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Introduction
Multiple organ dysfunction may occur during the 
early phase of severe acute pancreatitis (SAP), 
resulting in a high fatality rate. However, over 
time, the patient enters a second stage, which 
accompanies the infection and is another cause of 
the high mortality rate of SAP.1 Studies have 
shown that most pancreatic and extra-pancreatic 
organ infections are caused by the translocation 
of intestinal bacteria; such infections result in 
pancreatic necrosis and sepsis, causing late death 
in patients with SAP.2 The gut microbiota (GM) 
is mutualistic with the human body under certain 
steady states; some gut bacteria can ferment die-
tary fiber to form short-chain fatty acids (SCFAs), 
which are then absorbed by the host.3 The intes-
tinal mucosa can also maintain the stability of the 
intestinal environment through its barrier func-
tion. Once this stability is disrupted by a persis-
tent inflammatory response in SAP, this can lead 

to intestinal mucosal damage and a change in the 
status of the intestinal microbiota.4 Studies have 
also indicated that various types of intestinal 
microbiota participate in different pathological 
conditions, including pancreatic diseases.5 The 
role of the intestinal microbiota in the progression 
of SAP has gradually been clarified in previous 
studies.

We have searched articles or other types of manu-
scripts related to the regulatory mechanism of the 
intestinal microbiota, inflammation, and patho-
genesis of SAP or acute pancreatitis (AP) in 
PubMed and the China National Knowledge 
Infrastructure, to describe the interactions 
between the GM and inflammatory responses in 
AP. We have identified some new methods of AP 
pathogenesis and the development of therapies. 
All of our findings are described in the following 
chapters.
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The influence of intestinal flora changes on the 
occurrence and development of AP
Intestinal flora migration influences the pancreatic 
microenvironment in AP. Impairment in microcir-
culation and blood volume reduction during AP 
can lead to ischemia and reperfusion damage in 
the intestinal mucosa, causing loss of intestinal 
barrier integrity and intestinal bacterial transloca-
tion and causing local and systemic infections.6–8 
Fewer antimicrobials secreted by the pancreas in 
AP can also lead to bacterial overgrowth in the 
small intestine, which further disrupts the balance 
of the intestinal microbiota.9 The imbalance of 
the intestinal microbiota or mucosal damage can 
increase intestinal permeability, causing the trans-
location of bacteria from the gut to the blood or 
nearby tissues, such as the pancreas, increasing 
the risk of pancreatic infection and aggravating 
inflammation.10 A study has found more than one 
type of bacterial DNA in the peripheral blood of 
patients with AP, and these DNA molecules are 
mainly derived from conditional pathogenic bac-
teria from the gut, such as Escherichia coli, Shigella 
flexneri, Acinetobacter lwoffii, Bacillus coagulans, 
and Enterobacter faecalis.11 Thus, the transfer of 
bacteria from the gut to the blood may cause 
infection of necrotic parts of the pancreas.

Recent studies have revealed that nucleotide-
binding oligomerization domain 1 (NOD1), an 
intracellular innate immune receptor, plays a crit-
ical role in host defense functions and inflamma-
tion. This is because NOD1 can detect small 
peptide components derived from bacterial wall 
peptidoglycan and can be excited by intestinal 
bacteria.12 On the other hand, NOD1 has been 
reported to activate innate responses and produce 
nuclear factor-kappa B (NF-κB) and type 1 inter-
feron-inducing pancreatitis and contribute to the 
development of pancreatitis.13,14 Thus, NOD1 
may be an intermediate regulatory factor of intes-
tinal microbiota interaction with AP.

Previously, the microbial composition of the 
infected areas of pancreatic necrosis was mainly 
gram-negative bacteria from the gastrointestinal 
tract (GIT), such as Enterobacteriaceae. However, 
recently, Staphylococcus and Enterococcus have 
become dominant bacteria owing to the wide-
spread use of prophylactic antibiotics.15 
Meanwhile, the prophylactic use of antibiotics 
does not reduce the risk of infection, and patients 

with a higher risk of infection in regional pancre-
atic necrosis are those who have previously 
received antibiotics.16,17

Intestinal microbiota attenuates the severity of 
AP. A normal intestinal microbiota constitutes 
the intestinal mucosal biological barrier that 
affects intestinal peristalsis, regulates host immu-
nity, and strengthens the epithelial barrier.18 
Studies have shown that intestinal mucosal bar-
rier damage in patients with AP is closely associ-
ated with the imbalance of the intestinal 
microbiota, for example, increased abundances 
of the intestinal pathogenic bacteria Shigella and 
Enterococcus and decreased abundances of the 
beneficial bacteria Lactobacillus and Blautia.19–21 
Deng showed that the bacterial translocation 
rates of E. coli and Bifidobacterium and the patho-
logical damage score of intestinal tissue were sig-
nificantly higher in the intestines of SAP rats 
than in those of the control group, suggesting 
that the intestinal barrier function of SAP rats 
was impaired, resulting in an intestinal microbi-
ota disorder.22 Moreover, the Acute Physiology 
and Chronic Health Evaluation (APACHE)-II 
score, the length of the hospital stay, complica-
tions such as infections and the incidence of mul-
tiple organ dysfunction syndrome were 
significantly higher in patients with SAP with a 
GM imbalance than in individuals with intestinal 
microbiota ratios similar to those of healthy 
individuals.9

It has been reported that inter-intestinal probiot-
ics mitigated AP severity by inhibiting the activa-
tion of the NOD-like receptor family 3 (NLRP3) 
inflammasome in the gut,23,24 which might be the 
mechanism of regulating the intestinal microbi-
ota to reduce the degree of SAP. E. coli has been 
reported to induce intestinal mucosal barrier 
damage and aggravate AP through the activation 
of the toll-like receptor 4 (TLR4), myeloid dif-
ferentiation factor 88 (MyD88), and p38 mito-
gen-activated protein kinase (MAPK) signaling 
pathways.25,26 Therefore, MAPK inhibitors and 
TLR4-dependent Phosphoinositide 3-kinase 
(PI3K), V-akt murine thymoma viral oncogene 
homolog (AKT), and NF-kB inflammatory sign-
aling pathway inhibitors are important in correct-
ing GM imbalance and mitigating inflammatory 
responses.27,28 SCFAs, a metabolite of intestinal 
bacteria, can not only provide growth energy for 
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intestinal mucosal cells but also regulate intesti-
nal pH, maintain the integrity of tight junction 
proteins between intestinal mucosal epithelial 
cells, improve intestinal mucosal barrier func-
tion, and significantly reduce the severity of 
SAP.21,24,29 On the other hand, Bacteroides, 
Escherichia–Shigella and Enterococcus, are the 
major intestinal microbes in AP, and different 
levels of AP are associated with different intesti-
nal microbiota disorders.20 In mild acute pancre-
atitis (MAP), Finegoldia exhibited the most 
significant increase, and Brucella was the species 
of intestinal microbiota that showed the largest 
decrease. Moderately severe acute pancreatitis 
(MSAP) patients had the most significant 
increase in Anaerococcus and the most significant 
decrease in Eubacterium hallii. The potential bio-
markers of MAP are Finegoldia, E. hallii, and 
Lachnospiraceae. E. hallii and Anaerococcus are 
potential diagnostic biomarkers for MSAP (Table 
1). According to reports, Firmicutes increase 
while Bacteroidetes decrease in acute patients’ 
intestines. Enterococcus in Firmicutes can adhere 
to host cells, invade them, and traverse the epi-
thelial barrier. This can lead to infection and sys-
temic inflammation. Bacteroidetes are capable of 
producing SCFAs, which have anti-inflamma-
tory effects and help maintain the integrity of the 
intestinal barrier, thereby protecting it. Certain 
pathogenic bacteria within Bacteroidetes, such as 
E. coli and Shigella, can disrupt the intestinal 
mucosal barrier, resulting in severe colonic 
inflammation. Therefore, the imbalance between 
Firmicutes and Bacteroidetes can aggravate the 
pathogenetic condition of AP.20 SAP was associ-
ated with the most significant increase in the 
abundance of Enterococcus and the greatest 
decrease in the abundance of E. hallii.30 The 
expression of proinflammatory factors such as 
interleukin (IL)-1, IL-6, and tumor necrosis 
factor-α (TNF-α) in the serum of SAP patients 
was positively correlated with the intestinal aero-
bic bacteria level but negatively correlated with 
the level of anaerobic bacteria such as 
Bifidobacterium.9 Perhaps modulating the gut 
flora can reduce the body’s inflammatory 
response and reduce AP severity.

The influence of AP on intestinal flora changes
Acute pancreatitis-associated gut barrier and func-
tional damage facilitate intestinal flora migra-
tion. Intestinal barrier dysfunction was found in 
both animal models and clinical patients with Ta
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AP.75 The mechanism of intestinal microbiota 
migration in AP is as follows: intestinal barrier 
damage and a variety of gastrointestinal polypep-
tide secretions can destroy Cajal mesenchymal 
cells,76 decrease gastrointestinal movement,77 and 
impair intestinal motility,78 resulting in the over-
growth of intestinal bacteria in AP.79 Early fasting 
in patients with AP can cause intestinal ischemia–
reperfusion injury, which can lead to intestinal 
mucosal microcirculation disorders and abnor-
mal release of inflammatory factors and reactive 
oxygen species (ROS). These substances can 
cause the oxidative stress response in the intesti-
nal mucosa,80 the apoptosis of intestinal epithelial 
cells, and increased permeability of intestinal cap-
illaries,81,82 ultimately leading to intestinal barrier 
function disorders and increased intestinal per-
meability.83,84 The intestinal immune barrier 
function is compromised in patients with AP,85 
and the level of secretory immunoglobulin A is 
decreased,86 which allows bacteria to pass through 
the intestinal barrier more easily. In addition to 
these three effects, long-term fasting and the 
obstruction of the lower bile duct in patients with 
SAP can result in a significant decrease in bile 
secretion or ineffective secretion into the intes-
tine.75 Deoxycholic acid in the bile can selectively 
inhibit gram-positive bacilli (Bacillus, Clostridium, 
Lactobacillus, and Streptococcus pneumoniae). The 
reduction in bile secretion impairs the normal 
balance of the intestinal microbiota, resulting in 
the activation of an oxidative stress response and 
intestinal epithelial cell apoptosis, thus increasing 
bacterial migration.87

Effects of secretion of cell damage factors on intes-
tinal flora in AP. Intestinal barrier dysfunction is 
the most common complication of SAP. Previous 
clinical studies have shown that elevated serum 
levels of many inflammatory cytokines in SAP, 
including TNF-α,84 IL-1,88 IL-6,89 neutrophil 
elastase (NE), and myeloperoxidase (MPO),90 are 
associated with intestinal barrier dysfunction. 
One of the main cytokines associated with AP is 
TNF-α, a proinflammatory cytokine, which is 
found to have elevated levels both locally, in the 
intestine, and systemically in patients with intesti-
nal barrier dysfunction.91,92 An increase in the 
TNF-α levels can lead to inflammation in the 
intestinal mucosa and to intestinal epithelial cell 
apoptosis,93,94 which can lead to intestinal epithe-
lial mechanical barrier damage and facilitate bac-
terial displacement.95 In addition to direct injury, 
TNF-α can initiate a positive feedback loop that 

induces the secretion of other cytokines, such as 
IL-1 and IL-6, to further injure the intestinal 
mucosa.96 An increase in the IL-1 levels in AP 
and the risk associated with IL-1 and the IL-1 
receptor (IL-1R) in the pathogenesis of pancreati-
tis have been reported.97 IL-1R-deficient mice 
pretreated with an IL-1R antagonist recombinant 
human interleukin-1-receptor antagonist (rhIL-
1Ra) experience milder pancreatitis after cerulein 
induction. The activation of IL-1β can also stim-
ulate the local mucosal immune response and 
cause mucosal injury by stimulating T-cell prolif-
eration and neutrophil entry to the site of injury 
or infection through the binding of IL-1β and 
IL-1R.98,99 Serum IL-6 is another reliable indica-
tor of AP severity that can predict both organ fail-
ure and SAP.100 The production of IL-6 can 
activate several different pathways in the adaptive 
immune system, thereby exacerbating inflamma-
tion and negatively affecting barrier function.101 
Tan et  al.9 also found that serum IL-6 levels in 
patients with AP were positively correlated with 
the abundance of Enterobacter and Enterococcus in 
the intestinal microbiota and negatively corre-
lated with the abundance of XI groups of Bifido-
bacterium and Clostridium. In pancreatic tissue 
from a mouse model of SAP, neutrophil extracel-
lular traps (NETs) decorated with MPO and NE 
were shown to aggravate tissue damage.102 Many 
lethal complications of SAP have been shown to 
be closely related to NETs. According to previous 
reports, NETs can disrupt the balance of the 
intestinal microbiota, cause intestinal epithelial 
cell damage, and even induce apoptosis, leading 
to gut barrier damage, increased intestinal muco-
sal permeability, elevated endotoxin secretion, 
and imbalances in the GM.90,103–105

Pancreatic exocrine deficiency affects the compo-
sition and diversity of GM in AP. Patients with AP 
exhibit complications such as pancreatic exocrine 
impairment (PEI) and acinar cell dysfunction, 
which significantly impact changes in intestinal 
microbiota composition,106 and the secretion of 
many enzymes, such as lactate and bile acids, 
declines to a certain level.107 In animal models of 
PEI, the intestinal microbes E. coli, Lactobacillus, 
and Bifidobacterium were increased, and the levels 
of Fusobacterium and Clostridium hiranonis were 
decreased, inducing a significant difference in the 
dysbiosis index between affected animals and 
healthy individuals.108 Stool samples from PEI 
patients were analyzed and showed that pancre-
atic elastase levels significantly correlated with 
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intestinal flora diversity compared with those of 
normal individuals, and significant differences 
were found in the abundances of 22 taxa, such as 
an increase in Pseudomonas spp. and a decrease in 
Bacillus spp.106 These results revealed that changes 
in pancreatic fluid secretion were also signifi-
cantly correlated with flora diversity.

Antimicrobial peptide changes in AP-affected 
intestinal flora. Antimicrobial peptides (AMPs) 
are oligopeptides that are arranged linearly or cir-
cularly and are composed of amino acid residues 
of different lengths (up to 100). AMPs usually 
form L-amino acids through secondary structures 
containing alpha helices, beta sheets, or both.109 
These biomolecules exhibit diverse biological 
activities against gram-positive and gram-negative 
bacteria, viruses, fungi, protozoa, and even 
tumors.110 The Data Repository of AMPs 
(DRAMP) database includes over 4800 peptides 
that are antiproteins111 and contribute to the 
maintenance of intestinal bacterial homeostasis 
and intestinal barrier function.112 AMPs such as 
the cathelicidin-related AMP (CRAMP) have 
been reported to be secreted by pancreatic acinar 

cells, and reduced secretion of pancreatic AMPs 
can lead to the abnormal growth of intestinal bac-
teria and the disruption of the intestinal microbi-
ota balance. Moreover, CRAMP deficiency 
worsens pancreatic inflammation.113 Decreased 
expression of ileal terminal AMPs was found in 
necrotizing pancreatitis.114 Hypertriglyceridemia 
(HTG) affects the expression of AMPs, including 
α-defensin, lysozyme, phospholipase A2, and 
regenerating islet-derived protein 3α (Reg3A),115 
in Paneth cells, which may exacerbate HTG-
related acute necrotizing pancreatitis in intestinal 
barrier dysfunction. Pancreatic cells secrete a 
variety of AMPs to regulate the structure of the 
intestinal microbiota.116 Lysozyme and α-
defensins have activities against gram-negative 
and gram-positive bacteria, and some experts 
believe that fecal levels of α-defensins are a sur-
rogate marker for gut microbial homeostasis.117,118 
On the other hand, Reg3A, which has powerful 
bactericidal activity, can antagonize gram-positive 
bacteria119,120 by limiting the number of mucosal-
adherent bacteria to separate the GM from the 
epithelium and reduce bacterial translocation121 
(Table 2).

Table 2. AMP changes in AP-affected intestinal microbiota.

AMPs Characteristics Mechanism Associated with AP Associated with GM References

CRAMP Reduced The Orai1 Ca2+ channel, 
which is needed in pancreatic 
exocytosis, can suppress the 
inflammation-associated 
alteration of intestinal 
bacteria

Increased mortality 
in AP

Gastrointestinal 
inflammation, intestinal 
bacterial overgrowth or 
dysbiosis, and systemic 
infection; impaired 
immunomodulatory effects

Ahuja et al.,10 
Deng et al.113

RegIIIγ and 
β-defensins

Reduced The GM metabolites SCFAs 
(including butyrate) activate 
mTOR in IECs and promote 
IEC RegIIIγ and β-defensins in 
a GPR43-dependent manner

Serious pancreatic 
damage and systemic 
inflammation

Increased intestinal 
inflammatory responses; 
decreased SCFA-induced 
AMP production

Zhao et al.114

RegIIIγ and 
β-defensins

Reduced The GM metabolites SCFAs 
(including butyrate) activate 
STAT3 in IECs and promote 
IEC RegIIIγ and β-defensins in 
a GPR43-dependent manner

Serious pancreatic 
damage and systemic 
inflammation

Inhibition of intestinal 
immune regulation and 
intestinal organoid stemness 
proliferation; decreased 
AMP secretion

Zhao et al.114

RegIIIγ and 
RegIIIβ

Reduced Microbiota can directly affect 
AMP production by interfering 
with TLR-TLR ligand 
interactions

Serious pancreatic 
damage and systemic 
inflammation

Decreased AMP secretion Zhao et al.,114 
Menendez et al.,122 
Brandl et al.,123 
Vaishnava et al.124

(Continued)
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Risk factors that influence the GM and AP
Trillions of microbes live in the gut, and this com-
munity plays a vital role in the regulation of both 
intestinal and pancreatic functions. The underly-
ing common causes of AP, such as biliary obstruc-
tion, alcohol misuse, HTG, and a high-fat/sugar 
diet, may also cause changes in the intestinal 
flora.128 These risk factors affect both AP and the 
intestinal microflora; thus, interactions between 
the intestinal microflora and the occurrence of AP 
can be inferred.

Obesity and hyperlipidemia. Obesity typically 
presents with low-level systemic inflammation, 
such as increased leukocyte counts and TNF-α, 
IL-6, and C-reactive protein levels129,130; further-
more, it is characterized by increased secretion of 
biomarkers by adipocytes and is associated with 
AP. Moreover, macrophages in adipose tissue 
have been reported to participate in inflammation 
in obesity via the secretion of proinflammatory 
cytokines, such as TNF-α and IL-6,131 both of 
which have been proven to affect AP and GM.

Obesity can also unmask primary HTG due to 
genetic causes and is a risk factor for secondary 

HTG, which is associated with pancreatitis.132,133 
At present, HTG-induced AP (HTG-AP) has 
become the second leading cause of AP.134 
Indeed, the proportion of Bacteroides in the 
intestines of lean mice was found to be higher 
than that in obese mice after administration of the 
same diet, while the opposite was true for thick-
walled Bacteroides.135 Rats fed a high-fat diet 
showed significant increases in serum low-density 
lipoprotein, total cholesterol, and triacylglycerol, 
as well as changes in Bifidobacteria, Lactobacilli, 
Enterococci, Enterobacteria, and Anaphylactic bac-
teria in the intestinal flora.136 In an animal model 
of hyperlipidemic necrotizing pancreatitis, 
researchers also found intestinal microflora imbal-
ances and decreased AMPs in Paneth cells, fur-
ther confirming that hyperlipidemia can affect the 
severity of AP and the intestinal microflora.115 
Unsaturated fatty acids (UFAs) might be an 
important factor that can affect both AP and GM 
in obesity and hyperlipidemia, and these factors 
are mainly transmitted via the lipolysis of circu-
lating triglycerides.137 The insolubility of UFAs in 
the aqueous environment of the blood can cause 
microthrombi formation in the pancreatic vascu-
lature, leading to ischemia and pancreatic 

AMPs Characteristics Mechanism Associated with AP Associated with GM References

C-type lectins of 
the RegIII family

Reduced Bactericidal activity by binding 
membrane phospholipids and 
killing bacteria by forming 
a hexameric membrane-
permeabilizing oligomeric 
pore

Serious pancreatic 
damage and systemic 
inflammation 
(bactericidal for 
gram-positive but not 
for gram-negative 
bacteria)

Antibacterial effects 
against enteric pathogens; 
promoting mutualism with 
the resident microbiota in 
orthergasia

Wong112, 
Mukherjee 
et al.,119 Cash 
et al.120

α-Defensin and 
lysozyme

Reduced Intestinal microbiota 
dysbiosis and decreased 
levels of AMPs in Paneth 
cells may participate in the 
pathogenesis of intestinal 
barrier dysfunction

Serious pancreatic 
damage and systemic 
inflammation

Increased intestinal 
proinflammatory cytokine 
(TNF-α, IL-1β, and IL-17A) 
levels in plasma and tissue; 
weakened resistance against 
enteric pathogens; dysbiosis 
of intestinal microbiota 
structure and aggravated 
intestinal barrier dysfunction

Huang et al.,115 
Clevers and 
Bevins,117 Eriguchi 
et al.,118 Salzman 
et al.,125 Satoh 
et al.126

AMPs secreted 
by Paneth cells

Reduced Increase in the concentration 
of cytosolic Ca2+ accompanies 
granule secretion 
responding to bacteria or 
bacterial products, such as 
lipopolysaccharide

Serious pancreatic 
damage and systemic 
inflammation

Dysbiosis of intestinal 
microbiota and aggravated 
intestinal barrier dysfunction

Satoh et al.,126 
Ayabe et al.127

AMP, antimicrobial peptide; AP, acute pancreatitis; CRAMP, cathelicidin antimicrobial peptide; GM, gut microbiota; GPR, G protein-coupled 
receptor; IEC, intestinal epithelial cell; IL, interleukin; MAP, mild acute pancreatitis; MSAP, moderate severe acute pancreatitis; mTOR, mammalian 
target of rapamycin; Reg, regenerating islet-derived protein; SAP, severe acute pancreatitis; SCFA, short-chain fatty acid; STAT3, signal transducer 
and activator of transcription 3; TLR, toll-like receptor; TNF-α, tumor necrosis factor-α.

Table 2. (Continued)
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infarction. As polar molecules, UFAs usually 
bind with calcium, resulting in their saponifica-
tion and inactivation in necrotic fat tissue.138 
Unbound UFAs can increase the serum levels of 
TNF-α and other inflammatory cytokines,139 
thereby worsening AP and leading to inflamma-
tion of the intestinal mucosa and intestinal epi-
thelial cell apoptosis93,94 (Figure 1).

In addition to the harmful effects of obesity and 
hyperlipidemia on the GM, recent studies have 
shown that the intestinal flora is one of the impor-
tant environmental factors affecting the occur-
rence and development of obesity. The intestinal 
flora can induce adipocytokine gene expression 
by affecting intestinal epithelial cell fasting, lead-
ing to the increased production of triacylglycerols 
in the body and causing lipid metabolism disor-
ders and the development of obesity.140 
Furthermore, disturbances in the intestinal flora 
in obese mice may lead to abnormal 

lipid metabolism, energy metabolism, adipokine 
synthesis, and cell death, leading to the secretion 
of a large number of proinflammatory cytokines 
into the blood and resulting in the exacerbation of 
pancreatitis.115 Some studies indicated that intake 
of probiotic preparations could affect serum cho-
lesterol and high-density lipoprotein levels and 
indirectly lower blood lipids, suggesting that the 
establishment of normal intestinal flora can help 
balance lipid metabolism.113

Alcohol. In recent years, due to changes in diet 
and increases in alcohol consumption, heavy 
drinking has become a risk factor for AP, and this 
condition easily progresses to SAP.141 The toxicity 
of ethanol is mediated by ethanol itself or its oxi-
dative and nonoxidative metabolism. Oxidative 
ethanol metabolism potentiates cholecystokinin-
induced depolarization by sensitizing pancreatic 
mitochondria to Ca2+-induced mitochondrial 
permeability transition pore (MPTP) activation, 

Figure 1. The negative effect of obesity and hypertriglyceridemia both on AP and GM.
(i) The adipose tissue itself and macrophages in it can lead to increase level of pro-inflammation cytokines, like TNF-α and IL-6. These cytokines 
cause intestinal mucosa inflammatory injury, apoptosis of intestinal epithelial cells, and intestinal flora alteration. (ii) In the obesity or hyperlipidemia, 
the UFAs transmitted from lipolysis of circulating triglycerides can cause microthrombi formation in the pancreatic vasculature resulting in ischemia 
and pancreatic infarction. (iii) UFAs are normally bound by calcium, resulting in their saponification and inactivation in necrotic fat tissue, ultimately 
increasing severity of AP and demolish intestinal epithelium.
AP, acute pancreatitis; GM, gut microbiota.

https://journals.sagepub.com/home/tag


L Wu, J Hu et al.

journals.sagepub.com/home/tag 11

resulting in mitochondrial dysfunction in pancre-
atic acini and necrosis in the pancreas.142 Although 
the main ethanol metabolism in vivo is oxidation, 
a smaller part undergoes nonoxidative metabo-
lism.143,144 Incubation of isolated pancreatic aci-
nar cells with fatty acid ethyl esters, one of the 
nonoxidative ethanol metabolites in vivo, induced 
mitochondrial depolarization, depletion of cellu-
lar adenosine triphosphate,145 and sustained ele-
vations of intracellular Ca2+ levels ultimately 
associated with cellular dysfunction and cell 
death.146 Both alcohol and its metabolites can 
activate digestive enzymes early in pancreatic aci-
nar tissue, resulting in pancreatic tissue autodi-
gestive injury, and activate pancreatic stellate 
cells, leading to fibrosis of the pancreas.143

On the other hand, alcohol has been shown to 
have a negative impact on the intestinal flora of 
healthy people, such as decreasing the biodiver-
sity of the intestinal flora and affecting the overall 
composition of the microbial community.145 
Disturbances in the intestinal flora may cause dis-
orders of glycolipid energy metabolism and other 
potential functional pathway changes in the 
body.147 Alcohol can lead to changes in the com-
position of the GIT microbiota and metabolic 
function, contributing to the well-established 
association between alcohol-induced oxidative 
stress and intestinal hyperpermeability to luminal 
bacterial products.146–148 Exposure to ethanol can 
increase the release of enterogenous gram-nega-
tive bacteria-derived lipopolysaccharide (LPS), 
leading to macrophage activation and the secre-
tion of cytokines, including TNF-α, IL-1β, and 
IL-6.149 IL-22 is mainly involved in maintaining 
the integrity of the epithelial barrier and linking 
intestinal immune activation with epithelial repair 
and barrier protection.150,151 Under inflammatory 
conditions, IL-22 can be activated through the 
IL-23-Janus kinase/signal transducer and activa-
tor of transcription signaling pathway, resulting in 
the production of AMPs.152 Ethanol metabolism 
in vivo produces acetaldehyde and ROS, which 
can activate NF-κB and ultimately stimulate the 
immune response,153 decrease intestinal expres-
sion of IL-22, and alter gut epithelial integrity, 
causing an increase in intestinal permeability and 
bacterial translocation154 (Figure 2).

High glucose and insulin resistance. Pancreatic 
damage, pancreatitis, imbalances in the GM, and 
blood sugar imbalances may be interrelated.148 
AP exhibits hyperglycemia in the early stage,155 

which can persist as secondary diabetes even after 
pancreatitis has been resolved.156 Chronic hyper-
glycemia may cause oxidative stress, mitochon-
drial damage, the production of advanced 
glycation end products (AGEs), and the expres-
sion of the receptor for AGEs (RAGE), leading to 
tissue injury.157

Researchers have shown that hyperglycemia 
enhances mitochondrial oxidative stress by 
increasing ROS production, which is a key step in 
the pathogenesis of AP,158 and mediates lipid per-
oxidation by increasing cytosolic Ca2+.159,160 
Furthermore, increased intracellular Ca2+ is also 
required for premature protease activation, which 
is an early step in the induction of AP.158 Elevated 
glucose levels begin to form covalent conjugates 
with plasma proteins through a nonenzymatic 
process called AGE formation.161 In combination 
with AGEs, RAGE promotes the development of 
pancreatitis in part by mediating uninduced 
nucleosome activation and proinflammatory 
mediator release via the absence in melanoma 2 
(AIM2) inflammasome activation and proinflam-
matory mediator release in macrophages in an 
animal model of AP.162 Under glycoxidative 
stress, stimulated macrophages can induce oxida-
tive stress and NF-κB activation through activa-
tion of the PR21ras and MAPK signaling 
pathways.163 Active NF-κB induces the produc-
tion of TNF-α, which, in turn, leads to enhanced 
ROS production and more severe damage to tis-
sues.164 In addition, hyperglycemia was shown to 
compromise the integrity of the intestinal barrier 
through glucose transporter 2 (GLUT2)-
dependent reprograming of the intestinal epithe-
lial cell transcriptome and disruption of tight and 
adherence junctions, leading to intestinal flora 
disorders.165,166 The GM composition of patients 
and animals with elevated blood glucose was also 
significantly different from that of normal 
controls.167,168

Insulin resistance, which is a kind of metabolic 
dysfunction associated with type 2 diabetes mel-
litus, is another critical factor that affects both AP 
and the GM.169 Observational studies have shown 
an increased risk of AP among people with dis-
eases linked to insulin resistance.170–172 Various 
factors and hormones, such as NF-κB, TNF-α, 
amylin, leptin, and IL-6, have recently been 
shown to be increased in patients with insulin 
resistance, and those factors have been demon-
strated to cause AP and intestinal flora 
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disorders.173–177 In addition, insulin resistance 
often causes hyperinsulinemia, which can inhibit 
mucus secretion by promoting fatty acid synthase, 
to break the integrity of the intestinal barrier, 
leading to GMs.165,178 Furthermore, insulin resist-
ance has been regarded as a novel risk factor for 
post-endoscopic retrograde cholangiopancreatog-
raphy pancreatitis179 and an independent prog-
nostic factor in patients with AP.180

Intestinal microbes can also increase insulin 
resistance by influencing host energy metabolism 
and the integrity of the intestinal barrier; thus, 
inflammatory mediators can be transmitted into 
circulation.181

Curative substances influence both AP and GM
AP often leads to flora disorder, but some protective 
cytokines play key roles; for example, IL-22 and 

IL-23 attenuate intestinal flora disorders.152,182,183 
Propolis has recently been reported to reduce the 
serum levels of proinflammatory cytokines (TNF-α, 
IL-1β, and IL-6) and increase IL-22 levels, thereby 
reducing pancreatic neutrophil infiltration and 
maintaining the intestinal flora in AP rats.184 Store-
operated calcium entry (SOCE) modulators,185 
such as Pyrtriazoles, and the Orai Ca2+ channel 
inhibitor CM4620, which can reduce endoplasmic 
reticulum calcium influx, target both parenchymal 
and immune cells to reduce inflammation in experi-
mental AP.186 By inhibiting immune cells, SOCE 
inhibitors can treat imbalances in the GM. Okra 
pectin could relieve the inflammatory response by 
inhibiting the expression of proinflammatory medi-
ators, preventing intestinal barrier injury, and regu-
lating the intestinal microbiota by upregulating 
AMPs and occludin in an AP model.187 Probiotics 
have been reported to significantly attenuate patho-
logical injury of the pancreas and reduce the 

Figure 2. The mechanism and negative effect of ethanol metabolism on AP and GM.
The toxicity of ethanol is mediated by ethanol itself though its oxidative or nonoxidative metabolism. Exposure to ethanol 
can increase release of enterogenous gram-negative bacteria-derived LPS leading to macrophages activation and cytokines 
secretion, including TNF-α, IL-6, etc. and inhibit intestinal expression of IL-22, finally damaging intestinal flora balance and 
intestinal mucosa integrity. Oxidative metabolism of ethanol produces acetaldehyde and ROS which could activate NF-κB, 
inhibit intestinal expression of IL-22, and also activate trypsin causing pancreatic tissue autodigestive injury. Nonoxidative 
metabolism of ethanol induced mitochondrial depolarization to Ca2+-induced MPTP activation, resulting in pancreatic 
mitochondrial dysfunction and trypsin activation.
AP, acute pancreatitis; GM, gut microbiota.
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incidence of complications, such as infection, in 
patients with AP.188 However, the elevated levels of 
lactic acid produced by bacterial overgrowth in the 
small bowel and fermentation of carbohydrates 
significantly contributed to the high death rate. 
When considering substituting supplementation 
for individuals with AP, it is necessary to assess the 
time, type, appropriate, effective doses of probiot-
ics, and prevent bacterial overgrowth.20,189,190 
Some traditional Chinese medicine (TCM) treat-
ments also have effects on both AP and the GM. 
Saponin A, a monomer of total saikosaponins 
extracted from Bupleuri Radix, has strong antioxi-
dant properties and can affect the composition of 
GM by increasing the relative abundance of 
Lactobacillus and Prevotella species to decrease the 
development of SAP in rat models.191 Picroside II 

is one of the main effective components extracted 
from Picrorhiza scrophulariiflora Pennell that can 
improve the intestinal microbiota by inactivating 
oxidant and inflammatory signals to improve intes-
tinal barrier injury in an SAP rat model.28 Some 
studies have reported that berberine can not only 
repair the gut barrier structure to decrease GM 
diversity but also reduce blood glucose levels and 
attenuate insulin resistance; moreover, berberine is 
regarded as a potential therapeutic agent for 
AP.192–194 Meng et al. used acupuncture and moxi-
bustion to stimulate ST36 points to treat SAP based 
on conventional treatments and found that adjuvant 
acupuncture treatment could reduce the permeabil-
ity of intestinal mucosa capillaries, alleviate intesti-
nal dysfunction, and promote recovery in patients195 
(Tables 3 and 4).

Table 3. Curative substances influencing both AP and GM.

Substance Effect on AP Effect on GM Mechanism References

IL-22 Relieves 
inflammation and 
tissue injury

Promotes epithelial 
repair and barrier 
protection

Activation of inflammation, mediated 
through the JAK/STAT signaling pathway, 
results in the production of AMPs, finally 
repairing barrier damage or controlling 
pathogenic bacterial expansion

Sonnenberg 
et al.,150,151 Li 
et al.,152 Zheng 
et al.,196 Zindl 
et al.197

IL-23 Relieves 
inflammation and 
tissue injury

Promotes epithelial 
repair and barrier 
protection

Promotes IL-22 production Ngo et al.,182 Shih 
et al.183

Propolis Reduces neutrophil 
infiltration in the 
pancreas

Reduces intestinal 
inflammation

Reduces the serum levels of 
proinflammatory cytokines (TNF-α, IL-1β, 
and IL-6) and increases that of IL-22

Al-Hariri et al.184

SOCE modulators

 Pyrtriazole Reduce 
inflammation in the 
pancreas

Treat an imbalance 
of the GM

Reduce calcium influx in the endoplasmic 
reticulum

Riva et al.,185 
Waldron et al.186

 CM4620

Okra pectin Reduces 
inflammation in the 
pancreas

Prevents 
intestinal barrier 
inflammatory 
injury and 
regulates intestinal 
microbiota

Relieves inflammatory responses and 
intestinal barrier injury and regulates 
intestinal microbiota by inhibiting the 
expression of proinflammatory mediators 
or upregulating AMPs and occludin

Xiong et al.187

Choline Choline deficiency 
is related to 
exocrine pancreatic 
insufficiency

Choline deficiency 
is associated 
with bacterial 
overgrowth in the 
small intestine

Choline is a tightly regulated 
tissue component in the form of 
phosphatidylcholine and sphingomyelin in 
all membranes and many secretions

Bernhard198

AMP, antimicrobial peptide; AP, acute pancreatitis; GM, gut microbiota; IL, interleukin; SOCE, store-operated calcium entry; JAK, Janus kinase; 
STAT, signal transducer and activator of transcription; TNF-α, tumor necrosis factor-α.
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Future research prospects
SAP is a severe inflammatory disease of the pan-
creas and results in a high mortality rate when 
accompanied by multiple organ dysfunction or 
secondary infection.211 Studies have shown that 
most pancreatic and extra-pancreatic organ 

infections originate in the intestine and induce 
inflammatory responses, which are major causes of 
‘secondary attack’ and increased late death of 
patients with SAP.212 Changes in the GM play an 
important role in intestinal homeostasis and aggra-
vate the inflammatory response under intestinal 

Table 4. Promising prebiotic agent for the treatment of SAP.

Substance Effect on AP Effect on GM Mechanism References

SCFAs Anti-inflammatory 
effects on 
protecting against 
severe AP-
associated lung 
injury

Protecting 
intestinal barrier, 
decreasing 
bacterial 
translocation

SCFAs produced by gut microbiome 
and has a protective effect 
against pathogen proliferation, 
inflammatory response, and 
intestinal barrier injury

van den Berg et al.,21 
Jia et al.,24 Pan et al.,29 
Patel et al.,190 Wang 
et al.,199,200 Zhang 
et al.201

Six different 
strains of probiotic 
prophylaxis 
mixture

More multiorgan 
failure-related 
deaths

More bowel 
ischemia

Combination of probiotics had no 
beneficial effect on the occurrence 
of infectious complications and 
been damaged to bowel wall 
because of inflammatory injury 
and enteral feeding aggravating 
intestinal mucosal ischemia

Bongaerts and 
Severijnen,189 Besselink 
et al.,202 Rahman 
et al.,203 Besselink 
et al.204

Glutathione 
biosynthesis by 
multispecies 
probiotics

Reducing 
pancreatic 
oxidative stress

Reducing oxidative 
stress in the ileum

This probiotics mixture increases 
the biosynthesis of glutathione and 
reduces oxidative stress both in 
pancreas and ileum

Lutgendorff et al.,205,206

Probiotics 
capsules (such 
as a mixture of 
Bacillus subtilis 
and Enterococcus 
faecium)

Reducing 
pancreatic injury

Reducing bacterial 
translocation and 
increasing food 
tolerance

Gut microbiome plays important 
role in the pathogenesis of AP. 
Probiotics improve intestinal 
microecology and food tolerance, 
decrease the inflammation

Hooijmans et al.,188 Zhu 
et al.,207 Tian et al.208

Chitosan 
oligosaccharides 
(COS)

COS decrease 
inflammatory 
infiltration and 
oxidative stress

Remodeling 
gut dysbiosis 
by increasing 
probiotics 
Akkermansia 
and eliminating 
pathogenic 
bacteria 
Escherichia–
Shigella and 
Enterococcus

Lighting oxidative stress, reducing 
proinflammatory cytokine, and 
balancing intestinal homeostasis

Mei et al.209

Bifidobacterium 
spp. (B. animalis) 
metabolite lactate

Reducing 
pancreatic 
and systemic 
inflammation

B. animalis 
metabolite 
lactate is the 
energy source 
for intestinal 
epithelial cells and 
inhibits bacterial 
translocation

B. animalis colonization and 
B. animalis metabolite lactate 
administration could relieve 
macrophage-associated local and 
systemic inflammation through its 
metabolite lactate-related TLR4/
MyD88- and NLRP3/Caspase1-
dependent pathway

Li et al.210

AP, acute pancreatitis; COS, chitosan oligosaccharides; SCFA, short-chain fatty acid; TLR, toll-like receptor.
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flora dysfunction in AP.4,5 The migration and pro-
portion of intestinal flora influence the develop-
ment and severity of AP. However, the molecular 
mechanism and signaling pathways associated with 
changes in the intestinal flora in AP are still 
unclear.213 The dominant intestinal microbiota 
species in MAP, MSAP, and SAP were Bacteroides, 
Escherichia–Shigella, and Enterococcus, respec-
tively.20 A majority of diseases are accompanied by 
changes in the microbiota, and whether there is a 
way to detect GM species could be helpful in pre-
dicting or diagnosing SAP.214

Obesity and hyperlipidemia are regarded as 
chronic and systemic inflammatory states induced 
by adipocytes, which secrete a variety of proin-
flammatory cytokines and act as reservoirs of 
inflammatory factors.23 When obesity and hyper-
lipidemia cause AP and an intestinal microbiota 
imbalance,115 the intestinal microbiota also causes 
disordered lipid metabolism and the development 
of obesity by mediating adipocytokine gene 
expression, leading to a vicious cycle.140 Pancreatic 
endocrine cells participate in the regulation of 
blood glucose metabolism. Hyperglycemia exac-
erbates mitochondrial oxidative stress, increases 
intracellular Ca2+ levels, and ultimately pro-
motes the progression of AP.158,160 Patients with 
AP generally have insulin resistance,80,83,86 and 
gut microbes have been reported to increase insu-
lin resistance.181 Insulin resistance also causes AP 
and intestinal microbiota disorders.85,215,216 
Glucose and lipids are sources of energy metabo-
lism and are also factors associated with meta-
bolic diseases. The specific GM species in AP 
combined with the metabolic disorders associated 
with glucose and lipids need further study. The 
effect of probiotics on the treatment of AP com-
bined with metabolic disorders associated with 
glucose and lipids might be worth studying.31,161

There is currently no specific treatment for AP. 
The intestinal flora attenuates the severity of AP, 
and personalized probiotic intervention is consid-
ered a future trend.217 The timepoint, dose, and 
effectiveness of probiotics used for the treatment 
of AP are worthwhile of further experiments and 
clinical studies. In addition, the safety issue of 
probiotic therapy cannot be ignored.218 TCM, 
with multiple approaches including decoctions, 
powders, acupuncture, and moxibustion, has 
been reported to improve inflammatory or meta-
bolic disorders.219–222 Whether treatments com-
bining probiotics and TCM could be beneficial 

for SAP patients or whether the curative factors 
mentioned above may be used to prevent pancre-
atitis are unclear, and few studies have focused on 
this issue.

In conclusion, the interaction between the GM 
and inflammatory responses provides a new 
understanding of AP disease progression and 
treatment. Further studies on the interaction of 
GM and inflammatory responses in AP are 
needed.
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