had 
a beneficial effect on patients with bronchial asthma in a 
clinical trial [14, 15]. Several studies have revealed that 
Pycnogenol, a standardized extract from French 
maritime pine bark, improves lung function and reduces 
symptoms in patients with asthma [16, 17]. Furthermore, 
many important drugs currently used in the treatment of 
asthma originated from herbs. For example, the 
traditional Chinese remedy ‘ma huang’ is the herbal 
origin of ephedrine, and theophylline was developed 
from ma huang tea leaves. 
 
Baicalein (5,6,7-trihydroxy-2-phenyl-4H-1-benzopyran-
4-one) is one of the major flavonoids derived from the 
root of Scutellaria baicalensis, namely, the traditional 
Chinese medicinal herb Huang Qin [18]. Baicalein 
possesses multiple pharmacological properties in  

various diseases, including cardiovascular diseases [19], 
hypertension [20], bacterial infection [21] and cancer 
[22]. Meanwhile, accumulating evidence has reported 
the antiallergic effects of Baicalein, but the mechanisms 
of these effects remain unknown. Baicalein inhibited 
cigarette smoke extract (CSE)-induced inflammatory 
cytokine production through the inactivation of NF-κB 
in human mast cells [23]. NF-κB is a pleiotropic 
transcription factor, and its roles in the pathogenesis of 
asthma have been explored in mouse models of allergic 
airway inflammation and in human patients with asthma 
[24]. CC10-IκBαSR transgenic mice, which are 
refractory to IκBα degradation and NF-κB activation in 
the lung epithelium, were demonstrated to be strongly 
protected from airway inflammation induced by 
ovalbumin (OVA) [25, 26]. Furthermore, NF-κB–
specific decoy oligonucleotide and p65-specific 
antisense oligonucleotides were reported to have 
beneficial effects in experimental asthma models [27]. In 
this study, we elucidate whether Baicalein mitigates 
OVA-induced allergy airway inflammation through 
regulating the NF-κB pathway both in vitro and in vivo. 
 
RESULTS 
 
Baicalein relieves OVA-induced AHR in mice 
 
AHR is generally used to describe increased airway 
smooth muscle contraction that contributes to 
obstruction in people with asthma, which is a form of 
inflammation [28]. In laboratories studying lung 
function, AHR is most frequently established with 
inhaled Methacholine (Mch) rather than histamine, 
osmotic agents, exercise, or eucapnic voluntary 
hyperventilation. Therefore, airway resistance (Rn) in 
mechanically ventilated mice in response to increasing 
concentrations of Mch was measured to determine 
whether Baicalein impacts AHR. As predicted, OVA 
sensitization and challenge led to an AHR, which is 
typically reflected by high Rn (Figure 1B). However, the 
Rn of allergic mice that were treated with Baicalein (10 
mg/kg and 20 mg/kg) was significantly reduced in a 
dose-dependent manner relative to that in OVA-
sensitized and challenged mice. 
 
Baicalein reduces OVA-induced serum IgE and Th2 
cytokine levels 
 
Serum levels of total IgE were determined by enzyme 
linked immunosorbent assay (ELISA) to evaluate the 
effect of Baicalein on the OVA-specific Th2 response in 
vivo. The serum total IgE level was markedly increased in 
OVA-challenged mice, and Baicalein treatment suppressed 
total IgE production in asthmatic mice even at a low dose 
(10 mg/kg, Figure 2A). After inhalation of OVA, the 
sensitized mice exhibited significantly increased levels of 
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released Th2 cytokines, (IL-4, IL-5 and IL-13) in 
bronchoalveolar lavage fluid (BALF) and lung tissue 
compared to those observed in the saline-treated control 
mice. As shown in Figure 2B–2G, the OVA-induced 
increases in these cytokines in both BALF (Figure 2B–2D) 
and lung tissues (Figure 2E–2G) were significantly 

reduced by the administration of Baicalein. We further 
explored the effect of Baicalein on the Th2 response by 
assessing the mRNA expression levels of these cytokines. 
As shown in Figure 3A–3C, the administration of 
Baicalein relieved the OVA-induced increase in IL-4, IL-
5, and IL-13 mRNA expression levels. 

 

 
 

Figure 1. Baicalein relieves OVA-induced AHR in mice. (A) The construction of a model of OVA-induced allergic airway inflammation. 
Mice were sensitized by OVA/Al(OH)3 on day 0 and day 14, while from days 25 to 31, the mice were exposed to 1% OVA aerosol for 7 
consecutive days. (B) Airway responsiveness was assessed as the mean response of mechanically ventilated mice to increased doses of Mch 
(mean ± SEM; n = 6 per group; **P < 0.01 compared with the control group). 
 

 
 

Figure 2. Baicalein reduces OVA-induced Th2 inflammation. The OVA/Al(OH)3 model is characterized by Th2-driven airway 
inflammation. To determine the effect of Baicalein on Th2 airway inflammation, ELISA was performed to detect the levels of IgE in serum  
(A) and IL-4, IL-5, and IL-13 in BALF (B–D) and lung homogenate (E–G) (results are presented as the mean ± SEM. n = 6 mice per group; ##P < 
0.01 compared with the control group; *P < 0.05, **P < 0.01 compared with the OVA/Vehicle group). 
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Baicalein suppresses OVA-induced inflammatory 
cell recruitment 
 
To further determine the effect of Baicalein on OVA-
induced airway inflammation, hematoxylin and eosin 
(H&E) staining was conducted. As shown in Figure 4A 
and 4B, Baicalein markedly relieved the infiltration of 
inflammatory cells into the peribronchiolar and 
perivascular connective tissues. Furthermore, asthmatic 
mice after OVA inhalation presented thickened airway 
walls and confined lumens and shed tracheal epithelial 

cells, suggesting that Baicalein treatment relieves these 
pathologic changes. 
 
BALF was collected 24 h after the last OVA aerosol 
challenge, and the total and differential cell counts were 
determined. OVA challenge significantly increased the 
total cell (Figure 4C) and eosinophil counts (Figure 4D) 
in BALF compared to those in control mice. The oral 
administration of Baicalein drastically decreased the 
total cell and eosinophil counts compared to those in the 
saline-administered control mice. 

 

 
 

Figure 3. Baicalein inhibits OVA-induced IL-4, IL-5, and IL-13 expression at the mRNA level. The mRNA levels of IL-4 (A), IL-5  
(B), and IL-13 (C) were determined by using RT-qPCR and were normalized to those of β-actin. (Results are presented as the mean ± SEM;  
n = 6 mice per group. ##P < 0.01 vs the control group; *P < 0.05, **P < 0.01 vs the OVA/Vehicle group). 
 

 
 

Figure 4. Baicalein suppresses OVA-induced inflammatory cell recruitment. (A) Histologic lung sections were stained with H&E, 
which showed that Baicalein reduces inflammatory cell recruitment and infiltration into the airway. Image are shown at 200× magnification 
with a scale bar representing 100 μm. (B) Lung inflammatory scores were assessed by histological analysis of lung tissues. Baicalein reduced 
the numbers of total cells (C) and eosinophils (D) in BALF following OVA challenge (Results are presented as the mean ± SEM. n = 6 mice per 
group; ##P < 0.01 compared with the control group; *P < 0.05, **P < 0.01 compared with the OVA/Vehicle group). 
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Baicalein attenuates OVA-induced mucus 
production 
 
The formation of mucus in small and large bronchioles is 
an important aspect of allergic lung inflammation, and 
goblet cell hyperplasia and submucosal gland hypertrophy 
in asthmatic airways can be seen even in some patients 
with newly diagnosed asthma [28]. As visualized by 
Periodic Acid Schiff (PAS) staining, OVA exposure 
increased mucus production by airway epithelial cells 
(Figure 5A–5B). However, Baicalein treatment 
significantly decreased the production and secretion of 
mucus. In addition, we determined the expression of the 
mucus secretion-related genes MUC5AC and MUC5B. In 
accordance with the results of PAS staining, Baicalein 
markedly reduced the expression levels of MUC5AC 
(Figure 5C) and MUC5B (Figure 5D). 
 
Baicalein suppresses continuous OVA challenge 
induced collagen deposition 
 
The extent of collagen deposition was evaluated by 
Sirius Red staining. As shown in Figure 6A and 6B, 
marked collagen deposition over the interstitium of the 
airways was observed after OVA challenge. However, 
these increases in airway collagen deposition and 
fibrosis were reversed by Baicalein administration. 
Metalloproteinase-9 (MMP-9) is thought to be involved 

in collagen deposition in airway walls, which contributes 
to narrowed airways [29]. To further verify the role of 
MMP-9 in collagen deposition, we determined MMP-9 
and collagen I expression at the mRNA and protein 
levels. The MMP-9 and collagen I expression levels in 
lung tissue were significantly elevated in asthmatic mice 
compared with those in the control mice (Figure 6C–
6G), whereas these elevations in expression were 
abolished by Baicalein at both doses (10 mg/kg and 20 
mg/kg). Our results indicate that Baicalein restrained 
OVA-induced MMP-9 and collagen I expression, further 
contributing to the suppression of extracellular matrix 
(ECM) deposition and fibrosis. 
 
Baicalein inhibits OVA-induced NF-κB activation 
and downstream iNOS expression in allergic airway 
inflammation 
 
Next, we detected NF-κB pathway activation in lung 
tissues to explore the possible mechanism by which 
Baicalein relieves asthma. OVA-challenged mice showed 
markedly increased IκBα phosphorylation and IκBα 
degradation (Figure 7A–7C). Western blot analysis 
(Figure 7D–7F) and immunofluorescence assay (Figure 
7G–7H) indicated that NF-κB p65 translocated from the 
cytosol to the nucleus in our study. However, treatment 
with Baicalein reversed OVA-induced NF-κB activation 
in a dose-dependent manner. NO derived from iNOS 

 

 
 

Figure 5. Baicalein attenuates OVA-induced mucus production. Goblet cell hyperplasia and mucin gene expression were used to 
measure mucus production in mice. (A) PAS staining was performed to identify goblet cell hyperplasia in the airway epithelium. Images are 
shown at 200× magnification with a scale bar representing 100 μm. (B) Quantification of mucus-producing goblet cells in lung tissues 
detected by PAS staining. The mRNA levels of the mucus-related genes MUC5AC (C) and MUC5B (D) were quantified by RT-qPCR and 
normalized to those of β-actin (n = 6 mice per group; ##P < 0.01 compared with the control group; *P < 0.05 compared with OVA/Vehicle 
group, **P < 0.01 compared with the OVA/Vehicle group). 
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activation is involved in inflammatory cell 
recruitment and changes in lung structure [30]. In 
addition, the iNOS pathway is related to the 
modulation of NF-κB expression [31]. Based on these 
findings, we measured the expression of iNOS in lung 
homogenates. As presented in Figure 8A–8B, the 
expression of iNOS was 2.1-fold higher in mice 
exposed to OVA than in mice exposed to normal 
saline. The oral administration of Baicalein reduced 
the expression of iNOS in a concentration-dependent 
manner. Moreover, the activity levels of TNOS and 
iNOS were also measured. iNOS activity was 
significantly decreased after the oral administration of 
Baicalein (Figure 8D), but the activity of TNOS 
showed no significant change (Figure 8C). Thus, from 
the results mentioned above, we concluded that 
Baicalein significantly reversed OVA-induced IκBα 
degradation, NF-κB p65 nuclear translocation, and the 
expression and activity of iNOS, suggesting that 
Baicalein exerts its anti-allergic effect via the 
inhibition of NF-κB/iNOS activation. 

Baicalein inhibits TNF-α–induced NF-κB activation 
in BEAS-2B cells 
 
Activation of the classical NF-κB pathway in the airway 
epithelium plays a critical role in allergic airway 
inflammation [26]. In our study, Baicalein had a 
significant effect on the activation of the NF-κB pathway 
in a murine model. To investigate the anti-inflammatory 
mechanisms of Baicalein in a relevant airway cell type, 
we studied the effects of Baicalein on TNF-α-induced 
activation of the NF-κB pathway in Human normal 
bronchial epithelial (BEAS-2B) cells.  
 
TNF-α is also an important cytokine in patients with 
asthma and contributes to the inflammatory response in 
the asthmatic airway [32]. Additionally, several studies 
have supported a central role for TNF-α in the 
development of AHR and other features of the asthma 
paradigm [33]. Furthermore, as a stimulator, TNF-α 
activates NF-κB in lung epithelial cells [34]. In this 
study, TNF-α (10 ng/mL) induced the phosphorylation of 

 

 
 

Figure 6. Baicalein suppresses continuously OVA challenge induced collagen deposition. (A) Lung tissue sections were stained 
with Sirius Red to assess collagen deposition. Images are shown at 200× magnification with a scale bar representing 100 μm. (B) A bar graph 
showing quantified collagen deposition areas (%) detected by Sirius Red staining. (C–D) Expression levels of collagen I (Col I) and MMP9 in the 
lung tissues of mice in each group were determined by RT-qPCR. Lung tissues from each group were extracted for western blotting to analyze 
collagen I and MMP-9 expression, with β-actin used as a loading control. Proteins from three mouse lung tissues were pooled together, n = 6 
in one group (F–G). The results are presented as the mean ± SEM; ##P < 0.01 compared with the control group; *P < 0.05, **P < 0.01 
compared with the OVA/Vehicle group. 
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IκBα and IκBα degradation after 60 min, and p65 nuclear 
translocation was detected after 2 h. As shown in Figure 
9A–9B, TNF-α strongly enhanced the phosphorylation of 
IκBα and accelerated the degradation of IκBα in BEAS-
2B cells. However, Baicalein (2.5 μM) noticeably 
blocked the changes induced by TNF-α. Western blot 
analysis (Figure 9C–9D) and immunofluorescence assay 
(Figure 9E) indicated that Baicalein significantly 
impeded NF-κB p65 translocation from the cytoplasm to 
the nucleus after exposure to TNF-α. In addition, 

treatment with Baicalein alone did not affect NF-κB 
signaling pathways. 
 
DISCUSSION 
 
Asthma is ranked as the 14th most important chronic 
disease worldwide in terms of its prevalence, and the 
extent and duration of disability due to asthma [35]. 
According to the Global Asthma Report in 2014, the 
latest revised global estimates of asthma suggest that

 

 
 

Figure 7. Baicalein inhibits OVA-induced NF-κB pathway activation. (A) The protein levels of P-IκBα and IκBα in the lung tissues of 
mice in each group were examined by western blot analysis with β-actin used as an internal control. (B–C) A bar graph shows the 
quantification of P-IκBα, IκBα and β-actin by densitometry. (D–F) Cytosolic (upper blot) and nuclear (lower blot) p65 levels were determined 
by western blot. β-actin and Lamin B were used as loading controls. Proteins from three mouse lung tissues were pooled together. n = 6 in 
one group. (G) Immunofluorescence staining for p65 (red, Cy3) in lung tissues of mice at 100× magnification. Nuclei were stained with DAPI 
(blue). (H) Relative nuclear immunostaining intensity of p65 was quantified. The results are presented as the mean ± SEM. n = 6 mice per 
group; ##P < 0.01 compared with the control group; *P < 0.05, **P < 0.01 compared with the OVA/Vehicle group. 
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more than 334 million people worldwide suffer from 
asthma, and the prevalence of asthma and the burden of 
asthma-related disability are increasing [36]. Asthma is 
an eosinophilic/Th2 disorder, and novel therapeutics 
targeting Th2 cytokines (IL-4, IL-5 and IL-13) and IgE 
have achieved excellent improvements in disease 
control, although these therapeutics are applicable to 
only a sub group of patients in clinical studies [5, 37]. 
Thus, other novel therapies are urgently needed to better 
treat patients at all levels. 
 
NF-κB was previously reported to be involved in the 
pathogenesis of asthma, and evidence for the activation of 
NF-κB in bronchiolar epithelium has been observed in 
both animal models of allergic airway disease and patients 
with asthma [38]. Baicalein protects against inflammatory 
diseases via the inhibition of NF-κB transactivation [23, 
39, 40]. To gain further insight into the mechanism by 
which Baicalein regulates NF-κB in vivo, we examined 
the effect of Baicalein on NF-κB signaling. As shown  
in Figure 7, OVA-induced NF-κB activation, which 
promotes IκBα phosphorylation and degradation and NF-
κB nuclear translocation, was significantly blocked by 
treatment with Baicalein. We also detected IκBα mRNA 
expression levels before and after OVA/Baicalein 

treatment, and, as shown in Supplementary Figure 2, there 
was no significant difference in IκBα mRNA expression 
between the OVA/vehicle and control groups. In addition, 
treatment with Baicalein did not affect IκBα mRNA 
expression. This result indicates that OVA/Baicalein 
treatment did not affect the transcription of IκBα. 
Therefore, we believe that the effects of Baicalein on 
IκBα protein expression depend on IκBα degradation. To 
verify the anti-inflammatory mechanisms of Baicalein in a 
relevant airway cell type, we studied the effects of 
Baicalein on the TNF-α induced activation of the NF-κB 
pathway in BEAS-2B cells. Similar to the results of in 
vivo experiments, TNF-α-induced NF-κB activation was 
blocked by pretreatment with Baicalein. We then used 
Bay11-7082 (BAY), an NF-κB inhibitor, as a positive 
control; TNF-α-induced NF-κB activation was blocked  
by pretreatment with either BAY or Baicalein 
(Supplementary Figure 1). ROS, interleukins, and 
lipopolysaccharide were also involved in the activation of 
NF-κB pathway during the pathogenesis asthma [41]. 
Here, we showed that Baicalein could block the TNF-α-
induced NF-κB activation. However, it will also be 
important to further reveal the roles of Baicalein in  
ROS, interleukins, or lipopolysaccharide-induced NF-κB 
activation. 

 

 
 

Figure 8. iNOS expression and activity are suppressed upon Baicalein treatment. (A) The expression of iNOS in the total proteins of 
lung tissues from mice in each group was detected by western blot analysis, and β-actin was used as an internal control. Proteins from three 
mouse lung tissues were pooled together. n = 6 in one group. (B) A bar graph shows the quantification of iNOS and β-actin by densitometry. 
Total NO synthase (TNOS, C) and inducible NO synthase (iNOS, D) activities in mouse serum were measured using an NOS Assay Kit (Error 
bars represent the mean ± SEM; ##P < 0.01 compared with the control group; **P < 0.01 compared with the OVA/Vehicle group). 
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Eosinophils play a key role in the development of 
allergic inflammation including airway remodeling. A 
growing number of studies have demonstrated that a lack 
of eosinophils reduces airway mucus secretion, AHR, 
collagen deposition, and airway smooth muscle 
hypertrophy [42]. Eosinophils migrate to the airway in 
response to specific cytokines, such as IL-4, IL-5, IL-9, 
and IL-13 [43]. During allergic inflammation, 
eosinophils interact with airway epithelial cells to 
stimulate the NF-κB-dependent production of cytokines 
and adhesion molecules [38]. Additionally, the NF-κB 
pathway is important in eosinophil activation and 
survival [44]. In recent years, more attention has been 

paid to objective measures to guide the diagnosis and 
management of allergic eosinophilic airway 
inflammation. Fractional exhaled nitric oxide (FeNO) 
refers to the amount of NO measured when a person 
exhales, and is regarded as a new strategy to assess 
eosinophilic airway inflammation [45]. Numerous 
studies also provide evidence of increased FeNO 
following allergen provocation of allergic asthmatics 
[46, 47]. NO is an important endogenous modulator of 
airway and distal lung constriction, and the synthesis of 
NO in the airway is catalyzed by the activity of iNOS 
[48]. The expression of iNOS is increased in bronchial 
epithelial cells of patients with asthma and is correlated 

 

 
 

Figure 9. Baicalein inhibits TNF-α-induced NF-κB activation in BEAS-2B cells. BEAS-2B cells were pretreated with vehicle control 
(DMSO) or Baicalein (2.5 μM) for 30 min, followed by exposure to TNF-α (10 ng/mL) for 60 min. Total proteins were extracted and analyzed 
for P- IκBα (A) and IκBα (B) expression by western blot analysis, with β-actin used as the internal control. After BEAS-2B cells were exposed to 
TNF-α (10 ng/mL) for 2 h, the nuclear and cytosolic proteins were separated using a cytoplasmic and nuclear protein extraction kit, and the 
nuclear (C) and cytosolic (D) p65 levels were determined by western blot analysis. β-actin and Lamin B were used as internal controls. (E) p65 
staining was carried out, and p65 levels were detected by Cy3-conjugated secondary antibody (red). Cells were counterstained with DAPI 
(blue) and are shown with a scale bar indicating 50 μm. (F) Relative nuclear immunostaining intensity of p65 was quantified. (mean ± SEM of 
more than three independent experiments; ##P < 0.01 compared with control, *P < 0.05 compared to TNF-α, **P < 0.01 compared to TNF-α). 
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with the exhalation of NO [49]. In this study, treatment 
with Baicalein markedly decreased iNOS expression in 
allergic mouse lung tissue. The proinflammatory 
cytokines IL-4, IL-5 and IL-13 might be able to 
upregulate the generation of iNOS-derived NO through 
activating the NF-κB pathway [50]. Therefore, it is 
reasonable to assume that a reduction in iNOS expression 
is inseparable from the direct inhibition of Th2 cytokine 
release and NF-κB pathway activation. 
 
Airway mucus hypersecretion, a hallmark of asthma 
pathogenesis, has long been recognized as an important 
cause of death in asthma. To date, more than 20 human 
mucin genes have been identified, and the principal 
airway gel-forming mucins in asthma are MUC5AC and 
MUC5B [51]. In our study, MUC5AC and MUC5B 
mRNA levels were significantly increased in asthma 
mice compared to those in control mice, and Baicalein 
treatment induced substantial decreases in MUC5AC and 
MUC5B mRNA expression levels. MUC5AC is mainly 
expressed in the epithelium, and significantly increased 
levels of MUC5AC are required for airflow obstruction 
in murine asthma models. MUC5B is expressed mainly 
in submucosal glands, and while the level of MUC5B 
differs from that of MUC5AC, MUC5B expression 
remains controversial. The expression of MUC5B was 
elevated in OVA-induced mouse asthmatic airways, and 
large amounts of glandular MUC5B extracellular mucus 
were observed in patients with mild asthma [52–54]. 
However, in recent years, MUC5B has been shown to 
have physiologic functions in the mucus that ensure its 
normal clearance, and the levels of MUC5B in asthma 
remain stable or even decrease in some cases [55]. 
Because IL-13 induced goblet cell hyperplasia and mucus 
hypersecretion in a murine asthmatic model and human 
airway epithelial through increasing MUC5AC 
expression, while the effect of IL-13 on MUC5B was 
more variable, we believe that the differences between 
the levels of MUC5AC and MUC5B are associated with 
IL-13. For example, IL-13 induces MUC5B expression 
in mouse models but, in contrast, frequently decreases 
MUC5B expression in cultured human airway epithelial 
cells; this difference in MUC5B expression may reflect 
the inter-species differences [56]. Due to the unstable 
expression of MUC5B, its contribution to mucus 
dysfunction in asthma requires further exploration.  
 
Increased ECM deposition is another structural alteration 
described in asthma. Myofibroblasts and fibroblasts are 
the main producers of ECM components in the lung. 
Myofibroblasts deposit collagen types I and III during 
allergic airway inflammation. Fibroblasts secrete MMPs 
that are responsible for breaking down and regulating the 
components of the ECM, particularly collagens [57]. 
MMP-9, the dominant airway MMP, is up-regulated in 
allergic asthma, which causes airway remodeling [58]. 

The data presented herein suggest that Baicalein 
administration decreases the OVA-induced expression of 
collagen I and MMP-9. Chronic inflammation may drive 
airway remodeling, but this standpoint has been 
increasingly disputed. Apparent structural airway 
changes can be seen in patients with even mild asthma 
[28]. In our murine asthmatic model, a certain degree of 
airway remodeling was observed with OVA challenge for 
only 7 times, which is similar to the methods used in 
Gao’s and Yao’s studies [59, 60]. Inflammation and 
remodeling may have occurred in parallel instead of 
sequentially [28]. Our results demonstrate that Baicalein 
relieved this remodeling. 
 
CONCLUSIONS 
 
In summary, our results demonstrate that Baicalein, a 
natural product from the traditional Chinese medication 
Huang Qin, effectively decreases OVA-induced 
eosinophilic airway inflammation, mucus overproduction, 
airway remodeling and AHR, most likely through 
inactivating the NF-κB pathway. Our findings provide 
evidence suggesting that Baicalein as a preventative or 
therapeutic drug for the treatment of asthma. 
 
MATERIALS AND METHODS 
 
Cells culture 
 
BEAS-2B cells were purchased from the Shanghai 
Institute of Biochemistry and Cell Biology (Shanghai, 
People’s Republic of China) and were cultured in RPMI 
1640 medium (Gibco, Eggenstein, Germany). BEAS-2B 
cell culture medium was supplemented with 10% heat-
inactivated fetal bovine serum (FBS, HyClone, Logan, 
UT, USA), 100 U/mL penicillin, and 100 mg/mL 
streptomycin.  
 
Experimental animals and ethics approval 
 
Female wild-type (WT) C57BL/6 mice that were 8–10 
weeks old were obtained from the Wenzhou Medical 
University Animal Center. Animals were housed at 
constant room temperature with a 12-h day/night cycle 
and fed a standard rodent diet and water. All animal 
care and experimental procedures were approved by the 
Wenzhou Medical University Animal Policy and 
Welfare Committee (Approval Document No. 
wydw2016-0124). 
 
Model of OVA-induced airway inflammation and 
AHR 
 
The mice were randomly assigned to four groups of 6 
mice each: a control group (CON), an OVA group 
(OVA/Vehicle), a low dose Baicalein (10 mg/kg, 
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Aladdin, China) treatment group (OVA+BAI 10) and a 
high dose Baicalein (20 mg/kg) treatment group 
(OVA+BAI 20). On days 0 and 14 of the experiment, 
mice in the OVA/Vehicle and Baicalein treatment 
groups (both low dose and high dose Baicalein) were 
sensitized by the intraperitoneal (i.p.) injection of 
OVA (20 μg, Sigma-Aldrich, Co., St Louis, USA) and 
Al(OH)3 (2 mg, Sigma-Aldrich, Co., St Louis, USA) 
suspended in 0.2 mL of saline. On days 25–31, mice in 
the OVA/Vehicle and Baicalein treatment groups were 
challenged with 1% OVA aerosol for 40 min each day 
to construct an asthmatic mouse model. The mice in 
the control group were administered normal saline 
with Al(OH)3 i.p. on days 0 and 14 of the experiment 
and were exposed to aerosolized saline for 40 min per 
day between days 25–31. Beginning on day 25 of the 
experiment, the mice were administered with 10 mg/kg 
or 20 mg/kg Baicalein (in 0.4% sodium carboxymethyl 
cellulose solution) or vehicle by gavage for 12 h each 
day (Figure 1A). Lung mechanics together with 
collection of serum, tissues and BALF were assessed 
at 24 h after the last challenge (day 31). Serum was 
used for IgE measurement using ELISA kits. Th2 
cytokines and cellular measurements were assessed in 
BALF samples. The middle lobes of the right lungs 
were fixed in formalin and embedded in paraffin for 
histological analysis. The remaining lung tissues were 
used for RNA isolation and protein lysate preparation. 
 
Measurement of AHR 
 
Following the final OVA challenge, the mice were 
anesthetized (80 mg/kg pentobarbital-NA, i.p.), 
tracheostomized (18-gauge cannula) for mechanical 
ventilation, and then connected to a computer-controlled 
small-animal mechanical ventilator (flexiVent; SCIREQ) 
to assess lung function as previously described [61]. 
Mice were mechanically ventilated at 200 breaths/min 
with a tidal volume of 0.25 mL and a positive end-
expiratory pressure of 3 cm H2O (to mimic spontaneous 
ventilation). After baseline measurement, the mice were 
challenged for 10 s with saline aerosol and increasing 
concentrations (3.125–50 mg/mL) of Mch (Sigma-
Aldrich, Co., St Louis, USA) at 4 to 5 min intervals. The 
peak response to each Mch dose was calculated as the 
mean of the three maximal values and was used to 
calculate airway dynamic compliance. 
 
BALF collection 
 
The chest cavity of each mouse was carefully opened, 
followed by the ligation of the left lung. The left lung 
was infused thrice with 1 mL PBS to obtain BALF as 
previously described [62]. The collected BALF was 
centrifuged for 10 min at 1,000 rpm. Target cytokines 
were the measured in the cell-free supernatant. The cell 

pellets from the BALF were rinsed and resuspended in 
50 μL of PBS. The total number of cells in the BALF 
was detected by using a cell counting instrument. The 
number of eosinophils in the BALF was determined 
using Wright-Giemsa staining, with at least 200 cells 
counted per slide. 
 
ELISA 
 
The levels of IL-4, IL-5, and IL-13 in the BALF 
supernatant and lung homogenates were detected using 
ELISA kits (eBioscience, San Diego, CA, USA) 
according to the manufacturer’s instructions 
(Minneapolis, MN). Briefly, after blocking the plate, 
100 μL of BALF supernatant and lung homogenates 
were added to an ELISA plate coated with monoclonal 
capture antibodies and incubated at room temperature 
for 2 h. Then, the plate was washed 5 times with PBST 
(PBS solution containing 0.5% Tween-20) and 
monoclonal detection antibodies conjugated with 
horseradish peroxidase were added. After incubation at 
room temperature for 1 h, the plate was washed and 
supplemented with tetramethylbenzidine. The reaction 
was stopped by the addition of 2 N H2SO4. The 
absorbance at a wavelength of 450 nm was measured 
using a SpectraMax M5 plate reader (Molecular 
Devices, Sunnyvale, CA). A standard curve was drawn 
using purified proteins supplied with the ELISA kit. 
 
Histopathological study 
 
The middle lobe of the right lung was collected and fixed 
in 4% paraformaldehyde, embedded in paraffin and cut 
into 5-micron sections. The sections were stained with 
H&E, PAS, and Sirius Red in accordance with the 
standard light microscopy protocol. The H&E stained 
sections were scored blindly for the severity of 
inflammatory cell infiltration, and peribronchial cell 
counts were performed blind based on the following 5-
point scoring system: 0, no cells; 1, a few cells; 2, a ring 
of cells in a layer one cell deep; 3, a ring of cells two to 
four cells deep; 4, a ring of cells of more than four cells 
deep. To quantify mucus production in the lung, PAS 
sections were randomized, examined in a blinded fashion 
and scored on a scale from 0 to 4 as follows: 0, no goblet 
cells, 1, <25% goblet cells; 2, 25–50% goblet cells; 3: 
50–75% goblet cells; 4, >75% goblet cells. Inflammatory 
cells and goblet cells were scored in at least three 
different fields for each lung section. Mean scores were 
obtained. 
 
To quantify the extent of fibrosis, the percentage of 
fibrosis indicated by Sirius Red staining in ten 
representative images taken from each lung section was 
determined by Image-Pro Plus (Media Cybernetics Inc., 
Silver Spring, MD). 
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All histopathological evaluations were performed in 
duplicate by a blinded independent observer. 
 
Assay of cellular NF-κB p65 translocation 
 
BEAS-2B cells and lung sections were 
immunofluorescence-labeled using a cellular NF-κB p65 
Translocation Kit (Beyotime Biotech, Nantong, Jiangsu, 
China) according to the manufacturer’s instruction. The 
p65 protein and nuclear fluorescence are shown in red 
and blue, respectively, and were simultaneously viewed 
with a fluorescence microscope (200×, Nikon, Tokyo, 
Japan) at an excitation wavelength of 350 nm for 4′,6-
diamidino-2-phenylindole•2HCl (DAPI) stained cells and 
540 nm for cyanine 3 (Cy3)-stained cells. The red and 
blue images were overlaid to create a two-color image. 
Quantitative analysis of nuclear p65 fluorescence 
intensity in four representative images were analyzed by 
Image J software. 
 
Western blot analysis 
 
BEAS-2B cells were treated with Baicalein (2.5 μM) or 
vehicle (DMSO) for 30 min, followed by TNF-α (10 
ng/mL) exposure for 60 min and 2 h to collect total 
protein and nuclear and cytosolic proteins, respectively. 
Lung (100 μg) and cellular (50 μg) protein samples were 
subjected to 10% sodium dodecyl sulfate polyacrylamide 
gel electrophoresis (SDS-PAGE) and transferred onto a 
polyvinylidene fluoride (PVDF) membrane (Bio-Rad 
Laboratories Inc, USA). After blocking in blocking 
buffer (5% milk in Tris-buffered saline containing 
0.05% Tween 20 [TBST]) for 1.5 h at room temperature, 
the membranes were incubated with different primary 
antibodies overnight at 4 °C. Afterwards, the membranes 
were washed in TBST and reacted with secondary 
horseradish peroxidase-conjugated antibody (Santa 
Cruz, CA, USA; 1:3000) for 1–2 h at room temperature. 
Blots were then visualized using enhanced 
chemiluminescence reagents (Bio-Rad Laboratories Inc, 
USA). The densities of the immunoreactive bands were 
analyzed using ImageJ software (NIH, Bethesda, MD, 
USA). Antibodies against IκBα (1:300), NF-κB p65 
subunit (1:300), and lamin B (1:300) were purchased 
from Santa Cruz Technology (Santa Cruz, CA, USA). 
Antibodies against P-IκBα (1:1,000) and inducible nitric 
oxide synthase (iNOS, 1:1,000) were purchased from 
Cell Signaling Technology (Danvers, MA, USA). 
 
Isolation of nuclear and cytoplasmic proteins 
 
Nuclear proteins were prepared using a cytoplasmic 
and nuclear protein extraction kit (KeyGEN, Nanjing, 
China). Briefly, BEAS-2B cells and lung tissues were 
incubated in 10 volumes of hypotonic buffer A (20 
mM HEPES, pH 7.9, 1.5 mM MgCl2, and 10 mM KCl) 

and one tenth buffer B on ice for 15 min and 
homogenized. Nuclei were recovered by centrifugation 
at 16,000×g for 5 min, and the supernatant was 
collected as the cytosolic extracts. The nuclei were 
extracted in buffer C (20 mM HEPES, pH 7.9, 25% 
glycerol, 420 mM NaCl, 0.2 mM EDTA, and 1.5 mM 
MgCl2) 4 times (for 10 min each time) on ice. 
Insoluble material was removed by centrifugation at 
16 000×g for 10 min, and the supernatant was used as 
the nuclear extract.  
 
Real-time quantitative polymerase chain reaction 
(RT-qPCR)  
 
Total RNA was isolated from lung tissues using 
TRIzol-reagent and quantified by ultraviolet (UV) 
absorption at 260 and 280 nm. Both reverse 
transcription and qPCR were performed using a two-
step M-MLV Platinum SYBR Green qPCR SuperMix-
UDG kit. An Eppendorf Master cycler ep RealPlex 
detection system (Eppendorf, Hamburg, Germany) was 
used for RT-qPCR analysis. Primers complementary to 
the genes encoding IL-4, IL-5, IL-13, Muc5AC, 
Muc5B, MMP-9, collagen I and β-actin, were 
synthesized by Invitrogen (Shanghai, China), and their 
sequences are presented in Supplementary Table 1. 
The expression of each gene was determined and 
normalized to the expression of β-actin. 
 
iNOS activity assay  
 
The total NO synthase (TNOS) and iNOS activity levels 
in the serum were determined by using an NOS Assay 
Kit (Nanjing Jiancheng, Nanjing, China) following the 
manufacturer’s protocol. 
 
Statistical analysis 
 
Data were analyzed using GraphPad Prism 6.0 software. 
Values are expressed as the mean ± standard error of 
measurement (SEM). One-way analysis of variance 
(ANOVA) followed by Dunnett’s post hoc test was 
employed to analyze the differences between sets of data. 
A p-value less than 0.05 indicated statistical significance 
and is denoted as *or #. In vitro experiments were 
performed with n ≥ 3 independent repeats. In vivo 
experiments were performed with n ≥ 6 mice in each 
group. 
 
Abbreviations 
 
OVA: Ovalbumin; AHR: Airway hyperresponsiveness; 
Th2: T helper Type 2; ILC2s: Type 2 innate lymphoid 
cells; IgE: Immunoglobulin E; ICS: Inhaled 
corticosteroids; LABA: Long acting β2 agonists; CAM: 
Complementary or alternative medicine; TCM: 
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Traditional Chinese medicine; WT: Wild-type; BALF: 
Bronchoalveolar lavage fluid; PBS: Phosphate-buffered 
saline; ELISA: Enzyme linked immunosorbent assay; 
H&E: Hematoxylin and eosin; PAS: Periodic acid 
schiff; Cy3: cyanine 3; DAPI: 4′:6-diamidino-2-
phenylindole•2HCl; TBST: Tris-buffered saline 
containing 0.05% Tween 20; RT-qPCR: Real-time 
quantitative polymerase chain reaction; SEM: Mean ± 
standard error of measurement; MMP-9: 
Metalloproteinase-9; MMPs: Metalloproteinases ; NAC: 
N-Acety-L-Cysteine. 
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SUPPLEMENTARY MATERIALS 
 
 
Supplementary Figures 
 
 

 
 

Supplementary Figure 1. The effects of Baicalein and NF-κB inhibitor BAY11-7082 on TNF-α-induced NF-κB activation in 
BEAS-2B cells. (A) BEAS-2B cells were pre-treated with Baicalein (2.5 μM) and BAY11-7082 (2.5 μM) or vehicle for 30 min and then 
stimulated with TNF-α (10 ng/mL) for 60 min. Total protein were extracted and analyzed for P-IκBα and IκBα expression by western blot 
analysis, with β-actin used as the internal control. (B) After BEAS-2B cells were exposed to TNF-α (10 ng/mL) for 2 h, the nuclear and cytosolic 
proteins were separated using cytoplasmic and nuclear protein extraction kit, nuclear and cytosolic p65 levels were determined by western 
blot analysis. β-actin and Lamin B were used as the internal controls, respectively. (mean ± SEM of more than three independent 
experiments; ##P<0.01, vs CON group; *P<0.05, **P<0.01, vs TNF-α group). 
 

 
 

Supplementary Figure 2. The effects of Baicalein on IκB mRNA expression in vivo. 24 h after the last challenge, lungs were isolated 
and gene expression levels of IκBα were determined in lung tissues by RT-qPCR. Data were normalized to β-actin (Results are presented as 
the mean ± SEM; n = 6 mice per group).  
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Supplementary Table 
 
 
Supplementary Table 1. Primers used for real-time qPCR assay. 

Gene Species FW RW 
IL-4 Mouse GGAACAAAGACCTGTGGGGT GGCATCGAAAAGCCCGAAAG 
IL-5 Mouse TCCTCTTCGTTGCATCAGGG TGTGGCTGGCTCTCATTCAC 
IL-13 Mouse TGCCATCTACAGGACCCAGA CTCATTAGAAGGGGCCGTGG 
MUC5AC Mouse TCTACTGACTGCACCAACACA CCACACTTTCGCAGCTCAAC 
MUC5B Mouse GATTCGGCCGAGGCAAGTA GAGGCCAAAACAGCCAACAG 
MMP9 Mouse TCTTCTGGCGTGTGAGTTTCC CGGTTGAAGCAAAGAAGGAGC 
Collagen I Mouse TGGCCTTGGAGGAAACTTTG CTTGGAAACCTTGTGGACCAG 
IκBα Mouse TGAAGGACGAGGAGTACGAGC TGCAGGAACGAGTCTCCGT 
β-actin Mouse CCGTGAAAAGATGACCCAGA TACGACCAGAGGCATACAG 
IκBα Human ACCTGGTGTCACTCCTGTTGA CTGCTGCTGTATCCGGGTG 
β-actin Human CCTGGCACCCAGCACAAT GCCGATCCACACGGAGTACT 

 


