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ABSTRACT: The stambomycins are a family of bioactive macrolides
isolated from Streptomyces ambofaciens. Aside from two stereocenters
installed through cytochrome P450 oxidations, their stereochemistry has
been predicted by sequence analysis of the polyketide synthase. We
report a synthesis of the C1−C27 fragment of stambomycin D, the
spectroscopic data of which correlates well with that of the natural
product, further validating predictive sequence analysis as a powerful
tool for stereochemical assignment of complex polyketide natural
products.

Stereochemical determination is a key element in natural
product discovery, as bioactivity is often intrinsically linked

to stereochemistry. It can also be one of the most challenging
aspects, especially for polyketides where conformational
flexibility and noncrystallinity render conclusive assignment
challenging using NMR-based methods or X-ray crystallog-
raphy.1−3 Computational approaches using NMR parameters
are emerging as reliable tools4,5 but are unsuitable when
individual stereoclusters are “insulated” by regions of flexible
nonfunctionalized carbon chains, or by rigid (poly)alkene
regions. NMR spectroscopy can equally be ambiguous for
certain stereoclusters/conformations or complicated by over-
lapping signals in more complex natural products, rendering
the extraction of coupling constants or nOes highly challenging
and ultimately not definitive. This uncertainty provides a
significant obstacle for synthesis and applications.6

Advances in bioinformatics have enabled the application of
predictive sequence analysis of biosynthetic enzymes not only
in the discovery of natural products but also in their structural
and stereochemical determination.7−11 One example is the
stambomycins, a family of 51-membered glycosylated macro-
lides discovered by Challis, Aigle, and co-workers in 2011
(Figure 1a).12 These were identified as the metabolic products
of a modular polyketide synthase (PKS) in Streptomyces
ambofaciens through a genomics-driven approach involving
rational genetic manipulation to induce transcription of the
biosynthetic genes, which are poorly expressed in laboratory
cultures. Four members of the family (A−D) were identified,
differing at the C26 side chain, all of which showed potent
antibacterial and antitumor activity. The planar structures and
stereochemistry of the stambomycins were predicted via
sequence analysis of the modular PKS responsible for their
biosynthesis,12−14 with the exception of the C28 and C50
stereocenters, which are of non-PKS origin.15 Notably, the
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Figure 1. (a) Stambomycins A−D and (b) the C1−C27 fragment and
planned retrosynthesis.
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stambomycins are one of the earliest structurally complex
polyketides for which predictive sequence analysis was
employed for stereochemical assignment, and remain one of
the most elaborate examples to date.16

While the predicted planar structures of the stambomycins
have been confirmed by NMR spectroscopy, their stereo-
chemistry remains to be unequivocally confirmed. This
inspired our interest in stambomycin D: a synthesis of this
molecule would represent a powerful validation of sequence-
based polyketide stereochemical assignment, and one that
could offer a rapid and complementary approach to traditional
NMR-based methods. Here, we report the synthesis of the
C1−C27 aglycon fragment of stambomycin D and its
comparison with the natural macrocycle. The excellent
agreement between the synthetic and natural material supports
the sequence-based stereochemical assignment in this region.
We envisioned that the northern and southern hemispheres

of the stambomycin D aglycon would make ideal targets to
establish a synthetic strategy for the entire molecule and allow
a preliminary comparison of NMR data to support the
predicted stereochemistry. To avoid the uncertainty of the C28
stereocenter, our initial target for the northern hemisphere
consisted of the C1−C27 fragment 1 (Figure 1b). Retro-
synthetically, 1 could be disconnected at the C11−C12 bond
to reveal C1−C11 alkenyl iodide 2, which could be coupled to
a vinyl organometallic at C12, for example by Suzuki coupling.
Disconnection at the C22−C23 bond reveals C13−C22
fragment 3 (in which the required boronic ester could be
derived from manipulation of the ester group) and C23−C27
fragment 4. Union of the latter two fragments could be
achieved by asymmetric alkyne addition of 3 to 4, followed by
Hoveyda hydroboration/oxidation17 and reduction of the
resulting propargylic alcohol to install the desired 1,3-anti-
diol at C21/C23.
Synthesis of the C1−C11 fragment 2 (Scheme 1)

commenced with an enantio- and diastereoselective Leighton
crotylation18 of aldehyde 5 with cis-crotyltrichlorosilane 7 to
give homoallylic alcohol 8 in 87% yield (89% ee, 15:1 dr).
Cross metathesis of 8 with methyl acrylate afforded α,β-
unsaturated ester 9 (90%), which was subjected to Evans−
Prunet acetalization19 to obtain acetal 10 in 33% yield.
Formation of this acetal appeared to be in an unfavorable
equilibrium with the retro-Michael reaction, as the cyclization
failed to reach completion even with extended reaction times;
interestingly, the recovered starting material bore mainly a Z-
alkene. This problem is attributed to the presence of the C8
(R)-methyl group, which must adopt an axial position in the
six-membered cyclic acetal. Following a DIBALH reduction of
the ester in 10, a second Leighton crotylation was carried out
on the resulting aldehyde, giving homoallylic alcohol 11 in 70%
yield (10:1 dr). Protection of the alcohol as the PMB ether and
subsequent oxidative cleavage of the terminal alkene afforded
aldehyde 12. A Mukaiyama aldol reaction of 12 with silyl
ketene acetal 13 then gave the corresponding β-hydroxy ester
(85%), which after oxidation of the alcohol, furnished β-keto
ester 14 in 87% yield.
We expected that deprotection of the acetal under acidic

conditions would also promote spontaneous cyclization of the
resulting C7 hydroxyl group onto the C3 ketone to form the
desired tetrahydropyran. This step proved unexpectedly
challenging as the acetal was surprisingly robust; conditions
that allowed for full conversion of the starting material also
resulted in significant degradation and the formation of an

unidentified side product which was difficult to separate from
the product 15. Various deprotection conditions were tested to
achieve an optimal balance between conversion of the starting
material and product formation, most of which involved
different concentrations of aqueous HCl in MeOH/THF, as
this acid was observed to give a relatively clean reaction. After
fine-tuning the solvent ratio, temperature, and reaction time, it
was found that use of 1.0 M aqueous HCl in MeOH/THF
(1:1) at 35 °C for 22 h gave the desired tetrahydropyran 15 in
47% yield, with 46% recovered starting material. NOESY
correlations and coupling constant analysis confirmed the
relative stereochemistry of the various substituents on the 6-
membered ring. Finally, PMB deprotection afforded the C1−
C11 fragment 2 in 44% yield (12 steps from 5).
Synthesis of the C13−C22 fragment 3 (Scheme 2a) began

with 5-hexynal 16. A Leighton crotylation18 was again
employed to set the two adjacent stereocenters in homoallylic
alcohol 17 (82%, 92% ee, > 20:1 dr). Adopting a similar
strategy to that used for fragment 2, alcohol 17 was protected
as the PMB ether, with subsequent oxidative cleavage of the
terminal alkene affording aldehyde 18. A Mukaiyama aldol
reaction of 18 with silyl ketene acetal 13 gave β-hydroxy ester
19 in 86% yield (5:1 dr); the stereochemistry of the alcohol
was confirmed by Mosher ester analysis.20 Finally, treatment of
19 with DDQ under anhydrous conditions resulted in the
formation of the 1,3-PMP acetal, giving C13−C22 fragment 3
in 55% yield after removal of the minor diastereomer (6 steps
from 16).
Attention now turned to the construction of the C23−C27

aldehyde 4 (Scheme 2b). To install the hexyl-bearing
stereocenter in this fragment, an enantioselective organo-
catalytic aldol reaction21 of octanal and formaldehyde was
employed at the outset. This gave a lactol intermediate, which
was subjected to a Wittig olefination to obtain enoate 21 in

Scheme 1. Synthesis of C1−C11 Fragment 2
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67% yield (88% ee). Protection of the alcohol as the TBS ether
(77%) and DIBALH reduction of the ester (82%) gave alcohol
22. Oxidation of alcohol 22 then afforded the C23−C27
aldehyde 4 in 93% yield.
With fragments 2−4 in hand, we proceeded to combine

them toward the full C1−C27 fragment 1 (Scheme 3). First, a
diastereoselective alkynylzinc addition22 of 3 to 4 afforded
propargylic alcohol 23 in 62% yield (11:1 dr), with Mosher
ester analysis confirming the stereochemistry of the alcohol.
Hydroboration/oxidation of 23 employing a modification23 of
Hoveyda’s conditions17 gave β-hydroxy ketone 24 in 80%

yield. Following an Evans−Saksena reduction24 of the β-
hydroxy ketone (>20:1 dr), the resulting 1,3-anti-diol was
protected as the acetonide (25), which moreover served to
confirm its stereochemistry through the Rychnovsky method.25

A DIBALH reduction of the ester in 25 afforded the aldehyde,
which was then alkynylated using the Ohira−Bestmann
reagent. During alkynylation, it was observed that the PMP
acetal was prone to ring-opening, presumably via enolization of
the adjacent aldehyde under the mildly basic reaction
conditions (K2CO3). This resulted in the formation of a side
product which not only lowered the yield of the alkyne (26)
but also led to problems with purification. It was eventually
found that use of an excess of the Ohira−Bestmann reagent
overcame this problem, enabling alkyne 26 to be obtained in
81% yield.
Following Zr-mediated hydroboration26 of alkyne 26, the

resulting vinylboronic ester 27 was coupled with C1−C11
fragment 2 via a Suzuki coupling. A variety of reaction
conditions were screened, but use of Tl2CO3

27 was found to be
essential for reaction success, giving the complete C1−C27
framework 28 in 53% yield. Deprotection of 28 proved
nontrivial, as the C10−C13 1,3-diene was observed to be
highly acid-sensitive and prone to degradation, potentially via
acid-promoted cyclization of the C17 hydroxyl group. After
much experimentation, we found that deprotection could be
achieved using 0.1 M aqueous HCl in MeOH/THF without
degradation of the diene. Lower acid concentrations of 0.05
and 0.02 M could also be used, although longer reaction times
were required. Treatment of 28 with 0.1 M aqueous HCl in
MeOH/THF for three hours at room temperature thus
afforded C1−C27 fragment 1 in 41% yield.
Having obtained C1−C27 fragment 1, we were inspired to

compare its NMR spectra with the corresponding NMR data
of stambomycin D. To our delight, the data for 1 showed an
excellent match with the reported12 data for stambomycin D
(Figure 2 and Supporting Information). Although slight
discrepancies existed, this is not unexpected due to potential
conformational differences between the acyclic fragment and

Scheme 2. (a) Synthesis of C13−C22 Fragment 3 and (b)
Synthesis of C23−C27 Fragment 4

Scheme 3. Completion of C1−C27 Fragment 1
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the cyclic macrolide. For example, the acyclic fragment
contains a free hydroxyl at C5, whereas in the macrolide this
oxygen atom is attached to the amino sugar mycaminose; in
addition, the acyclic fragment is truncated at C27, as compared
to the macrolide. These differences were therefore reflected in
discrepancies in the 13C NMR data of C5 and C27. An
additional discrepancy was noted at the C19 protons; re-
examination of the spectroscopic data for the natural product
confirmed these signals should be reassigned. Overall, there is
good agreement in the 1H and 13C NMR data between the
C1−C27 fragment and stambomycin D, supporting the
stereochemical assignment of this region of the natural
product.
In summary, we have synthesized the C1−C27 “northern”

fragment of the stambomycin D aglycon. Comparison of NMR
data of this fragment with the reported data of stambomycin D
showed good agreement between the two, providing
preliminary proof of the accuracy of the sequence-based
stereochemical assignment of the macrolide.
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Figure 2. Comparison of (a) 1H NMR and (b) 13C NMR data of stambomycin D and C1−C27 fragment 1.
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