Chapter 9 )
Alignment-Free Analyses of Nucleic Acid e
Sequences Using Graphical Representation
(with Special Reference to Pandemic

Bird Flu and Swine Flu)
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Abstract The exponential growth in database of bio-molecular sequences have
spawned many approaches towards storage, retrieval, classification and analyses
requirements. Alignment-free techniques such as graphical representations and
numerical characterisation (GRANCH) methods have enabled some detailed ana-
lyses of large sequences and found a number of different applications in the
eukaryotic and prokaryotic domain. In particular, recalling the history of pandemic
influenza in brief, we have followed the progress of viral infections such as bird flu
of 1997 onwards and determined that the virus can spread conserved over space and
time, that influenza virus can undergo fairly conspicuous recombination-like events
in segmented genes, that certain segments of the neuraminidase and hemagglutinin
surface proteins remain conserved and can be targeted for peptide vaccines. We
recount in some detail a few of the representative GRANCH techniques to provide a
glimpse of how these methods are used in formulating quantitative sequence
descriptors to analyse DNA, RNA and protein sequences to derive meaningful
results. Finally, we survey the surveillance techniques with a special reference to
how the GRANCH techniques can be used for the purpose and recount the forecasts
made of possible metamorphosis of pandemic bird flu to pandemic human infecting
agents.
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9.1 Introduction

Since the availability of large nucleic acid sequence data in the late 1980s, followed
by the subsequent exponential growth of such data in the databases, the need for
supportive tools to store, view, retrieve and analyse such sequences became and
continues to be of urgent necessity. These tasks require methods to characterise the
information contained in these sequences with a view to compare and contrast
different sequences to determine their functions and place in the biological domain.
The symbolic DNA sequence representation has been the legacy mainstay of such
analyses carried over from the oligonucleotide sequence days, falling far short of the
requirements of the broad sweeping overview of local and global base distributions,
multiple sequence similarities and dissimilarities, molecular evolution and other
studies necessary for an overarching assessment of the relationship of any
DNA/RNA sequence to the biome through the accumulated data in the nucleic
acid databases.

Sequence alignment has been the primary tool of choice for such comparison of
generic sequences. However, in the conventional methods, the time complexity of
sequence alignment varies as ~O(I°) for two sequence segments of length / (Kobori
and Mizuta 2015). In the realm of genomic sequences, this clearly consumes an
enormous amount of computation time, which grows even worse when multiple
alignments are necessary. The reason behind such sequence alignment is the fact that
mutational changes in nucleic acid sequences through individual nucleotide muta-
tions and rearrangements in nucleotide distributions brought on by various biolog-
ical processes are reflected in the DNA/RNA sequences we observe today. This
constitutes one of the main considerations facing biologists trying to understand the
variations between different sequences of the same genera and their evolution
(Qi et al. 2011).

Numerical characterisation of the DNA/RNA sequences is one of the main tools
in undertaking this task, and a number of methods were developed to analyse
specific attributes of DNA sequences. For example, the dot plot (Gibbs and Mclntyre
1970) is used to visualise identical sequence segments between two proteins by the
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diagonal runs in a matrix of the constituents of the two sequences. Needleman and
Wunsch (1970) used dynamic programming techniques to align protein or nucleo-
tide sequences; another dynamic programming scheme was later proposed by Smith
and Waterman (1981) (Smith et al. 1985), for improved scoring local sequence
alignment, but the computational complexity and time requirements have limited its
use. For protein secondary structure prediction, Chou and Fasman (1974a, b)
developed an empirical technique, which, however, has been superseded by new
machine learning techniques. In particular, dynamic programming techniques that
analyse DNA sequences in terms of discrete small segments to eventually merge into
the full sequence require time commitments of ~O(I*), where k is the number of
sequences to be aligned and is expensive in the use of computing resources, whereas
fast Fourier transform (FFT) requiring resource time of ~O(l log I) is only slightly
better (Hanson, thesis 2003). Multiple alignment fast Fourier transform (MAFFT)
with a simplified scoring system to reduce the computational overhead (Katoh et al.
2002), discrete Fourier transforms (Yin et al. 2014) and wavelet transforms (Dodin
et al. 2000) that displays regularity in patterns in DNA sequences have been some of
the other methods deployed to extraction of information of interest from the DNA
databanks. BLAST (Basic Local Alignment Search Tool) is one of the most popular
search tools for local alignments; it uses a heuristic algorithm that takes shortcuts to
identify, very rapidly, sequences in a library that most closely resemble the query
sequence (Altschul et al. 1990, 1997).

A more general approach that permits local and global sequence comparisons,
generation of phylogenetic trees, numerical characterisations of DNA/RNA/protein
sequences, quantitative estimation of sequence divergences and other properties and
rational design of peptide vaccines is offered by novel, alignment-free schemes of
graphical representation and numerical characterisation of biomolecular sequences
(see review Nandy et al. 2006). The basic procedure in all these methods is to
identify a vector with each type of nucleotide and plot each vector successively until
the end of the sequence, thus drawing out a trajectory in the space of the model;
associating a numerical value with the curve results in a descriptor of the sequence.
This allows for quantitative comparisons between sequences and forms a powerful
tool for analysis of similarities and dissimilarities between genes on a local and
global scale. These novel approaches dispense with the need for alignments, which,
for large sequences, become less reliable due to divergence of species and subse-
quent rearrangements (e.g. reversal, transposition or block exchange) occurring over
evolutionary time scales; corrections introduced to take care of these divergences
depend upon significant homologies between the sequences and the genes to be
compared and thus become restrictive (Qi et al. 2011).

However, as we discuss later, these alignment-free graphical representation
methods are not without their problems either. One of these is related to computation
of the sequence descriptors. In geometric approaches (Raychaudhury and Nandy
1999; Liao and Ding 2006; Bielinska-Waz et al. 2007), computational closure in
limited time is possible; however, in some of the approaches where sequence
descriptors are defined through matrices of distances between the bases or amino
acids of the sequence (Randic et al. 2000a, b; Song and Tang 2005; Wang and Zhang
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2006; Li et al. 2016; Randic et al. 2004; Bai and Wang 2006), generating a final
value for large sequences remains a significant problem, and approximations have to
be resorted too. In some instances, defining a suitable matrix to characterise and an
invariant to associate with a gene sequence presents some difficulties (Qi et al.
2011).

In this chapter, we present a concise summary of a selection of graphical
representation methods to demonstrate the basics of this class of approaches of
numerically characterising a biomolecular sequence. There have been a very large
number of methodologies proposed to quantitatively estimate the differences
between selected groups of genes and genomic sequences (see review Nandy et al.
2006). Extensions of these approaches have been made to take into account protein
sequences (see review Randic et al. 2011) where the problem is compounded by the
fact that the basic building blocks in protein sequences are constituted by 20 amino
acids (Nandy et al. 2009) in comparison to nucleotide sequences where the basic
building blocks constitute four bases; in terms of the methodologies, we consider a
few in a short section and refer the readers to the original papers for greater details.

These graphical representation methods are found ready for acceptance in
research. The visual representation of base distribution in DNA sequences was
used by Larionov et al. (2008) to compare the chromosomal DNAs of human and
mouse to find several examples of palindromic runs in almost the same manner in the
two species. Wiesner and Wiesnerova (2010), in an innovative application of 2D
graphical techniques to multiallelic marker loci from Begonia x tuberhybrida Voss,
suggested that the DNA walks could be correlated with genetic diversity to predict
new allele-rich loci and improve new DNA germplasm identificators. Applications
of the graphical representation and numerical characterisation techniques were made
by Liao and his group (Liao et al. 2005, 2006) to analyse the genomic sequences of
the viruses in SARS (severe acute respiratory syndrome) pandemic of 2003 and
generate their phylogenetic relationship tree. Humberto Gonzalez-Diaz and his
group applied the underlying concepts in an analysis of protein sequences for drug
discovery research through numerical parameters analogously to quantitative
structure-activity relationship (QSAR) topological indices (Estrada and Uriarte
2001; Gonzélez-Diaz et al. 2007), determination of mass spectral data of proteins,
toxicoproteomics, toxicity prediction and diagnosis of cancer patients (Cruz-
Monteagudo et al. 2008; Gonzalez-Diaz et al. 2008a, b; Aguero-Chapin et al. 2009).

In a number of interesting applications of the original 2D graphical representation
of DNA/RNA sequences, one of the current authors of this chapter showed that
introns and exons of mammalian genes differed significantly in base distribution
characteristics (Nandy 1996a), that these properties can be used to determine coding
regions in newly identified DNA sequences (Nandy 1996b) and that mutational
changes in genetic sequences are guided by some restrictions which indicate an
intricate relationship between intra-purine and intra-pyrimidine content of the
sequences (Nandy 2009), among others.

A number of applications have been made over the years of some of these
graphical representation and numerical characterisation methods, molecular
sequence similarity/dissimilarity and phylogenetic relationships being among the
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ones with the most abiding interest. For example, Randic et al. (2000a, b) and Liao
and Ding (2006) used a novel 3D graphical representation model to examine the base
distributions in the first exons of beta-globin genes of 11 species giving results that
matched closely with those obtained by other graphical representation methods. In
another approach, Zhang et al. (2010) used a spectral representation of DNA
sequences defining a 24-component vector as sequence descriptor and illustrated
their method using complete beta-globin sequences of seven species. Li et al. (2016)
introduced a novel method of considering dinucleotides in a 3D graphical represen-
tation model and obtained phylogenetic trees of 4 datasets: the coding sequences of
the beta-globin genes of 18 species, the mitochondrial cytochrome oxidase subunit I
(COI) genes of 9 butterflies, the S segments of 32 hantaviruses (HVs) and 70 com-
plete mitochondrial genomes, all of which gave evolutionary relationships that
matched with standard data.

In a slightly different application area, we refer in some detail to the applications
of graphical representations and numerical characterisation schemes to viral genet-
ics, focusing our attention more on the influenza virus in view of the several
pandemics that it has caused, but we do mention in passing other viral pandemics
also. It will be seen that some of the issues related to vaccine design and drug
discovery are more easily and readily approached using graphical techniques, and
these approaches with their visual representations also give fresh insights into base
distribution and composition characteristics. These have led to determination of
vaccine targets in the virions, tracking viral progress across geographical and time
boundaries, computation of phylogenetic relationships and possible regulation of
base composition and distribution in DNA/RNA sequences. Brief discussions of
these applications and methods of surveillance of viral developments and progress
are covered in another section of this chapter.

9.2 Graphical Representation and Numerical
Characterisation (GRANCH)

Graphical representation and numerical characterisation (GRANCH) of nucleotide
and amino acid sequences provides a very powerful tool for basic biological
research. Mathematical descriptors based on graphical representations are used as
a compact method for sequence comparison. The novelty, utility and low complexity
of these representations have spawned a wide variety of approaches, some of which
have seen many applications. A selection of such methods is given here in order to
elucidate the many ways in which this technique can be formulated.

While most applications to date have been done in graphical representations in
2D and 3D spaces, several authors (e.g. Tang et al. 2010) have proposed represen-
tations in higher orders of dimensionality. However, there are some advantages and
disadvantages to them; in a 4D graphical representation of nucleic acid sequences,
while overlaps and intersections of the sequence curve with itself can be avoided,
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graphical visualisation and the ability to directly compare two sequences are lost
which, on the other hand, are easily achieved in 2D or 3D plots. Liao and Wang
(2004) proposed a 6D representation, while Randic et al. (2005) suggested a novel
four-colour map representation.

Although graphical representation provides visual clues to the characteristics of
base distribution in a sequence and enables visual comparison of similarities and
dissimilarities between two or more sequences, quantitative estimation of such
characteristics or differences between sequences is required for any significant
comparisons. All authors of graphical representations have, therefore, recommended
sequence descriptors to quantify sequence similarity/dissimilarity through the use of
such descriptors. There are two approaches to define mathematical descriptors:
geometrical and graph-theoretical methods.

9.2.1 Quantitative Estimation Methods

Various numerical descriptors for the numerical characterisation of sequences have
been formulated during the past few decades. A particular descriptor maps the set of
sequences (S) into the set of real numbers (R). In some cases, a vector may be
extracted instead of a single number. Given below is a representative sample of the
important and widely used descriptors known thus far. However, it should be noted
that the list is not exhaustive.

9.2.1.1 Geometrical Methods

This method was first described by Raychaudhury and Nandy (1999), where they
used the graphical representation of DNA sequence on a 2D rectangular grid, as
explained below, using the (x, y) coordinate to derive the descriptor values. The first-
order moments (i, ) and a graph radius g are defined for each sequence as:

Xi /
= Z = anng = ﬂxz + /’tyz

Vi
NOR TN
where (x;, y;) are the coordinates of each point on the plot and N is the total number of
bases in the segment. g is the base distribution index which is dependent on the
specific positions of the bases in a given sequence and has been found to be
characteristic of the specific sequence base distributions. Thus, if two sequences
yield the same gx value, the two sequences will be found to be identical for all
practical purposes (Nandy and Nandy 2003). Now, if 4 and p, refer to two different
DNA sequences, then the quantity Agyp defined by:

Hy



9 Alignment-Free Analyses of Nucleic Acid Sequences Using Graphical. . . 147

2 2
Aggp = \/(ﬂlx — Hay)” + (:uly - ﬂzy)

provides an estimation of the difference between the two sequences. Thus, gg and
Agp are very important measures of sequence composition and distribution.

9.2.1.2 Graph-Theoretical Methods

In this method, DNA/RNA sequence is represented and characterised by a two-step
process: representation of the sequences using graphs and characterisation of the
graphs by graph invariants. A graph invariant is a graph-theoretic property which is
preserved by isomorphic graph (Harary 1969; JaneZi¢ et al. 2007). A graph G is
defined as an ordered pair consisting of two sets, V and G=(V(G), R), where V(G)
represents a finite nonempty set of points and R is a binary relation defined on the set
V(G). The elements of V are called vertices, and the elements of R also symbolised
by E(G) or E are called edges. Such an abstract graph is commonly visualised by
representing elements of V(G) as points and by connecting each pair (u, v) of
elements of V(G) with a line or edge if and only if (u#, v)e R. The vertex, v, and
edge, e, are incident with each other, as are u and e. Two vertices in G are called
adjacent if (u, v)ec R, i.e. they are connected by an edge. A walk of a graph is a
sequence beginning and ending with vertices in which vertices and edges alternate
and each edge is incident with vertices immediately preceding and following it. A
walk of the form vy, e, v, ey, . . ., v, joins vertices vy and v,,. The length of a walk is
the number of edges in the walk. A graph G is connected if every pair of its vertices
is connected by a path. The distance (u, v) between vertices u and v in G is the length
of the shortest path connecting u and v.

In a molecular graph corresponding to DNA/RNA sequences, V represents the set
of nucleic acid bases (A, T/U, G, C) and E represents the set of bonds connecting the
adjacent bases. For any pair of bases (i, j) in the sequence, (i, j)¢ R, they are either
connected (adjacent) or not. Such a graph may be represented by an adjacency
matrix A= {a; ;} where:

ad = 1 if 7,/ are connected
Y1 =0 otherwise

Now the graph-theoretical distance (topological) Dg and the Euclidean distance
Dg between the vertices are measured, and a particular type of matrix, Dg/Dg, is
formed from which the leading eigenvalues are calculated. The leading eigenvalue is
used to characterise a sequence, while the difference between the eigenvalues forms
an estimate of the similarity/dissimilarity between the sequences. Thus, the leading
eigenvalues of Dg/Dg matrix and the associated eigen matrices are considered to be
descriptors of the DNA sequences.

To clarify the process of graphical representations and the differences between
the multiple approaches, a short sequence of 10 bases, ATGAACACTC, is used as a
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standard example to generate plots using each of the methods mentioned here. The
sequence denotes the stretch of first ten bases of the fourth segment of the influenza
genome and the hemagglutinin (HA) gene, belonging to influenza A virus
(A/Shenzhen/SP139/2014(H7N9)).

9.2.2 Graphical Representation and Numerical
Characterisation Methods for Nucleotide Sequences

9.2.2.1 2D Graphical Representations
2D Rectangular Plot

A simple 2D Cartesian coordinate system is used to represent the nucleic acid
sequences. Gates (1986), Nandy (1994) and Leong and Morgenthaler (1995) inde-
pendently proposed the four cardinal directions on a 2D grid to represent the four
bases. According to Nandy, starting from the origin, a point is plotted by moving one
step in negative x-direction if the base is an adenine (A) and in the opposite direction
if the base is a guanine (G) and a walk of one step in positive y-direction if the base is
a cytosine (C) and in the opposite direction if it is a thymine (T) (or uracil, U).
Plotting the points successively in this manner draws a graph of the sequence of
bases. Gates and Leong and Morgenthaler proposed a similar graphical representa-
tion but with different assignments of the bases to the cardinal directions. The graph
according to the Nandy prescription is given in Fig. 9.1.

Table 9.1 represents the coordinates, the centre of mass of all the points and the
graph radius gx of the sequence as described in Sect. 9.2.1.1 (Raychaudhury and
Nandy 1999).

15 T T T T T T
C
1k o
05 | .
G
0
A
05} -
-1 g
T
15 L L 1 I L ]
3 2 -1 0 1 2 3

Fig. 9.1 Nandy plot of ATGAACACTC
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Table 9.1 The co-ordinates,

Coordinates Centre of mass
the centre of mass of all the Base X v
points, and the graph radius gg Ex Ey £r
of the sequence as per Nandy A -1 0 -1.9 0.2 1.91
rectangular plot T -1 -1
G 0 —1
A -1 -1
A -2 -1
C -2 0
A -3 0
C -3 1
T -3 0
C -3 1
T 3
ot
C
1}
0
.1 s
G 2l
-3 L L X 3 .
A 0 1 2 3 4 5 6 7

Fig. 9.2 Yau plot coordinate system and the graph of the sample sequence ATGAACACTC

Yau Plot

Although the 2D rectangular plots use a simple technique to easily visualise the
sequence, it involves visual degeneracy that leads to an apparent loss of genetic
information where repeated sequences, such as GAGAGAGAGAG, show
overlapping paths. To overcome this, several authors proposed different modifica-
tions to the method which would reduce degeneracy (see review Nandy et al. 2006).
Yau et al. (2003) proposed using two quadrants instead of four; cytosine (C) and
thymine (T) are assigned to the first quadrant and adenine (A) and guanine (G) to the
second quadrant, with the coordinates of the four bases defined as (1/2, —v/3/2)
for A, (V3/2,-1/2) for G, (v/3/2,1/2) for C and (1/2,+/3/2) for T (Fig. 9.2).
While they did not prescribe a precise method for computing descriptors for the
plots arising from their graphical method, we can, analogously to the Raychaudhury
and Nandy (1999) method, define a centre of mass and a graph radius as descriptors.
The results for our sequence in the Yau et al. (2006) plot are given in Table 9.2.
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Table 9.2 The co-ordinates, Coordinates Centre of mass
centre of mass of.all points Base X Y " " .
and the graph radius as per the X Yy
Yau et al plot A 0.5 —0.866 3.372 —1.336 3.627
T 1 0
G 1.866 —0.5
A 2.366 —1.366
A 2.866 —2.232
C 3.732 —1.732
A 4.232 —2.598
C 5.098 —2.098
T 5.598 —1.232
C 6.464 —0.732

Fig. 9.3 Randic 2D plot for
the sequence
ATGAACACTC

Randic 2D Plot

There are many 2D approaches which do not involve the Cartesian coordinate
system to represent nucleic acid sequence. Randic et al. (2003) proposed four
horizontal equidistant parallel lines labelled as A, T, G and C from top to bottom.
To plot the nucleic acid sequence, the bases are labelled along the x-axis, and straight
lines are drawn from individual points on the four parallel lines according to the
bases occurring in the sequence (Fig. 9.3).

A matrix method is used for determining a descriptor by constructing an M/M
matrix for the given sequence ATGAACACTC. The off-diagonal entries of the M/M
matrix are determined by dividing the Euclidean distance between two vertices of the
zigzag curve by the graph-theoretical distance, i.e. the number of edges, between the
two vertices. Here, if we take the first base A and the sixth base C of our sequence as
an example, then the corresponding matrix element is obtained by taking the ratio of
Euclidian distance between the first base (A) and the sixth base (C), i.e. v/34, to the
number of edges between A and C, which is 5 here. Proceeding in this way, we
obtain the M/M matrix elements as shown below and the leading eigenvalue as the
descriptor of the sequence (Tables 9.3, 9.4 and 9.5).

The leading eigenvalue in this case turns out to be 12.2388.
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Table 9.3 The Dg matrix in Randic 2D model

A |T G A A C A C T C
A |0 [1.4142 |2.8284 |3 4 5.831 6 7.6158 |8.0623 |9.4868
T 0 14142 2.2361 |3.1623 |4.4721 |5.099 6.3246 |7 8.2462
G 0 2.2361 |2.8284 |[3.1623 [4.4721 |5.099 6.0828 |7.0712
A 0 1 3.6056 |3 5 5.099 6.7082
A 0 3.1623 |2 42426 |4.1231 |5.831
C 0 3.1623 |2 3.6056 |4
A 0 3.1623 | 2.2361 |4.2426
C 0 2.2361 |2
T 0 2.2361
C 0
Table 9.4 The Dg matrix in A T G A A C A C T C
Randic 2D model A 0 1 > 3 ) 5 6 7 3 9
T 0 1 2 3 4 5 6 7 8
G 0 1 2 3 4 5 6 7
A 0 1 2 3 4 5 6
A 0 1 2 3 4 5
C 0 1 2 3 4
A 0 1 2 3
C 0 1 2
T 0 1
C 0
Table 9.5 The M/M matrix in Randic 2D model
A |T G A A C A C T C
A |0 [1.4142 |1.4142 |1.0000 |1.0000 |1.1662 |1.0000 |1.0880 |1.0078 |1.0541
T 0 14142 |1.1181 |1.0541 |1.1180 |1.0198 |1.0541 |1.0000 |1.0308
G 0 2.2361 |1.4142 |1.0541 |1.1180 |1.0198 |1.0138 |1.0102
A 0 1.0000 |1.8028 |1.0000 |1.2500 |1.0198 |1.1180
A 0 3.1623 | 1.0000 |1.4142 |1.0308 |1.1662
C 0 3.1623 | 1.0000 |1.2019 | 1.0000
A 0 3.1623 | 1.1181 |1.4142
C 0 2.2361 | 1.0000
T 0 2.2361
C 0

Song-Tang Plot

In a slight variation, Song and Tang (2005) proposed a three-horizontal line method
where the central line represents two bases and the two peripheral lines denote each
of the remaining bases. Counting of the nucleotides is done along the x-axis, and the
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Fig. 9.4 One plot as per A
Song and Tang’s

representation of the

sequence ATGAACACTC

CT

bases are plotted and connected by straight lines as in the case of the Randic 2D plot.
In the case of DNA primary sequences, the four bases A, C, G and T can be grouped
as per their characteristics:

e Purine R = (A, G) and pyrimidine Y = (C, T)
¢ Amino M = (A, C) and keto K = (G, T)
* Weak H-bond W = (A, T) and strong H-bond S = (C, G)

Keeping one of such groups, such as purine, as central line, and cytosine (C) and
thymine (T) as the peripheral lines, we can plot a graph. Repeating the same process
for the other groups, we get a total of six (*C,) combinations of plots. For each of
them, the two peripheral lines can also be exchanged. In total, 12 (6 2) plots can be
obtained.

In one such graph, where cytosine (C) and thymine (T) are assigned to the central
line, adenine (A) to the uppermost line and guanine (G) to the lowermost line, the
plot for the sequence ATGAACACTC is shown in Fig. 9.4.

Here, the matrix elements and the descriptor are obtained by using the Randic 2D
approach as discussed earlier. Like in the Randic 2D plot, two new matrix relations,
as defined below, M/M and L/L, are constructed. The leading eigenvalues are
calculated from the M/M and L/L matrices which form descriptors of the
corresponding DNA sequence. The matrix elements are formed as follows:

(ED); = \/(xi _xj)z + (o _yj)2
(M/M)ij = (ED)ij/<GD)iji #J

(M/M)ij =0
(PD)‘i = (PD)ij = (ED)ii+l + (ED)i+],i+2 +...,+ (ED)j—l,ji <j
(L/L ij — (ED)ij/(PD)ij i #]
(L/L)ij =0

where ED, GD and PD are the Euclidian distance matrix, graph-theoretical distance
matrix and path distance matrix, respectively (Tables 9.6 and 9.7).
The leading eigenvalue value in this case turns out to be 10.0552.
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Table 9.6 M/M matrix

A |T G A A C A C T C
A |0 |1.4142 |1.4142 |1.0000 |1.0000 |1.0200 |1.0000 |1.0102 |1.0078 1.0062
T 0 1.4142 |1.1180 |1.1180 |1.0000 |1.0200 |1.0000 |1.0000 |1.0000
G 0 22361 |1.4142 |1.0541 |1.1180 |1.0200 |1.0138 1.0102
A 0 1.0000 |1.1180 |1.0000 |1.0308 |1.02000 |1.0138
A 0 1.4142 | 1.0000 |1.0541 |1.0308 1.0200
C 0 1.4142 | 1.0000 |1.0000 | 1.0000
A 0 1.4142 |1.1180 |1.0541
C 0 1.0000 | 1.0000
T 0 1.0000
C 0

Table 9.7 L/L matrix

A |T |G A A C A C T C
A |0 |1 |1.2649 |0.6708 |0.7310 |0.7405 |0.6161 |0.7278 |0.7524 |0.7729
T 0 |1 0.6125 |0.6800 |0.7898 |0.7870 |0.7601 |0.7871 |0.8086
G 0 1 0.8740 |0.6800 |0.7374 |0.6818 |0.7174 |0.7460
A 0 1 0.9262 |0.7836 |0.7864 |0.8168 |0.8398
A 0 1 0.7071 ]0.7453 |0.7864 |0.8168
C 0 1 0.7071 |0.7836 |0.8284
A 0 1 0.9262 |0.9262
C 0 1 1
T 0 1
C 0

In this method the leading eigenvalues of M/M and L/L matrices are used as DNA
descriptors. These numerical parameters will facilitate the comparison of two DNA
sequences. A vector can be constructed to characterise a DNA sequence from these
data obtained from different characteristic curves. For example, if we consider only
L/L matrix and since two symmetrical characteristic curves have the same L/L
matrices, we can construct a six-component vector as a DNA descriptor by using
the leading eigenvalues of these matrices associated with six characteristic curves.

Wang-Zhang Plot

In the Wang-Zhang method (Wang and Zhang 2006), there are three configurations,
namely, non-A, non-C and non-G. A binary method is employed where the presence
or absence of bases in the sequence is assigned 0 and 1 according to the specific
configuration, for example, O for A and 1 for the others if it is a non-A plot. A similar
protocol is implemented for the non-C and non-G plots. The graphs for the sequence
ATGAACACTC are shown in Fig. 9.5a—c.
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Fig. 9.5 (a) Non-A, (b) non-C and (c) non-G

Table 9.8 The co-ordinates Coordinates
and the leading eigenvalues Base |Non-A |Non-C |Non-G Leading eigenvalues
calculated as per the Wang-
Zhang model A 0 1 1 Non-A = 0.3201
T 1 1 1 Non-C = 2.1605
G 1 1 0 Non-G = 4.1949
A 0 1 1
A 0 1 1
C 1 0 1
A 0 1 1
C 1 0 1
T 1 1 1
C 1 0 1

In this model, the L/L matrices are constructed first from the three 2D graphs
shown in Fig. 9.5 as a typical example to characterise the DNA sequence. Then the
eigenvalues are computed from the matrices, and lastly, Ao, are calculated which
i Ayon.ny = maxeig (maximal eigenvalue) + mineig (minimal eigenvalue), where
N = A, G, C. Proceeding in the same way, we obtain Table 9.8 for our sequence
ATGAACACTC with the leading eigenvalues tabulated.

Yu-Hua Yao, Xu-Ying Nan and Tian-Ming Wang Plot

Yao et al. (2006) proposed a new 2D graphical representation of sequences, grouped
as defined in section “Song-Tang plot”, viz. W-S, M-K and R-Y. Here, we have
plotted our sequence ATGAACACTC based on their system where the coordinates
for the three curves are:
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Fig. 9.6 (a) W-S curve, (b) M-K curve, (c) R-Y curve
Table 9.9 W-S curve Coordinates Centre of mass
Base X Y Ly Hy gr
A 0 1 1.7 3.8 4.1639
T 0 2
G 1 2
A 1 3
A 1 4
C 2 4
A 2 5
C 3 5
T 3 6
C 4 6

The value of p for W-S curve = 1.4849

x:G,-JrCl-
W—Scurve{yAiJrTi
x=G;+T;
M—Kcurve{y:AH_Ci
x:Cj+Ti
R—Ycurve{y:AH_Gi

The degeneracy is completely avoided in such representations. For our sample

sequence, we get the plots as shown in Fig. 9.6a—c.

In this method, two sets of DNA descriptors are obtained. One is graph radius,
subtending an angle @ with the x-axis, and the other is relative departure p which
represents the difference between contents of bases of strong H-bonds and weak
H-bonds in DNA sequence. Taking W-S curve as an example, the bisector is 50%(A,
T)—50%S(G, C) line. A mean distance between the points in the DNA curve and this
bisector is the new descriptor (Tables 9.9, 9.10 and 9.11):
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Table 9.10 M-K curve

Base Coordinates Centre of mass
X Y Hx My 2R

A 0 1 1.9 3.6 4.0706
T 1 1

G 2 1

A 2 2

A 2 3

C 2 4

A 2 5

C 2 6

T 3 6

C 3 7

The value of p for M-K curve = 1.3435

Table 9.11 R-Y curve Coordinates Centre of mass

Hx Hy Zr
2.0 35 4.0311

jor}
1)
@
[¢]

SRR R RV N I N N e S e oY

a3 alz» Q>
N N N e e I I R Y

W
W

The value of p for R-Y curve = 1.0607

p=1/NYV 1\/ —i/2)* + (i — i/2)
= \/E/ZNZztl i — il
= V22NN VA +Ti) = (G + C)

Li and Ji TB Curve

In the 2D graphical method reported by Ji and Li (2006), let X=X X>. . .X,, be a DNA
primary sequence with n bases, and define a homomorphic map ¢; by
P1X) = p1(XD@1(X2). . .p1(X,) as:
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Fig. 9.7 (a) R-Y curve, (b) M-K curve, (¢c) W-S curve

Table 9.12 ED matrix

A T |G A A C A C T C
A |0 1 1 2 3 14142 |4 22360 |3.1622 |4.1231
T 0 |1.4142 |2.2360 |3.1622 |1 4.1231 |2 3 4
G 0 1 2 1 3 1.4142 |2.2360 |3.1622
A 0 1 14142 |2 1 1.4142 |2.2360
A 0 22360 |1 14142 |1 1.4142
C 0 22360 |1 2 3
A 0 22360 |1.4142
C 0 1 2
T 0 1
C 0
I(1,R) if X;eR
o1 (X) = {0(0, Y,)ifXieY
where (i =1,2,...,n)

where R; (Y;) is the cumulative occurrence of the numbers of bases € R(Y) in the first
i bases. The DNA sequence is mapped into a series of nodes P;s. Connecting the
adjacent nodes, an R-Y curve is obtained. In a similar fashion, the other two maps are
defined, and the M-K and W-S-TB curves for the sequence ATGAACACTC are
obtained (Fig. 9.7a—c).

Here, three matrices, namely, ED matrix, M/M matrix and L/L matrix, are formed
as before from which the leading eigenvalues are calculated. These are the descrip-
tors of the corresponding DNA sequence. The formation of the matrix elements has
already been discussed in section “Song-Tang plot” (Tables 9.12, 9.13 and 9.14).
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Table 9.13 M/M matrix

A. Nandy et al.

A T |G A A C A C T C
A |0 |1 05000 [0.6667 |0.7500 |0.2828 |0.6667 |0.3194 |0.3953 |0.4581
T 0 [0.7071 |0.7453 |1.0541 |0.2000 |0.6872 |0.2857 |0.3750 |0.4444
G 0 0.3333 | 0.6667 |0.2000 |0.5000 |0.2020 |0.2795 |0.3514
A 0 0.3333 |0.2828 |0.3333 |0.1429 |0.1768 |0.2484
A 0 0.4472 ]0.1667 |0.2020 |0.1250 |0.1571
C 0 0.3727 ]0.1429 |0.2500 |0.3333
A 0 0.3194 |0.1768 |0.1111
C 0 0.1250 |0.2222
T 0 0.1111
C 0
Table 9.14 L/L matrix

A T |G A A C A C T C
A |0 |1 |04142 |0.5858 |0.6797 |0.2127 |0.4076 |0.1856 |0.2433 |0.2935
T 0 |1 04142 10.7144 |0.1770 |0.4679 [0.1810 |0.2490 | 0.3065
G 0 1 1 0.2361 |0.4055 |0.1468 |0.2103 |0.2718
A 0 1 0.4370 [0.3126 |0.1158 |0.1468 |0.2103
A 0 1 0.1852 [0.1852 |0.1158 |0.1468
C 0 1 0.1852 ]0.3125 |0.4055
A 0 1 0.4370 |0.2361
C 0 1 1
T 0 1
C 0

Zhao, Qi and Yang 2D Plot (Based on Nucleotide Triplets)

Zhao et al. (2015) proposed a 2D graphical representation method on the basis of
nucleotide triplets (codons), as opposed to individual bases, in the DNA coding
sequence strand. There are 64 codons including the 3 termination codons. Let
S = s5155. . .5, represent a random DNA sequence. On the basis of standard genetic
codes, each codon in the sequence can be defined with the aid of a mapping ¢:
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¢( Si5i+lsi+2)

where i = i

)if sisit15i42
)if sisip18i42 =
)lf SiSit18i42 =
)lf SiSi+18i+2 =
)lf SiSi+15i+2 =
)
)i
)i
)i
)if

if 5i8i118140 =

if SiSit18i42 =
if 5i8i118i12 =
if 5i8i118i12 =
if sisir18i12 =
if SiSi+18i+2 =
if s; iSi+18i+2 =
lf SiSip18i42 =

159

= TAA, TAG, TGA

ATG
GCT, GCC, GCA, GCG
CGT, CGC, CGA, CGG, AGA, AGG
AAT, AAC
GAT, GAC
= TGT, TGC
= CAA,CAG
= GAA,GAG
= GGT, GGC, GGA, GGG
= ATT, ATC, ATA
= CAT,CAC
=TTA, TTG, CTT, CTC, CTA, CTG
AAA, AAG
TTT, TTC
CCT,CCC.CCA, CCG
TCT, TCC, TCA, TCG, AGT, AGC
ACT, ACC, ACA, ACG
TGG
TAT, TAC
= GTT, GTC, GTA, GTG

" is the base of sequence S. Applying this technique to our sequence

ATGAACACTC, the resulting plot setis {(1, 1), (2, 0), (3, 8), (4, 4), (5, 17), (6, 11),
(7,17), (8, 12)}, which gives a 2, curve termed as the considering codon degeneracy
curve or CCD curve (Fig. 9.8).

Here the CCD curve is associated with a 21-dimensional characteristic vector V.

20

15 |

Fig. 9.8 CCD curve of the sequence ATGAACACTC using the method proposed by Zhao et al.

(2015)
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vo =0,
vi=1+41+4-+1,
———

n
Vo =2424-42, ...,
——

ny
V20=20+20+"'+2
—_—

nao

V= (VQ,Vl,...,Vzo)

where the parameters n, n,, ..., nyy indicate the sequential trinucleotides of the
mapping ¢, respectively. For example, for the formula:

=242+ 42
—_———

n

v, is the summation of the y-coordinate in the CCD curve which equals to 2. The n,
denotes the number of the trinucleotides, GCT, GCC, GCA and GCG. Extending the
characteristic vector V, they propose two characteristic vectors V, and V,, for an
evolutionary distance computing scheme whose formula is:

1= VoV /I Vall [[Vsl|

2
= ) x w0/ S () X T2 ()
N 2

D(V,,V,) =

The distance of two CCD curves is represented by the distance D(V,, V,,) of two
vectors, V, and V,,, which can be used to quantify the evolutionary distance between
sequences S, and S;,. The two DNA sequences would be relatively similar if the D
(V,, V) was small. The smaller the distance, the more similar (relatively) are the two
sequences.

For our sample sequence ATGAACACTC, the descriptor, vector V,, can be
defined as:

v, =(0,1,0,0,4,0,0,0,8,0,0,11,12,0,0,0,0,17,0,0,0,0),
whereas, for another sequence, ATGGTGCACC, the descriptor, V, is:
Vv, =1(0,1,2,0,0,0,6,0,0,9,0,11,0,0,0,0,0,17,18,0,20)
The distance can then be computed as:
D(V,,V,) = 0.26995

The small distance value implies that the two sequences are relatively similar.
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Fig. 9.9 3D plot as per -4
Randic et al.’s

representation of the

sequence ATGAACACTC

-2
Y-axis

-1

2 X-axis
e -

Z-axis

9.2.2.2 3D Graphical Representations
Randic 3D Plot

The 3D graphical representation of DNA sequence was proposed by Randic et al.
(2000). They associated the 2D method with a 3D graph by assigning each of the four
bases to the corners of a tetrahedron where the points are as follows: (+1, —1, —1)
for A, (—1, +1, —1) for G, (-1, —1, +1) for C and (+1, +1, +1) for T. The graph is
plotted by placing the first base say A (for our mini sequence ATGAACACTC) at
the corner position, i.e. at (+1, —1, —1), and the next base, i.e. T at (2, 0, 0).
Proceeding in this manner, we obtain a plot of the sequence ATGAACACTC as
shown in Fig. 9.9.

In this graphical plot of our mini sequence ATGAACACTC, a Dg/Dg matrix
(from the Euclidean pairwise distance matrix Dg and a pairwise graph-theoretical
distance matrix Dg of all the points on the graph) is constructed from which the
leading eigenvalues are calculated to evaluate the descriptor of the sequence. In the
following table, the coordinates of the bases of the sequence and the elements of the
Dg/Dg matrix constructed from these coordinates are shown. Each matrix element is
calculated as follows: Taking the (1,6) element, i.e. the first base A to the sixth base
C as an example, the Euclidian distance is calculated from the coordinates shown in
Table 9.15 and is divided by the minimum distance between two consecutive points
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Table 9.15 The co-ordinates

) Coordinates

as per Randic 3D plot Base X % 7z
A 1 -1 -1
T 2 0 0
G 1 1 —1
A 2 0 -2
A 3 -1 -3
C 2 -2 -2
A 3 -3 -3
C 2 —4 -2
T 3 -3 —1
C 2 —4 0

Table 9.16 Dg/Dg matrix in Randic 3D model

A |T |G A A C A C T C

A |0 |1 |05774 |0.3333 |0.4082 |0.2000 |0.3333 |0.2736 |0.2041 |0.2128

T 0 |1 0.5774 |0.6383 |0.4083 |0.5033 |0.4303 |0.2736 |0.2887

G 0 1 1.000 0.6383 |0.2000 |0.6000 |0.4303 |0.4286

A 0 1 0.5774 |0.6383 |0.5774 |0.3830 |0.4303

A 0 1 0.5774 ]0.6383 |0.4082 |0.5033

C 0 1 0.5774 ]0.3333 | 0.4082

A 0 1 0.5774 |0.6382

C 0 1 0.5774

T 0 1

C 0

which is V3. The division by the minimum distance is performed in order to
normalise the distance scale, so that the Euclidian distance between adjacent vertices
equals 1 and not V3 (due to taking the side of the cube to be 1). Now this value is
divided by the number of edges before the sixth base, i.e. 5 here. Thus, the value
obtained is = (V3/¥3)/5 = 0.200 (Table 9.16).

The descriptor value, i.e. the leading eigenvalue, in the Randic 3D model for this
sequence is 5.38566.

Li et al. 3D Plot

A novel 3D representation of DNA sequences was proposed by Li et al. (2016). If the
bases are represented by a set {A, G, C, T}, they graphically characterised a
sequence in terms of nucleotide pairs by taking two combinations of the set in
terms of a multiset {oco. A, 0o. G, co. C, 00. T}. The possible number of such pairs
can be ten (Table 9.17).

Let V be a tetrahedron with its centre represented by O(0, 0, 0). The bases A, C, G
and T are plotted at the vertices V;(1,1,1), Vo(—1, —1, 1), V31, —1, —1)
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Table 9.17 Two Bases A G C T
combinations of multiset
{00. A, 0. G, 0. C,00. T} A (A, A) (A, G} (A, C} {A, T}
G {G, G} {G, C} {G, T}
C {C,C} {C, T}
T (T, T}
Table 9.18 The co-ordinates pgin¢ Dinucleotide X Y 7
of the Li et al 3D plot 1 AT 0 1 0
2 TG 0 1 —1
3 GA 1 1 —1
4 AA 1.5774 1.5774 —0.4226
5 AC 1.5774 1.5774 0.5774
6 CA 1.5774 1.5774 1.5774
7 AC 1.5774 1.5774 2.5774
8 CT 0.5774 1.5774 2.5774
9 TC —0.4226 1.5774 2.5774
and V4(—1, 1, — 1), respectively. For all the line segments formed between each

pair of vertices, a midpoint is regarded as follows:

* M is the midpoint of AC.
* K is the midpoint of GT.
* R is the midpoint of AG.
e Y is the midpoint of CT.
* Wis the midpoint of AT.
e S is the midpoint of CG.

Ten directions —, —», —», —», —, —», —, —, — , — are obtained from
0A’ oCc’ oG’ orT’ oM’ OK’ OR’ 0Y OW’ 0S

which ten-unit vectors are produced as:

— andsoon.

R —
OA

}’C:—>/ oc

rA:—)/ oc

OA

They associated each of the two combinations with the ten-unit vectors as:

{A,A} — VA,{A,G} < IR, {A,C} — rM,{A,T} — TIw,
{G, G} — }”A,{G7 C} — }"S,{G7 T} — rg,
{C, C} — rc,{C, T} — ry,{T7 T} — T

To plot our sequence ATGAACACTC with this method, we take two nucleotides
at a time. Commencing from the origin, we move to the first dinucleotide AT, ry, and
arrive at Py, the first point on the 3D curve. Proceeding from P;, we move towards
the dinucleotide TG, rg and reach the second point P,. Progressing in this manner
(Table 9.18), we get the curve as shown in Fig. 9.10.
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1.5

X-axis
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Fig. 9.10 3D dinucleotide plot method of Li et al. of the sequence ATGAACACTC

A common way to find the descriptor of DNA/RNA sequence is to construct a
matrix from which the leading eigenvalue is calculated that serves as a descriptor for
that sequence. But in this method, a different technique is introduced to calculate the
DNA descriptor which is called ‘piecewise function’. A 3D representation having
n vertices, in order of their appearance in the curve, is partitioned into K parts; each
part is termed as a cell. Therefore, the i cell:

— = X = Xi—1,Y; — Vi—1») & — i1
UU (x; i—1,Yi = Yi—1,%i i-1)

where Uy = (0,0, 0)
A DNA sequence can be numerically characterised by a 3K dimension vector V,,:

Vip = (X1 — X0,%2 — X1, .., Xk — X1,
Y1 = Yo Y2 = V1o -+ 5 Yk — Yi—1>
21 —20,22 —2y--+5%k —Zk—l)

which in the case of our sample sequence will be:
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Vi = (0,1,0.5774,0,0,0, 1, —1,
0,0,0.5774,0,0,0,0,0,
~1,0,0.5774,1,1,1,0,0)

Now, for any two sequences S, Sy, if their descriptor values are a = (a;,ay, . . ., azx)
and b = (by, by, ..., bsg),respectively, their similarity can be calculated by the
Euclidean distance given by:

whereby, the smaller the d(a, b), the more similar are the two DNA sequences.

9.2.2.3 Comparative Study of Results from Different Graphical
Methods

The following table contains the list of values of the descriptors prescribed for each
of the methods described above for comparative study based on the coding
sequences of four human globin genes. Some of the result sets had to be trimmed
to accommodate in the list. Brief descriptions are given below for the results listed of
some of the methods to understand the computation.

Yao-Nan-Wang plot (section “Yu-Hua Yao, Xu-Ying Nan and Tian-Ming Wang
plot”): Three curves had been proposed as part of this method (i.e. RY, MK and
WS). Ideally each curve is described by a 3D vector (of 0, gg and p), among
which only the results for the WS curve have been listed.

Li-Ji plot (section “Li and Ji TB curve”): The method proposes three curves the same
as in Yao-Nan-Wang one. Only the leading eigenvalues for the L/L matrices
corresponding to the RY family are shown in here.

Zhao-Qi-Yang plot (section “Zhao Qi Yang 2D plot (based on nucleotide triplets)”):
The method proposes a 21-dimensional vector, of which the Oth set, given no
weight, always ends up with a value of zero. Thus, it can be considered as a
20-dimensional vector, effectively. Values for only positions 1st, 2nd, 19th and
20th are listed for representational purpose.

Li et al. plot (section “Li et al. 3D plot”): This method prescribes a unique descriptor
using ‘piecewise function’. It depends mainly on the average number of bases per
sequence in a given dataset (in our case, this is 440.25) and a factor ‘k’ (loga-
rithmically dependent on the aforementioned ‘average’ factor, which is ~4 in our
case,). As per the proposed representation, the length of the representative vectors
for our dataset would have been 12 for each sequence. Hence, for the sake of
simplicity and a biting space crunch in hand, we did away with the critical
representation and presented the endpoints of the prescribed 3D curve as a
numerical descriptor for each sequence instead (Table 9.19).
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9.2.3 Graphical Representation and Numerical
Characterisation Methods for Protein Sequences

9.2.3.1 Introduction

Graphical representation schemes for protein sequences came about as a natural
consequence of the development and applications of graphical representations of
nucleotide sequences. In contrast to that of nucleic acid sequences, graphical repre-
sentation of protein sequences is complicated, given there are 20 amino acid residues
as the basic units of proteins, while nucleic acids can be defined by only 4 bases.
Initial efforts were made to portray the amino acids in terms of four properties so
they could be represented in a 2D coordinate system like for the DNA sequences and
later extended to multidimensional representations (see review Randic et al. 2011).
We proceeded to simplify the representation intuitively by projecting the primary
sequence in a 20-dimensional Euclidean space which can be used to understand the
phylogenetic relationship, provide mutational insight and identify conserved regions
for groups of proteins. We briefly mention just this one method in this chapter on
nucleic acid research for completeness.

9.2.3.2 Design of the 20D Graphical Representation Algorithm

A 20-dimensional Cartesian coordinate system is used to model the protein
sequences. The 20 amino acids are assigned to 20 axes in the Cartesian framework
(Nandy et al. 2009); all the axes are equivalent, and the choice of association of
amino acids with the axes can be made arbitrarily but once made will remain
constant for the duration of the exercise. The computation starts from the origin
and moves a step in the appropriate axis direction for the first amino acid in the
sequence, another step in the respective axial direction for the next amino acid in the
sequence and so on. Tracing the path for the occurrences of all the amino acids in the
sequence in order results in a series of points in the abstract 20D space generating a
20D curve. An index for the protein sequence can be considered as a vector from the
origin of the coordinate system to the endpoint of the graph. In order to eliminate the
disadvantage that different distributions of the residues with the same composition in
the sequences will lead to degeneracy in these vectors, the algorithm is designed to
choose the characteristics of a sequence by a weighted centre of mass approach, first
used for DNA sequence (Raychaudhury and Nandy 1999) and defined by:

> x > x > X0

1 = N sHUy = N e sHoo = N
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where the x/s are the coordinate values of each point on the curve and N, a
normalisation factor for the y;s, is the number of amino acids in the protein sequence.
Using these weighted averages, a protein graph vector p_,; (W1y Hoy M3y e eeeenen s H20)
and a protein graph radius py can be obtained:

Identical protein sequences have the same pg values, which change with any
alteration in the amino acid composition and distribution in the sequence. Apg is
used to compare the differences between two protein sequences quantitatively as the
Euclidean distance between two protein graph radii:

8= {0 =)+ =) (20 = 1)’}

For multiple sequences, this method allows the comparison of pairwise differ-
ences, irrespective of sequence lengths. Thus, it can generate a distance matrix that
could be used to construct phylogenetic trees, the advantage being that it does not
require any multiple sequence alignments nor make any other model-dependent
assumptions (Nandy 2009).

The 20D algorithms have been applied in phylogenetic analysis (Nandy 2009),
mutational analysis of protein sequences on conserved surface accessible regions
and drug target finding in influenza neuraminidase (Ghosh et al. 2010), rotavirus
VP7 (Ghosh et al. 2012), Zika virus (Dey et al. 2017a) and others (Dey et al. 2016).

9.3 Applications of the New Methodology

We have briefly recounted in the introduction the various applications that have been
made of alignment-free comparisons of DNA/RNA/protein sequences using the new
methodology of graphical representation and numerical characterisation techniques.
An area of particular concern that has seen many applications has been viral
pandemics; specifically, in the twenty-first century, successive waves of epidemics
and pandemics have swept across the globe starting with SARS (severe acute
respiratory syndrome) pandemic of 2002-2003 that killed over 8000 people, the
swine flu of 2009 (>100,000 deaths), the Ebola epidemic of 2014-2016 in West
Africa (over 15,000 deaths) and the Zika virus pandemic that struck the Americas in
2015-2017 (>200,000 deaths). Understanding the characteristics of the viral spread
and genetics would thus appear of urgent necessity. In this section we concentrate on
the influenza pandemics as one of the most virulent killer diseases and summarise
some of the specific applications of graphical representation methods to understand
the character of the influenza virus, especially in relation to the pandemic varieties.
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9.3.1 A Brief History of Flu Epidemiology

Viral outbreaks and epidemics have been recorded in historical archives from as far
back as 400 BCE (Martin and Martin-Granel 2006). There have been written records
of influenza outbreaks since the fifteenth century. The first cases of influenza in
North America were possibly brought on by the European settlers in the late 1400s.
The sixteenth century witnessed a flu pandemic spread from Russia to Europe via
Africa (Pyle 1986), while England, Ireland and the USA were affected by three
prominent outbreaks in the seventeenth century (Knobler et al. 2005).

The twentieth century saw one of the most horrific viral disasters of any era, viz.
the 1918 ‘Spanish influenza’. This was a type A HIN1 virus that brought about an
onslaught of worldwide pandemic, spreading to far corners of the world, including
the Arctic and isolated islands in the Pacific (Mamelund 2011). By the end of the
pandemic that had come in three waves between 1918 and 1919 (Taubenberger and
Morens 2006), it had reportedly killed 50-100 million people (Patterson and Pyle
1991), mostly affecting the demographic age group of 2040 years (Simonsen et al.
1998). During the peak of the pandemic in USA, more than 100,000 deaths were
occurring in a week (Reid et al. 1999). It is interesting to note that post first infection
wave, herd immunity within the population should have immunologically protected
a second wave of infection in the same year. But on the contrary, the second wave
drastically increased mortality rates. A key enigma, genetically, is the occurrence of
the three infection waves in rapid succession within a period of 6-12 months: the
HINI1 virus had to accumulate immense mutational changes or acquire key genetic
alterations for it to become so fatal so rapidly which normally requires years of
circulation within a population. However, in this case the virulence had increased
over a matter of weeks (Reid et al. 1999).

Pandemics generally spread through trade routes when infected people travel or
migrate from one country to another. The unprecedented proportions at which the
Spanish influenza spread were only possible due to incidental military movements
from one continent to the other for World War I (Erkoreka 2009).

This was followed by two more influenza epidemics in 1957 and 1968. The two
viruses arose by reassortment of human and avian strains. The avian strain was from
wild waterfowl found in Eurasia, and the human strain originated from the HIN1
strain that was already present in the population. It is speculated that the surface
proteins of hemagglutinin and neuraminidase that had adapted to humans were
replaced by those found in the avian strains (Reid et al. 2004). The 1957 epidemic,
‘Asian influenza’, originated in China and resulted in two million deaths caused by
the type A H2N2 virus (Pyle 1986). The Asian flu virus next underwent antigenic
shift to give rise to the H3N2 virus that brought about the 1968 ‘Hong Kong
influenza’ epidemic; in a report one million people died from the viral infection
(Knobler et al. 2005). Towards the end of the century, in 1996, HSN1 virus was
identified in China in geese which subsequently jumped the species barrier to infect
poultry; some humans were incidentally infected in the 1997 wave and caused
serious concern of another pandemic (De Jong et al. 1997). In the next few years,
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the HSN1 avian flu spread across various countries around the world and millions of
wild as well as poultry deaths were seen. Human deaths arising from this avian
influenza through physical contact were recorded globally till early 2014, but till date
no human-to-human transmission has been observed, fortunately.

The twenty-first century saw the most recent influenza pandemic in 2009. The
HIN1(2009)pdm strain, known as the swine flu, started from Mexico and spread
rapidly round the globe, leading to a death toll of 106,000—400,000 (Dawood et al.
2012), before it died down. In 2014-20135, the poultry industry in the USA was faced
by an epidemic of HSN2 bird flu that is believed to have been a reassortment with
Asian H5 and North American N2 proteins, which could mutate to a human-
infecting pandemic although no human infection has been noticed to date (Nandy
and Basak 2015). In 2017-2018, flu season in the USA, an H3N2 type A influenza
epidemic has affected thousands of people and led to the death of around 140 chil-
dren, once again underlining the high pathogenicity of the influenza virus.

9.3.2 Genetics of Influenza Virus

Influenza virus belongs to the Orthomyxoviridae family. They are of four types, A,
B, C and D, referred to as IAV, IBV, ICV and IDV, respectively (CDC 2017a).
Types A, B and C infect humans and a variety of animals, among which type A is the
most virulent. Influenza D virus was identified as recently as 2012. Although, IDV
has been found to infect cattle (Hause et al. 2014; WHO 2018a, b), its detection in
swine has raised the possibility of its spread in other mammals, including humans.
Wild aquatic birds are the natural reservoir of the influenza A virus. The bird flu
scare of around 1997-2005 was noteworthy because of the rapidity with which the
virus spread throughout the globe causing huge fatalities among birds and animals; it
still continues to precipitate frequent outbreaks. Because of the worldwide spread,
virulence and pandemic history, [AV is of primary importance among the four types.
In this chapter, we emphasise only on influenza type A virus except where otherwise
stated.

Influenza is a negative-sense strand RNA virus. It is characterised by a segmented
genome (Bouvier and Palese 2008) where the IAV has 8 segmented genes coding for
11 proteins, as described in Table 9.20. The influenza A virion is roughly spherical in
shape, typically around 100 nanometres wide. It consists of an envelope containing
the two surface proteins, hemagglutinin (HA) and neuraminidase (NA), in the
proportion of 4:1 (Bouvier and Palese 2008). The central hollow core contains the
RNA genome and the other proteins essential for packaging and survival of the
virion.

IAV is categorised into several subtypes based on their surface-exposed proteins
HA and NA, such as HIN1, H3N2 and H5N1, among others. So far, 18 subtypes of
HA and 11 subtypes of NA have been observed on the basis of their antigenicity
(Tong et al. 2013), out of which only a few subtypes are found to infect humans
(Nandy et al. 2014).
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Table 9.20 Gene segments of influenza A virus (A/duck/Vietnam/HU5-1571/2016(H5N1)) and
their encoded proteins. While most proteins are coded by the gene segments, PB2-F1, M2 and NEP
are expressed from spliced RNAs or alternate reading frames. (Based on the table in Bouvier and
Palese 2008)

Gene Protein
length length
Segment | Gene Code | Function of the protein (nt) (aa)
1 Polymerase PB1 | mRNA cap recognition 2280 760
basic subunit
2 Polymerase PB2 | RNA elongation, endonuclease 2274 758
basic subunit activity
PB1- | Pro-apoptotic activity 273 91
F2
3 Polymerase PA Protease activity 2151 712

acidic subunit

Hemagglutinin | HA Receptor binding, fusion activities | 1704 568

5 Nucleoprotein | NP RNA-binding protein, nuclear 1497 499
import regulation

6 Neuraminidase | NA Sialidase activity, virus release 1350 450
7 Matrix protein | M1 vRNP interaction, RNA nuclear 759 252
export regulation, viral budding
M2 Virus uncoating and assembly 294 97
8 Nonstructural | NS1 | Regulation of host gene expression | 678 225
protein NEP/ | Nuclear export of RNA 366 121
NS2

HA mediates entry of the virus in the host cell by binding with terminal sialic acid
residues of the host cell glycoprotein receptors. The HA protein has two subdomains,
HA1 and HA2. HA1 subdomain contains the receptor-binding region and the
antigenic regions where many mutations occur. HA2 subdomain is comparatively
more stable and functions to anchor the protein on the viral envelope. NA mediates
exit of the virus from the host cell by cleaving the terminal sialic acid residues of the
glycoprotein or glycolipid receptors (Chen and Li 2013).

The host cells primarily include epithelial cells of the nose, throat and lungs of
mammals and intestines of birds. Following binding, the viral lipid membrane fuses
with the host cell membrane. The terminal sialic acid residues of the human cell
receptors, where the HA binds, are of two types, a-2-3 linked and a-2-6 linked,
having differential distribution in the lower and upper respiratory tract of humans,
respectively (Kumlin et al. 2008). Distribution of the a-2-3-linked and a-2-6-linked
sialic acid receptors in swine respiratory tract is much more uniform. In contrast,
birds have only a-2-3-linked sialic acid receptor in their respiratory tract. This
atypical distribution of sialic-linked glycoprotein receptors in the animal kingdom
plays a significant role in evolution and dissemination of the virus. In China and the
Far East, where poultry and swine herds are raised in numerous villages and farms,
avian influenza with a-2-3-linked sialic acid receptors can infect swine and develop
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the ability to bind a-2-6-linked sialic acid receptors. This enables the modified virus
to infect humans in the upper respiratory tract and make transmission between
humans easy through sneezing and coughing. The scare with the bird flu, H5SN1,
was for this particular possibility — the virus has a high mortality ratio but to date can
infect humans only through the a-2-3-linked sialic acid receptors. Were it to develop
the ability to bind the a-2-6 linked sialic acid receptors, humans would be suscep-
tible to a pandemic catastrophe.

In another instance, the Spanish flu of 1918, known to be of avian origin
(De 2018), is believed to have mutated to two forms (Reid et al. 2003). During the
pandemic, two strains of HIN1 virus was co-circulating in nature. One strain was
capable of binding a-2-6-linked sialic acid receptors present in the upper respiratory
tract, having mutations at amino acid positions 190 (E190D) and 225 (D225G) in the
HAT1 segment (Reid et al. 2003). The other had the potential to bind both a-2-6- and
a-2-3-linked sialic acid receptors present in the upper respiratory tract and lower
respiratory epithelial cells, with mutation only at amino acid position 190 (E190D) in
the HA1 segment (Reid et al. 2003).

RNA viruses are prone to very high rates of mutation (Barr and Fearns 2010;
Drake 1993). The enzyme required for influenza gene replication in the host cell,
RNA-dependent RNA polymerase, is devoid of any proofreading activity, which
allows mutations during replication to be retained. Mutational changes in IAV are
known to proceed by two well-documented mechanisms, antigenic drift and anti-
genic shift (CDC 2017b). Antigenic drifts arise out of random point mutations. If
they occur in the viral antigenic site, the host cell may lose immunity against the
virus, and the infection-immunity response cycle starts all over again. These drifts
can cause seasonal outbreaks or epidemics, but they are not potent enough to give
rise to pandemics. Antigenic shifts are less recurrent, occurring only when two or
more virus subtypes infect a host cell. As the virus has segmented genome, the
progeny virus may pack genes from different subtypes in a process known as
reassortment. This may give rise to new and unique subtypes, sometimes introducing
novel surface-exposed HA or NA that may predispose the viral host to high degree of
pathogenesis. Antigenic shifts are often the causes of pandemics.

Interestingly, the Spanish flu virus is believed to have had greater than expected
number of silent nucleotide or synonymous mutations (mutations that do not change
the corresponding amino acids) in its genome in comparison with its avian and
mammalian counterparts (Morens et al. 2010) and caused other pandemics through
reassortments: the H2N2 pandemic of 1957, the H3N2 pandemic of 1968 and the
HINI pandemic of 2009. The HSN1 bird flu is believed to have been a reassortment
of genes from a prior HSN1 and a HON2. Similarly, the H7N9 avian flu that struck
China in 2013 (Gao et al. 2013) was a reassorted virus, picking up genes from
multiple hosts like HA genes from H7N3 virus of domestic duck, NA from H7N9
virus of wild migratory birds and six other genes from the HON2 virus of domestic
poultry (CDC 2013; Liu et al. 2013). In 2015, there was an avian epidemic in the
poultry market in the Midwest USA caused by H5N2 virus (Spackman et al. 2016),
another product of reassortment which held possibilities of further reassortants.

There is also a third mechanism by which a virus may mutate to form a new strain.
If a host cell is coinfected by two different strains of the same subtypes, the RNA
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polymerase may jump during replication from one RNA segment to its counterpart
on the other strain at a consensus sequence of the gene referred to as a break point,
continue replication and then revert to the original strain at the next break point. This
phenomenon is termed as copy-choice recombination. This can give rise to progeny
virus having a novel RNA segment not present in either of the infecting strains. We
have also considered the possibility of the natural division of distinct segments of a
gene, such as HA1 and HA2 of HA as break points, a topic we discuss in some detail
later. Recombination in viruses is a controversial subject where the incidence of
recombination through copy-choice method is expected to be below 2% (Hao 2011;
Boni et al. 2012). However, a mechanism where whole segments of a gene are
exchanged between two strains of the same subtype by polymerase jumps has
occurred in about 5% of the cases examined (De and Nandy 2015).

9.3.3 Characterising the Flu Using Graphical Representation
Methods

Quantitative sequence descriptors, like the gz of the 2D rectangular representation,
provide a ready means to follow the progress of typical viral strains across geo-
graphical and temporal domains. To this end we have investigated different aspects
of the influenza virus. Some of these are briefly recounted below to indicate to the
interested reader how such studies can be actually done.

Considering the high morbidity and mortality among the avian population arising
from infections with the HSN1 bird flu virus around the turn of the century and the
serious concern over possible mutagenesis of the strain to a human-to-human-
infecting one, we undertook detailed comparisons of the HSN1 strains’ neuramini-
dase sequences over a 10-year span to determine what changes were taking place
(Nandy et al. 2007). Assuming that mutational changes in the sequences will be
quantified by estimates of the graph radii, gg, in a 2D graphical representation model
(Nandy 1994), we assembled a database of 173 neuraminidase sequences for the
years 1996-2005 and computed the average gg values separately over periods when
the flu was highly pathogenic to humans (1996—1997 and 2003-2005) and when less
pathogenic (1998-2002). We found from computations of the g that, e.g. an H5N1
neuraminidase A/Chicken/Hong Kong/220/97(H5N1) had a very close similarity to
another NA sequence from the same year, A/HongKong/156/97(H5N 1), a result that
matched with a conventional phylogenetic study by Suarez et al. (1998), whereas
comparison with A/chicken/China/1/02-(HSN1)NA 5 years later showed that the
two sequences were dissimilar almost seven times as much as the dissimilarity
between the previous two sequences as estimated through Agg. This provides a
descriptor-based insight into how rapidly the virus mutates over the years. A more
detailed analysis with the gz of the individual segments showed that the gz expanded
in the years of high pathogenicity to humans, more so for the period 20032005,
whereas the period of low pathogenicity showed reduced values of gg. This indicates
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arelative increase in the A, T component of the neuraminidase gene sequences in the
pathogenic years, which could be a contributor to the high pathogenicity observed
(Nandy et al. 2007).

A study of mutational changes in influenza strains such as of HSN1, HIN1, etc. is
important for surveillance against the influenza subtypes building up resistance
against the therapeutics and vaccines. Studying a group of 682 strains of the
HS5N1 virus over the years 1997-2008 (Ghosh et al. 2009), we came across an
interesting phenomenon: How far a strain had travelled geographically and tempo-
rally. Considering the property that the same g of two sequences implies very close
similarity of sequences (Nandy and Nandy 2003), we found that identical sequences
have appeared over significant distances in space and time, raising questions about a
virus’ longevity. Based on the statistics, we found it compelling to hypothesise that
virions could probably survive ex vivo (Ghosh et al. 2009, but also see Bean et al.
1982) in dried mud or dirt carried over long distances by wild birds to infect other
birds and poultry in wetlands in distant areas.

The same investigations revealed an interesting facet of mutations through
recombination. The role of recombination in viral sequence changes is hotly debated
(Hao 2011; Boni et al. 2012), the general opinion being that if recombination does
take place in RNA viruses at all through the copy-choice method, it would be below
2%. We enquired into the possibility of another style of recombination, complete
segments of a gene being exchanged through polymerase jumps at the segment
boundaries: the neuraminidase gene with three segments — transmembrane, stalk and
body —is a good example. Taking A/chicken/Afghanistan/1573-65/2006(H5SN1)NA
as a test case (Ghosh et al. 2009) and computing gz values for the three segments
individually, we compared each segment with corresponding segments of a selected
group of HSN1 neuraminidase genes in terms of the g values. We found that the gp
value for the transmembrane segment of this strain was identical, for example, with
the gr value of the transmembrane segment of A/turkey/Islamabad/NARC7873/
2007(HSN1)NA, i.e. they have the exact same sequence, implying a segment
exchange had taken place at some time. Similarly, the stalk segment was found
identical in the test sample and in A/greatcrestedgrebe/Denmark/ 7498/06(H5N1)
NA, and the body was found to have been duplicated in A/turkey/
Islamabad-Pakistan/NARC-7871/02/2007(H5SN1)NA, which  implies  that
recombination-like events through exchanges of individual segments do take place
(Ghosh et al. 2009).

To understand the extent of this phenomenon, we undertook a detailed survey of
the hemagglutinin protein that is comparatively simpler in that it has two segments
designated HA1 and HA2. Our study (De et al. 2016) involved a total of 1274 HA
sequences comprised of HIN1, H3N2, H5SN1 and H7N9 subtypes from Asia over
the period 2010-2014. In this database we searched for sets of three strains where a
HAT1 from one strain and a HA2 from a different strain would combine to form a
third, daughter strain (see schematic, Fig. 9.11). This was easily accomplished by
computing gr values for each segment for all the strains and comparing to find
duplicates, with the proviso that the two parental strains were from the same time and
place. We found a total of 73 daughter strains, but, interestingly, there were no
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Fig. 9.11 Schematic of segment-wise recombination hypothesised for hemagglutinin. (Reproduced
from Fig. 2 of De et al. (2016))

exchanges between different subtypes of the hemagglutinin. The daughter strains
comprised 16 out of 427 H1 subtype, 30 of 408 H3 subtype, 20 of 350 HS subtype
and 7 of 89 H7 subtype in our database totalling 5.73% of all the strains in the
database. Extending the analysis to 102 new strains from 2015 yielded another
5 instances of segment-wise recombination-like events. Thus, while the evidence
for copy-choice recombination event mosaic in any gene sequence may not be
readily evident, segment-wise recombination-like events do appear to occur in
around 5% instances.

The two surface proteins, hemagglutinin and neuraminidase, have more in com-
mon: It appears that there is some kind of correlation between the two proteins such
that suppression of the role of one influences changes in the sequence of the other
and that coadaptation between the two was required for initiation of the HINI
pandemic of 2009 (Wei 2010; Wagner et al. 2002; Xu et al. 2012; Hooper and
Bloom 2013). There was also an observation that the influenza over the years had
shown only a few subtypes instead of large numbers possible from the existence of
18 HA and 11 NA subtypes. Clearly, there was some interdependence between the
two proteins, but there was no idea of what and how strong the interdependence
could be. We undertook a study through graphical representation method (Nandy
et al. 2014) and hypothesised a coupling between the HA and NA nucleotide
sequences which could be measured through the gz values. We assumed that sub-
types that exist would have strong coupling and subtypes that are not found in nature
would be weakly coupled, i.e. their interdependence would be weak, and hence those
strains would not survive in nature. Our results (Nandy et al. 2014) amply bore this
out and in fact showed that the couplings were stronger for avian flus compared to
human-infecting flus, which one would have expected since wild birds seem to be
the reservoir of influenza viruses of different kinds. We carried this analysis further
and forecast the effects of possible reassortments of the HSN2 virus affecting poultry
in the USA for therapeutic development and surveillance purposes (Nandy and
Basak 2015).

As is evident from the above applications, gz iS a convenient way to scan
hundreds and thousands of sequences in a short time interval to determine segments
of interest. One particularly important query is identifying conserved segments in
any gene sequence. By scanning the relevant sequences through a window of the
appropriate size and determining the number of instances where the gz values remain
identical, the best conserved segments of a gene sequence can be identified.
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Correspondingly, taking the protein sequence and computing the py values in the
20D model (see Sect. 9.2.3.2), the conserved domains in the protein can be identi-
fied. These techniques are an important tool in rational design of peptide vaccines
where we may target those peptides that are conserved and have the capability of
appropriate immune response to be the basis for vaccines that can outlive several
generations of mutational changes. We had followed this procedure to identify best
target sites in the NA of HSN1 (Ghosh et al. 2010) and the HA of H7N9 (Sarkar et al.
2015) influenza subtypes. Analyses for these targets are described briefly in the next
section.

9.3.4 Drugs and Vaccines Against the Flu and Vaccine
Design by Graphical Method

As in the case of most RNA viruses, drugs and vaccines against the influenza virus
also face rapid obsolescence due to the high level of mutational changes. There have
been several drugs that have been developed against the influenza, but only one
remains effective at this time, while vaccines have to be changed every year.

Drugs used in influenza treatment globally belong to two groups having distinc-
tive pharmacological attributes: M2 ion channel blockers and NA (neuraminidase)
inhibitors (Stiver 2003). M2 protein forms a small proton channel across the viral
envelope and mediates pH levels across viral membrane during cell entry and
progeny maturation (Pielak and Chou 2011). It is vital for viral replication, and
drugs amantadine and rimantadine were developed to block its function but has since
been withdrawn because mutational changes in the prevailing influenzas have
rendered them resistant to these drugs (CDC 2011). Present drugs available in the
market are neuraminidase inhibitors are peramivir (trade name Rapivab), zanamivir
(trade name Relenza) and oseltamivir (trade name Tamiflu). The neuraminidase
inhibitors act both against IAV and IBV. However, according to the World Health
Organisation (WHO), there is widespread resistance against oseltamivir globally
(WHO 2009).

Vaccines that prepare the body’s immune system against foreign pathogens form
an alternative to drugs in the fight against viral diseases. Vaccines may be live-
attenuated, inactivated or recombinant virus-like particle (VLP) type. With influenza
there are so many different strains that finding a traditional vaccine against all types
poses a perennial problem. Based on global surveillance data generated by WHO’s
in-house surveillance system, viz. the Global Influenza Surveillance and Response
System (GISRS), vaccine strains are chosen for every year on the basis of prepon-
derance of viral strains in each hemisphere. At present, for 2017-2018, WHO
recommended four A and B strains, viz. A/Michigan/45/2015 (HIN1) pdm09-like
virus, A/Hong Kong/4801/2014(H3N2)-like virus, B/Brisbane/60/2008-like virus
(Victoria lineage) and B/Phuket/3073-like virus (Yamagata lineage), to be used as
quadrivalent vaccine in the northern hemisphere (WHO 2017). The CDC also
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recommends vaccines for a year based on their assessment of prevailing virus strains
in the previous year. While these do reduce the scope of the infection, in some years
the vaccine is only partly effective as in 2014-2015 season and again in the current
year, i.e. 2017-2018. These are partly due to the continuing mutations in the viral
strains and partly errors in the vaccine as is reported to have happened this year.

It has therefore been a lingering quest to develop a universal flu vaccine that could
act against all strains of the virus all the time. There have been claims off and on of a
universal flu vaccine, but to date no such vaccine has been marketed. We undertook
a graphical and numerical analyses of 514 strains of the HSN1 and 425 strains of the
HINI influenza virus neuraminidase gene and determined six regions which
remained conserved (Ghosh et al. 2010). This was facilitated by our examination
of the graphical representation of the neuraminidase gene sequence which showed a
strongly conserved 50/51 base (17 aa) region near the 3’ end of the gene. When
examined in the 3D crystallographic structure of the protein, this region was seen to
be responsible for the bonding between the adjacent proteins in the neuraminidase
quaternary structure and therefore extremely important for the structure’s stability.
The other regions we identified as being conserved also turned out to be surface
exposed. These observations indicated a possibility, albeit subject to experimental
verification, of designing inhibitors for broad-spectrum pandemic control of flu
viruses with similar NA structure that could remain active for many generations of
mutations of the underlying neuraminidase gene sequences (Ghosh et al. 2010). In
another exercise, we explored the HA protein of H7N9 influenza virus using an
improved protocol since there were concerns that the H7N9 could mutate to a
human-infecting virus. We determined several targets in both the HA1 and HA2
regions of the hemagglutinin that could be used for rational design of peptide
vaccines (Sarkar et al. 2015). It is to be noted that the HA1 of the hemagglutinin is
highly variable, but HA2 is comparatively much more stable and is one of the
targeted regions for a universal flu vaccine.

Another approach has recently been advocated for vaccine development. One of
the disadvantages of current vaccines is their instability and weakness towards
protease activity which mandates additional operational and transport costs; it also
results in reduced biological activity and bioavailability to the immune system. Mile
et al. (2018) constructed a T-cell-restricted IAV synthetic peptide containing
D-amino subunits. D-amino acids are rarely found in nature and are inherently
protected from protease degradation. Peptide was able to elicit an immune response
in mice after oral administration. Such synthetic ‘mimics’ can be a cost-effective
alternative to traditional vaccines.
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9.4 Surveillance of the Flu

9.4.1 Background

With the high rate of mutations in influenza genome along with the high frequency
and intensity of influenza epidemics and pandemics recurring every few years,
surveillance of influenza genomic variations is an important issue for monitoring
its changes and designing drugs and vaccines. Using influenza, hepatitis, poliomy-
elitis and malaria as examples, Alexander Langmuir expounded disease surveillance
as the constant vigilance over the patterns and spread of disease occurrence via
accumulation, integration, assessment and interpretation of data on morbidity and
mortality along with other parameters and relevant information (Langmuir 1963).
The Centers for Disease Control and Prevention (CDC) outlines surveillance to
encompass identification of health problems for surveillance; collection, analysis
and interpretation of data; dissemination of the data and its interpretations; and
evaluation and improvement of surveillance (CDC 2006).

Surveillance of infectious viral diseases necessitates the analysis of antigenic
constitutions of human-infecting viruses, as well as of viruses that belong to the
same group which have not yet escaped their respective sylvatic cycles, in order to
ascertain whether the molecular modifications have significantly altered known
antigenic characteristics (Ghendon 1991). Some of the methods employed in viral
discovery and analysis include tissue culture studies, immunohistochemical assays,
singleplex and multiplex assays, serology and high-throughput sequencing (Lipkin
and Firth 2013). One of the primary applications of disease surveillance and analysis
is in the development of drugs and vaccines. The antigenic differences in the existing
vaccine and the viral strains in circulation call for the synthesis of appropriate
vaccine compositions to establish renewed immunity in the host population against
epidemic- and pandemic-causing viruses (Smith et al. 2004). For surveillance of
influenza, the Influenza Division at CDC collects specimens from over one million
patients USA-wide which then follows a protocol for testing of the patient samples in
various laboratories, followed by gene sequencing on approximately 6000 influenza
viruses annually. Out of the pool of 6000 viruses, antigenic compositions are
analysed in 2000 of them. The hemagglutination inhibition (HI) assay is used to
identify the subtype of the hemagglutinin (HA) gene of a new influenza isolate on the
basis of inhibition of hemagglutination by subtype-specific antibodies (Pedersen
2014). About 50 virus variants are filtered annually for potential vaccine production.

9.4.2 Application of Graphical Representation-Based
Descriptors in Surveillance of Emerging Pathogens

Mathematical model analyses can extend the HI assays by quantitative estimation of
antigenic differences; the results can also be reproduced visually to compare many
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strains at a time and check out significant differences. Examination of a number of
plots of the influenza HSN1 neuraminidase gene in a 2D graphical representation
system (Nandy 1994) led to the discovery of a 50-base segment at the 3’ end that was
very strongly conserved (Nandy et al. 2007) and led eventually to a proposal for
design of a peptide vaccine (Ghosh et al. 2010). This was found to be applicable
across multiple subtypes of influenza, including H5N1, HIN1, H7N1, H9NI,
HION1 and others.

That same work (Nandy et al. 2007) showed another facet of viral surveillance.
As described in some detail in Sect. 9.3.3, for this study 173 strains of the HSN1 of
the period 1996-2005 were grouped on the basis of pathogenic years in the human
population, two denoting periods of human infections and another representing the
absence of human cases. Significant differences in the gz were observed between the
two groups of strains. The observed differences implied that genetic drifts had
occurred among the strains of the two periods with the mutations having led to a
quantitative decrease in the hydrophobicity of the proteins of strains belonging to the
infective period. This paper illustrated that a relatively simple mathematical metric,
Viz. gg, can be related to the location and effects of mutations in RNA, sort through
conserved regions in the RNA, compute similarity between multiple sequences and
thus aid in the surveillance of changes in the viral genomes.

Graphical representation can also help us understand the collected data which
might contain incomplete information and annotation. Partial coding sequences can
be graphically analysed to determine which part of the whole gene it belongs to
through an alignment-free model. The approximate location of the sequence frag-
ment can be determined in the gene by inferences from the nucleotide distribution
pattern and the quantification of the pattern in form of g values. In their study of the
Zika envelope gene, Dey et al. (2017a) evaluated partial CDS fragments and
pinpointed their nucleotide start and end positions within the whole envelope gene
sequence. Moreover, by cross-checking with existing annotated complete gene
sequences, they were also able to identify additional peptide fragments in their
sample sequences which contributed to the genetic differences between sequences
collected from two different locations, Uganda and Brazil.

Extending the feature of determining sequence similarity from gz values, which
directly correlate with the nucleotide distribution in gene sequences, the graphical
method can also be specifically employed to deduce the mixing between viruses
originating from different regions due to homologous recombination. This is signif-
icant in understanding the geographical dispersal and trend of viral strain and
subtype circulation, a key point in surveillance study of disease spread. A study
(De et al. 2016) of the hemagglutinin (HA) gene of HIN1, H5N1, H3N2 and H7N9
subtypes from Asia, spanning the years from 2010 to 2014, showed that there were
homologous recombinations of whole segments between the same subtypes. Some
instances indicated that the parental and progeny strains were from same geographic
regions, while others showed unexpected regional disparity, for example, parental
HINI strains were found to be from Kowloon and Guangdong in China, and the
daughter strain was isolated in Singapore. These genomic trails can be used to glean
movement patterns of pathogenic viruses. In another study (Ghosh et al. 2009), it
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was found that HSNI1 strains in geese from Qinghai, China, were also observed
5000 km away in strains in swans from Southern Russia in 2005; HSN1 strains were
detected in poultry in Turkey that were also observed in chicken in Israel, via the
trade route; and the same H5N1 strain were found in Egypt and Ghana, while HSN1
samples collected in 2006 from ducks in Hunan had the same sequence as found in
human samples isolated from Indonesia.

Another important utility of the graphical representations is inferring the lineage
of the strains. The gz can be used to generate non-alignment-based phylogenetic
trees that can indicate the evolutionary relationships between the viruses (Liao et al.
2005, 2006). Its application has also established new insights about virus families,
exemplified by dengue type 2 virus (DENV2) which belongs to the flavivirus family
along with Zika virus, yellow fever virus, West Nile virus and Japanese encephalitis
virus, among others. The envelope gene sequences of DENV2 greatly deviate from
the other aforementioned flaviviruses in their nucleotide distribution and composi-
tion. This was a new find compared to available literature which has classified
dengue to be similar to the other flavivirus members. The change in their gz values
is significant (Dey et al. 2017b). This type of analytical observation will aid in
surveillance of pathogens for antiviral and vaccine development.

These observations show the role of descriptors gg in the surveillance of viruses.
Earlier in the chapter, we described methods for calculation of other sequence
descriptors. Different descriptors may encode different structural information on
the sequences. So, a collection of sequence descriptors or orthogonal factors like
principal components (PCs) derived from them may be more powerful tools for the
comparison and surveillance of emerging viral pathogenesis. Such a critical analysis
of different methodologies was done by us some time ago (Sen et al. 2016) and will
be further developed and implemented in other areas.

9.4.3 Big Data and Social Networks in Surveillance
Programmes

Dr. Tarun Weeramanthri introduced the term precision public health (Severi et al.
2014) and is now defined as the usage of computational and technological progress
and big data to improve disease surveillance (Dolley 2018). The primary goal of
precision public health is the accuracy involved in gathering data including emerging
pathogens, reactions based on susceptibility and geographical distribution of the
diseases. It makes use of real-time data generated, among other computational
methods, to gather quick observable data. Traditional methods of forecasting influ-
enza trends by CDC usually lag behind real time by 1-2 weeks, whereas information
contained in cloud-based electronic health records and search queries in the Internet
are typically available near real time. Yang et al. (2017) combine these cloud-based
records and Internet searches with historical flu data and use dynamically selected set
of variables to give the best fit in their model for the 2013-2016 flu season. Their
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results correctly estimated the peak timing and magnitude of the studies of flu
season. These kinds of predictive models of influenza activity help public health
officials prepare and allocate resources for possible disease outbreaks.

However, as with any individual’s information, the use of public data calls for
discretion: consent, privacy and security must be upheld and protected. Furthermore,
an application that has come into prominence is the use of millions of data available
from the social media platforms on the World Wide Web. However, the risk of
inaccuracy in predictive analysis based on such data is high. A wide margin of error
is required to compensate for over- or underestimation. Google Flu Trends, which is
the recent surveillance tracking arm of the search engine giant, came into the
spotlight for over-calculating the doctor visits for influenza-like illness than the
reports generated by CDC which relies on records procured from laboratories
(Lazer et al. 2014). The idea was to correlate search criteria with flu incidence and
establish a trend. The initial trials matched 50 million searches with 1152 data points
(Ginsberg et al. 2009) and came out with erroneous results due to certain ad hoc
procedures. Even after corrections to the programmes, GFT persistently
overestimated flu prevalence and has been relegated to the background for now in
favour of more traditional procedures as adopted, for example, by CDC. Ideally,
perhaps a combination of the two approaches could auger for better predictive trend
analyses.

9.4.4 Ethics in Surveillance

With any scientific research, one must take into account the ethical implications of
their work and inferences. A bone of contention in the prevention of spread of avian
influenza and possible epidemics in human population is the recent trend in culling
of poultry birds suspected to be infected by the HSN1 and H7N9 avian flu. The
ethical dilemma arises between the prices of avian life against human population
safety. Furthermore, WHO sheds light on the risks which the healthcare profes-
sionals place themselves in and also illuminates on the extent of travel restrictions
that can be imposed in order to mitigate the spread of disease and the individual
rights to freedom of movement. In 2006, WHO published a manual to integrate
ethics with the influenza pandemic response structure (WHO 2007). The guide
advocates sharing of surveillance information across borders during the pandemic,
as well as prior and post pandemic. Resnik (2013) talks about the dilemma faced
with the morality of dissemination of scientific knowledge, exemplified by the two
censored and redacted papers, authored by Kawaoka and Fouchier Enserink 2012).
Their papers showed the conclusions of genetically inducing mutations in HSN1 that
conferred onto the viruses the ability to transmit through air among ferrets in the
form of respiratory water droplets. The authors asserted that similar conditions
among human populations would produce similar results. The NSABB, National
Science Advisory Board for Biosecurity, allowed revised and heavily edited versions
of the papers to be published in fear of dual-use research concerns (DURC) where
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scientific findings can be used for catastrophic implications. The NSABB, after
much deliberation, recommended the full publication of their work.

9.5 Summary

In this chapter we have outlined powerful and novel alignment-free graphical
representation and numerical characterisation (GRANCH) tools for comparative
analyses of biomolecular sequences. We explained in brief some of the proposals
put forward for graphical representation and numerical characterisation in various
dimensionalities and mentioned some of the many applications done using these
novel, alignment-free approaches. In particular, we concentrated upon several appli-
cations done through the simple and intuitive 2D graphical representation of Nandy
(1994) to give an idea of how these approaches can be utilised to compare and
contrast the several variants of the influenza virus, determine homologous recombi-
nations between strains of the same influenza subtype, identify conserved segments
in influenza gene sequences and design peptide vaccines. We have seen that these
approaches can yield phylogenetic trees to understand the relationships between the
various strains and subtypes and assist in focused surveillance to ensure advance
knowledge of developments that could lead to epidemic and pandemic varieties.
Graphical representation and numerical characterisation thus are very general but
quantitative approaches that can be used to unravel myriad aspects of viral
characteristics.
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