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Abstract: The results of a systematic study of spiro-cyclotri/tetraphosphazenes with ferrocenyl pendant arm on
the basis of correlation between structural parameters were presented. The main parameters were obtained from X-
ray crystallography and 31 P NMR results in order to investigate the relationship between the δPspiro shift values
and endocyclic and exocyclic NPN bond angles, and electron density transfer parameters. Structural parameters
derived from 11 types of the ferrocenyl cyclophosphazene derivatives with 5- to 7-membered spiro-rings introduced
to the literature from our research group were studied and compared with each other.
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1. Introduction
The phosphazene chemistry has attracted much attention since 1960 [1,2]. Especially, hexachlorocyclotriphosp-
hazene (N3P3Cl6 , trimer) and octachlorocyclotetraphosphazene (N4P4Cl8 , tetramer) are of particular interest
to both theoretical and experimental researchers concerning phosphazene-based chemistry. Because of their ten-
dency to react with the nucleophilic mono-, di-, or multi-functional groups [3–6], both of the cyclophosphazenes
were used in the syntheses of a considerable range of organocyclotri/tetraphosphazene derivatives with diverse
applications [7,8]. The substantial efforts have been performed on the nucleophilic substitution reactions, in
which the 1- to 6-Cl-atoms on trimer and 1- to 8-Cl atoms on tetramer have been replaced by the NH and/or
OH functioned reagents, forming isomeric products e.g., structural (spiro-, ansa- and bino-architectures or a
mixed of the same or different architectures), geometrical (geminal, non-geminal cis/trans-), and optical iso-
mers [9,10]. The nature of the products strongly depends on the various chemical factors which control the
replacement reaction mechanisms such as chain lengths of nucleophilic groups, the polarity of solvents, and the
reaction temperature [11]. So far only a limited number of published studies on cyclophosphazene derivatives
with ferrocenyl pendant arm is present in the literature [12–16].

The organocyclophosphazene derivatives have several potential applications in different fields of science
as flame-retardant additives for organic polymers [17], liquid crystals [18,19], antibacterial [20] and anti-cancer
[21] agents, fluorescence chemosensors [22], ion-transferring agents for rechargeable lithium batteries [23,24] and
light-emitting diodes (LEDs) [25]. Besides, ferrocene-containing compounds have been used for molecular sen-
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sors, biosensors, electron-transfer mediators, non-linear optical materials, liquid crystals, and redox-active probe
materials [26,27]. In this context, we were therefore interested in synthesizing of ferrocenyl cyclophosphazenes
and thought that the presence of both ferrocene moiety as a substituent and a trimeric/tetrameric phosp-
hazene as a skeleton in a molecule could give rise to a novel kind of cyclophosphazene derivatives and bring to-
gether many biological and physicochemical properties of the molecule. Furthermore, cyclotri/tetraphosphazene
ring systems are electrochemically inert, and ferrocenyl group is an excellent redox-active precursor. Hence,
ferrocenyl cyclophosphazenes were synthesized to investigate the electrochemical behavior of the phosphazenes
[28–30]. Furthermore, substituted spiro-monoferrocenyl cyclotri/tetraphosphazenes were prepared by our group
to evaluate in terms of their antituberculosis, anticancer, and antimicrobial activities. According to these
studies, it was observed that geminal vanillinato (Van)-substituted spiro-monoferrocenyl cyclotriphosphazenes
[31], tetra pyrrolidine (Pyr)-substituted spiro-mono [32,33] and bisferrocenyl [33] cyclotriphosphazenes and hexa
Pyr-substituted spiro-monoferrocenyl cyclotetraphosphazenes [34] inhibited the growth of Mycobacterium tuber-
culosis H37Rv. While 1,4-dioxa-8-azaspiro[4,5]decane (DASD)-substituted spiro-bisferrocenyl [35] and partly
substituted dispiro-bisferrocenyl [36] cyclotriphosphazenes, the fully and nongeminal (cis) [37] Van-substituted
spiro-monoferrocenyl cyclotriphosphazenes, were effective against the human cervical cancer cell line (HeLa),
bis(diamino) substituted dispiro-bisferrocenyl cyclotetraphosphazene was found to be more active against colon
cancer DLD-1 cells than Doxorubicin [38]. It was also found that the DASD and Pyr-substituted ferrocenyl
cyclotriphosphazenes were active against some gram-positive and gram-negative bacteria [32,33,35] and Pyr-
substituted ferrocenyl cyclotetraphosphazenes were more effective than the commercial antifungal drug Keto-
conazole against fungi [34].

Besides, the chiral properties of mono Van-substituted dispiro-bis ferrocenyl cyclophosphazenes were
investigated by 31P NMR spectroscopy upon the addition of the chiral solvating agent [39].

On the other hand, we also succeeded in the preparation of ultrathin and highly ordered Langmuir-
Blodgett films of tetrachloro-, and mono and gem DASD-substituted mono-ferrocenyl cyclotriphosphazenes
[40,41]. These compounds are the first phosphazene derivatives prepared as thin films in the literature.

Shaw described the first systematic study of the relationship between the bond angles around the phos-
phorus atoms and 31P NMR spectral data in phosphazene derivatives [42]. The changes in structural parameters
for different kinds of structurally analogous cyclotriphosphazenes (cyclotriphosphazenes possessing 6-membered
spiro ring/rings [43], monospiro-, dispiro-, spiro-ansa-spiro- and spiro-bino-spiro-cyclotriphosphazenes [44–46],
spiro-cyclotriphosphazenic lariat (PNP-pivot) ether derivatives [47,48], monotopic and ditopic spiro-crypta cy-
clotriphosphazenes [49–51]) were investigated previously. It was found that the systematic variations in the 31P
NMR chemical shifts depend fundamentally on some electronic (electron-releasing and electron-withdrawing ca-
pacities of substituent groups), steric (the steric hindrance between the exocyclic groups) and conformational
factors, and on the changes in bond lengths and bond angles around the phosphorus atoms [especially endocyclic
(α) and exocyclic (α′) bond angles] in cyclotriphosphazene derivatives. The current study deals with a number
of correlations between structural parameters [e.g., 31P NMR spectral data and X-ray crystallographic data
(endocyclic and exocyclic NPN bond angles, and bond lengths)] in spirocyclic ferrocenyl cyclophosphazenes
introduced to the literature from our research group (Table 1) [33–41,52]. Therefore the content of this report
includes: (i) a brief description of the synthesis methods of 11 different structural types and a total of 28
spirocyclic ferrocenyl phosphazenes with 5- to 7−membered spiro-rings used for the graph construction, (ii)
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the relationship between the δPspiro shifts and the values of electron density transfer parameters ∆(P–N), and
(iii) the correlation of δPspiro shifts and endocyclic (α) and exocyclic (α′) NPN bond angles of the compounds.

Table 1. The endocyclic (α) and exocyclic (α′) NPN bond angles and bond lengths (a, a ′ , b, and b ′) on the formulae
of cyclophosphazenes.
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2. Results and discussion
2.1. Syntheses
Routes for the synthesis of spirocyclic ferrocenyl cyclophosphazenes clarified their solid-state structures us-
ing X-ray crystallography by our research group and investigated in this study are summarized in Scheme.
The syntheses of mono and bisferrocenyl diamines, as the starting compounds, were carried out according to
the published procedures, in which ferrocenecarboxaldehyde reacted with appropriate diamines and followed
by reduction of the azomethine bonds in the intermediate products [53,54]. The reactions of trimer with
mono and bisferrocenyl diamines gave partly substituted spiro-mono (I) [33] and spiro-bis (V) [33,52] ferrocenyl
cyclotriphosphazenes, respectively. The substituted phosphazene derivatives were synthesized by stepwise sub-
stitutions of partly substituted spiro-mono (I) and spiro-bis (V) ferrocenyl cyclotriphosphazenes which consist
of 4 reactive P-Cl units. The reactions of 1 equimolar amount of partly substituted spiro-bis (V) and spiro-
mono (I) ferrocenyl cyclotriphosphazenes with 1 and 2 equimolar amounts of heterocyclic amines (DASD and
Pyr) produced corresponding mono heterocyclic amine (DASD) substituted spiro-bis (VI) [35] and spiro-mono
(II) [40] and geminal heterocyclic amine (DASD and Pyr) substituted spiro-bis (VII) [35] and spiro-mono (III)
[35,40,41] ferrocenyl cyclotriphosphazenes in the presence of NEt3 in refluxing dry THF. The fully heterocyclic
amine [DASD, Pyr, and morpholine (Morp)] substituted spiro-bis (V) [33] and spiro-mono (I) [33,35,52] fer-
rocenyl cyclotriphosphazenes were prepared by replacing 4 Cl-atoms on partly substituted derivatives (I) and
(V), respectively, with excess heterocyclic amines in boiling THF. The reactions of equimolar amounts of partly
substituted spiro-mono ferrocenyl cyclotriphosphaze (I) and potassium vanillinate were found to yield the cor-
responding mono Van-substituted spiro-mono ferrocenyl cyclotriphosphaze (II) as a major product and geminal
(III) [37] and nongeminal (cis) (IV) substituted spiro-mono ferrocenyl cyclotriphosphazenes as minor products.
Fully Van-substituted spiro-bisferrocenyl cyclotriphosphazene (V) was synthesized from the reaction carried out
with excess potassium vanillinate [37]. The Cl-replacement reactions of trimer with 2 equimolar amounts of
mono-ferrocenyldiamines resulted in the formation of the corresponding partly substituted cis- (meso) and trans-
(racem) dispiro-bisferrocenyl cyclotriphosphazenes (VIII) as the major products and spiro-mono (I) ferrocenyl
cyclotriphosphazenes as minor products [36]. Three products were separated performing column chromatogra-
phy. The reactions of 1 equimolar amount of cis- and trans-dispiro-bisferrocenyl cyclotriphosphazenes (VIII)
having 2 reactive Cl-atoms with 2 equimolar amounts of potassium vanillinate in refluxing THF afforded the
mono (IX) and fully (VIII) Van-substituted cis- and trans-dispiro-bisferrocenyl cyclotriphosphazenes (IX) and
(VIII) [39]. The mono and fully substituted derivatives were separated using column chromatography. On
the other hand, the partly substituted spiro-mono (X) [34] and cis- and trans-dispiro-bis (XI) [38] ferrocenyl
cyclotetraphosphazenes were obtained from the reactions of tetramer with 1 and 2 equimolar amounts of mono-
ferrocenyl diamines in dry THF. The fully Pyr-substituted (X) and trans-(XI) were prepared by the reaction
of partly substituted ones with excess Pyr in dry THF at ambient temperature.
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2.2. Correlations between structural parameters

The endocyclic (α) and exocyclic (α′) NPN bond angles, and the bond lengths (a, a ′ , b, and b ′) were de-
fined in the generalized structures for the 11 types of cyclotri/tetraphosphazenes containing ferrocenyl pendant
arm/arms and 5-, 6- and 7-membered spiro-ring/rings shown in Table 1. δPspiro shifts, α , and α′ bond angles,
and ∆(P–N) values that are needed to be used for graph construction are listed in Table 2. The corresponding
values of the standard compounds trimer (N3P3Cl6) [55,56] and tetramer (N4P4Cl8) [57,58] were taken from
the literature. Types I and V members are partly and fully substituted spiro-mono and spiro-bisferocenyl cy-
clotriphosphazenes, respectively. Mono and geminal substituted spiro-mono/bisferocenyl cyclotriphosphazenes
are the types II and VI, and the types III and VII group members, respectively. Nongeminal (cis) substituted
spiro-monoferocenyl cyclotriphosphazene constitutes the type IV. Members of types VIII and IX derivatives
comprise partly and fully substituted and monosubstituted cis/trans-dispiro-bisferocenyl cyclotriphosphazenes,
respectively. spiro-Mono and trans-dispiro-bisferocenyl cyclotetrahosphazenes constitute the types X and XI
compounds.

The concept of the double-bond character of the P-N linkage in the cyclophosphazene derivatives is
still not clearly understood. Negative hyperconjugation and ionic bonding alternatives are exclusive [59]. The
natural bond orbital and topological electron-density analyses of phosphazenes have proved the crucial role of
negative hyperconjugation in the description of the P-N bond.

2.2.1. The correlation of δPspiro shifts and values of electron density transfer parameters ∆(P–N)

The electron density transfer parameter ∆(P–N) is the difference between the bond lengths of 2 adjacent
endocyclic P-N bonds as defined in Table 2 for spirocyclic ferrocenyl phosphazenes. It shows a measure
of the electron releasing and withdrawing capacities of the substituent groups on cyclophosphazene ring.
The relationship between the δPspiro shifts and ∆(P–N) values is illustrated in Figure 1 for partly and
heterocyclic amine [Pyr, piperidine (Pip), Morp and DASD) (i) and Van (ii) substituted spirocyclic ferrocenyl
phosphazenes, respectively. A cluster of points rather than the linear trend was observed between the ∆(P–N)
and δPspiro shifts. In Figure 1i, all types of triphosphazene structures were accumulated in 6 regions A, B, C,
D, E, and F. The points of partly substituted types (I and V) and type VIII phosphazenes accumulate in
regions A and B, respectively. The points of mono (types II and VI), geminal (types III and VII) and fully
heterocyclic amine substituted cyclotri (types I and V) and cyclotetra (type X) phosphazenes accumulate in
regions C, D, E, and F, respectively.

According to Figure 1i, some comparisons can be made on the electron-releasing power of the substituent
depending on whether the substituent is a chloro or heterocyclic amine group of the compounds with the same
membered spiro-rings. For example, the ∆(P–N) values of fully heterocyclic amine substituted Id, Vc, and t-
XIb are respectively; 0.0055, 0.0035, and –0.005 and –0.0055, indicating that the electron releasing power of the
nitrogen atoms of heterocyclic amine groups is greater than that of the chloro groups in Ia (0.087), Vb (0.0675),
and t-XIa (0.046) with the larger ∆(P–N) values. A similar situation is observed for fully Van (Vd and c/t-
VIIId) and partly [Va and (t-VIIIa and c/t-VIIIb)] substituted ferrocenyl cyclophosphazenes (Figure 1ii),
showing the oxygen atoms of Van groups bonded to phosphorus atoms release electrons to the cyclophosphazene
ring. It is not possible to say whether heterocyclic amines or vanniline release more electrons to the phosphazene
ring since we do not have crystallographic data of the heterocyclic amines and Van substituted derivatives of
any type are not available.
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Moreover, there is no significant difference between the ∆(P–N) values of cis- and trans-structures of the
same compound for types VIII and IX phosphazenes (0.00825 for VIIIb, 0.002475 for VIIIc, and 0.01095
for IXa). However, the difference between the ∆(P–N) values of cis- and trans-structures of the phosphazenes
with 5-membered spiro-rings (VIIIb and IXa) is slightly larger than that of the phosphazene with 6-membered
spiro-rings (VIIIc). That could be significantly attributed to the fact that 5-membered spiro-rings of c-VIIIb,
t-VIIIb, c-IX and t-IX are in envelope conformation and 6-membered spiro-rings of c-VIIIc and t-VIIIc are
in the chair conformation [36,39].

Figure 1. The relationship between δPspiro shifts and ∆(P-N) values for partly and heterocyclic amine (Pyr, Pip,
Morp, DASD) (i) and Van (ii) substituted spirocyclic ferrocenyl phosphazenes. δPClPCl shift values of N3 P3 Cl6 and
N4 P4 Cl8 are 19.60 [56] and –5.45 [58] ppm, respectively.

For fully heterocyclic amine substituted phosphazenes (cycle E), the ∆(P–N) and δPspiro values of
cyclotriphosphazenes having the 7-membered spiro-ring (Id and Vc) are similar, regardless of whether the
compounds are mono (type I) and bis (type V) ferrocenyl phosphazenes.

It can be seen from Figure 1i that there are greater changes in ∆(P–N) values for types II and VI with
1 heterocyclic amine substituent per P atom, types III and VII with 2 heterocyclic amine substituents per P
atom and types I and V with 4 heterocyclic amine substituents. Therefore, the ∆(P–N) values of these types
phosphazenes can be compared with each other according to the number of heterocyclic amine substituents. As
expected, the ∆(P–N) value of mono substituted compounds is between the ∆(P–N) value of partly (cycle A)
and fully (cycle E) substituted phosphazenes, while geminal substituted derivatives except for VIIa (cycle D)
have the ∆(P–N) value between those of mono (cycle C) and fully (cycle E) substituted ones. The ∆(P–N) value
of VIIa appears to the left more than other geminal substituted derivatives (IIIa-IIIc) (cycle D) or is greater
than those of the fully substituted derivatives (cycle E). This situation may be related to the higher basicity of
the DASD substituent in VIIa. A similar relationship was observed between the ∆(P–N) values of nongeminal
cis- (IVa) and fully (Vd) Van substituted cyclophosphazenes and partly substituted Ia and Va, respectively
(Figure 1ii). Furthermore, the ∆(P–N) values of fully heterocyclic amine substituted types X (cycle F) and
XI cyclotetraphosphazenes and types I and V cyclotriphosphazenes, respectively, are quite close together.
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Although the compounds IIIa and VIIa both have geminal structure and 7-membered spiro-ring, and
are close in δPspiro shifts, the major difference in their ∆(P–N) values and basicities is that the phosphazenes
contain mono and bis ferrocenyl pendant arms, respectively. On the other hand, based on the electron-releasing
capacity of the ferrocenyl pendant group for partly substituted phosphazenes (cycles A and B), it has been
made the following order: Type VIII >type V >type I. Type I (Ia), and type V compounds (Va and Vb) are
mono-spiro mono and bis structures, while type VIII (t-VIIIa, c/t-VIIIb, and c/t-VIIIc) phosphazenes are
di-spiro bis structures. As expected, the electron releasing powers of 2 ferrocenyl pendant groups are greater
than those of 1 ferrocenyl pendant group. Moreover, in partly substituted phosphazenes (cycle A), the δPspiro

shifts of 7-membered Ia and Vb are close to each other while 6-membered Va has a lower δPspiro shift.
In the case of 5-membered spiro-ring geminal (IIIb and IIIc) and 6-membered spiro-ring fully (Ib and

Ic) substituted phosphazenes, the electron releasing capacity of DASD group is much larger than that of Pip
and Pyr, respectively.

Besides, when the number of atoms increases in the spiro-ring, the electron releasing capacity of the
phosphazene decreases. In general, the electron releasing power of the rings is in the following order: spiro-rings
with 5-membered >spiro-rings with 6-membered >spiro-rings with 7-membered.

As a result, electron−withdrawing substituents, like chlorine group, increase ∆(P–N) values, pulling away
electrons from spiro-ring/rings to the phosphorus atom bonded to the electron−withdrawing groups. Whereas
the electron-releasing substituents, like heterocyclic amines, decrease ∆(P–N) values, resulting in decreased
the bond lengths a and a ′ and increased the bond lengths b and b ′ when compared bond lengths of partly
substituted derivatives. Hence, the shortening of the endocyclic P–N bonds and decreased electron charge
density at the exocyclic P-N bonds is likely to be a measure of the electron-releasing power of the substituent
and the increase in negative hyperconjugation.

The relationship between the ∆(P–N) and δPspiro shifts makes sense in the basicity of the ring nitrogen
atoms in phosphazenes. The basicity of the chlorocyclophosphazene ring nitrogen atoms is quite low, and it
may be improved by replacing Cl-atoms with electron-releasing substituents on phosphorus. Thus, the basicity
of the phosphazene ring nitrogen atoms (N1-PX2 and N2-Pspiro) in fully substituted cyclotriphosphazenes
with those in partly substituted ones can be compared. The basicity of N1 atom/atoms in fully substituted
phosphazenes appears to have increased due to electron-releasing power of the heterocyclic amine groups, while
N2 atom/atoms in partly substituted phosphazenes due to electron-withdrawing power of the chloro groups.
As a result, an increase in the electron-releasing power of heterocyclic amine substituents seems to bring about
an increase in the basicity of the nitrogen atom (N1) and the negative hyperconjugation.

2.2.2. The correlation of the δPspiro shifts, endocyclic (α), and exocyclic (α′ ) NPN bond angles

A cluster of points between the δPspiro shifts and the endocyclic NPN bond angles (α) [A, B, C, D, E, and
F given in Figure 2i)] and a trend of approximate linearity between the δPspiro shifts and the exocyclic NPN
bond angles (α′ ) [(a), (b), (c), and (d) given in Figure 2ii] were observed.

The changes in α and α′ bond angles show parallelism except for a contrasting trend observed for partly
substituted types I and V cyclotriphosphazenes (cycle A) and fully substitute type X cyclotetraphosphazenes
(cycle F). Small changes in α′ bond angles lead to significant changes in δPspiro shifts. The number of members
in the spiro-ring seems to be effective on α′ bond angles. In fact, the α′ bond angles of cyclotriphosphazenes
with 5-membered spiro-ring are narrower than those with larger 6- and 7-membered ones and even narrower
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Figure 2. The relationship between δPspiro shifts and endocyclic (α) (i) and exocyclic α′ (ii) NPN bond angles for
partly and heterocyclic amine (Pyr, Pip, Morp, DASD) substituted spirocyclic ferrocenyl phosphazenes. δPClPCl shift
values of N3 P3 Cl6 and N4 P4 Cl8 are 19.60 [56] and –5.45 [58] ppm, respectively. The α and α′ values are 118.3(2) and
101.2(1)° for N3 P3 Cl6 [55] and 121.2 and 102.8° for N4 P4 Cl8 [57] respectively.

than the corresponding angle [101.2(1)°] [55] in the standard compound N3P3Cl6 . For example, α′ NPN bond
angles of the more flexible 7-membered IIIa and VIIa are larger than those of 5-membered counterparts IIIb
and IIIc (cycle D given in Figure 2i and line (c) given in Figure 2ii). Likewise, α′ bond angles of 7-(Vb) and
6-(VIIIc) membered phosphazenes are wider with respect to the values of 6-(Va) and 5-(VIIIa and VIIIb)
membered derivatives, respectively. The α and α′ values of IIa are among the α and α′ values of other
compounds in cycles A and C (Figure 2i) and line (a) (Figure 2ii) due to its 6-membered spiro-ring, and the
α′ value of IIa close to the α′ angle of the standard N3P3Cl6 [101.2(1)°] [55]. As mentioned before, there
is a difference between ∆(P–N) values of the phosphazenes IIIa and VIIa having geminal structure and 7-
membered spiro-ring and nearly the same δPspiro shift values. The difference between the α′ and α bond
angles of both compounds is ~3 and 1°, and this explains that the α bond angle is less sensitive to the electronic
changes. When spiro-bisferocenyl Va and VIa cyclotriphosphazenes are compared, it is seen that the δPspiro
shift value increases from 6.20 to 14.41 ppm by mono substitution, while the α′ bond angle decreases from
105.0(2) to 102.85(11)° and the α bond angle increases from 110.0(2) to 114.42(13)°, respectively, indicating a
change in substituent groups causes a major change in both α and α′ bond angles. In fact, the values of α and
α′ bond angles of 7-membered partly substituted cyclotriphosphazene (Vb) are larger and smaller than those
of the 7-membered heterocyclic amine substituted cyclotriphosphazene (Vc). Based on the electron-releasing
capacities of the substituents for Vb and Vc, electrons are transferred from heterocyclic amine groups to the
cyclotriphosphazene ring in Vc and from the cyclotriphosphazene ring to Cl-atoms in Vb. The α and α′ bond
angles of fully pyrolidine substituted cyclotetraphosphazenes (Xa and Xb) are close to each other, and the
angles have the values to be expected for cyclotetraphosphazenes with 5-membered spiro-ring. In addition,
the α′ angle of the 5-membered DASD substituted IIIc is larger than that of the 5-membered Pip substituted
IIIb, which once again confirms that the DASD substituent has a greater electron-releasing power than the
Pip substituent and shows that the electron transferred from the DASD group to the phosphazene ring does
not remain only in the phosphazene ring but also transfers towards the spiro-ring. In case of partly and fully
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substituted type XI cyclotetraphosphazenes, α angle is much affected by the substitution, but, α′ angle is less
affected. Moreover, the correlations between the δPspiro shifts and α (Figure 3i) and α′ (Figure 3ii) NPN
bond angles show contrasting trends. For example, the α and α′ angles of 6-(Va) and 4-(Ia) membered partly
substituted phosphazenes are smaller than 6-membered fully Van-(Vd) and 4-membered nongeminal cis- (IVa)
substituted phosphazenes, respectively.

Figure 3. The relationship between δPspiro shifts and endocyclic (α) (i) and exocyclic α′ (ii) NPN bond angles for
partly and Van substituted spirocyclic ferrocenyl phosphazenes.

Although there are few examples of spiro-ferrocenyl substituted cyclotetraphosphazenes, the structural
parameters of these compounds are given in the figures with the aim of comparison purposes. More values are
necessary to learn more about the correlations for cyclotetraphosphazenes.

3. Conclusions
A systematic study concerning the correlations between structural parameters [e.g., 31P NMR spectral data
and X-ray crystallographic data (endocyclic and exocyclic NPN bond angles, and bond lengths)] displayed some
characteristic results for mono- and di-spirocyclophosphazene derivatives bearing ferrocenyl pendant arm/arms.
Naturally, these results become more reliable when more cyclic phosphazenes from this series are synthesized
and the 31P NMR spectroscopic and X-ray crystallographic data of these molecules are taken into account. It
is necessary to extend the study for other members of the spirocyclic ferrocenyl cyclophosphazene family to get
a more general and including views about the correlations between structural parameters of these molecules.
Research along these lines is actually under development in our laboratory and results will be presented elsewhere
in the forthcoming future.
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