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Breast cancer (BC) is the most prevalent cancer in women worldwide. A systematic
approach to BC treatment, comprising adjuvant and neoadjuvant chemotherapy (NAC),
as well as hormone therapy, forms the foundation of the disease’s therapeutic strategy.
The extracellular matrix (ECM) is a dynamic network that exerts a robust biological effect
on the tumor microenvironment (TME), and it is highly regulated by several immunological
components, such as chemokines and cytokines. It has been established that the ECM
promotes the development of an immunosuppressive TME. Therefore, while analyzing the
ECM of BC, immune-related genes must be considered. In this study, we used
bioinformatic approaches to identify the most valuable ECM-related immune genes. We
used weighted gene co-expression network analysis to identify the immune-related genes
that potentially regulate the ECM and then combined them with the original ECM-related
gene set for further analysis. Least absolute shrinkage and selection operator (LASSO)
regression and SurvivalRandomForest were used to narrow our ECM-related gene list and
establish an ECM index (ECMI) to better delineate the ECM signature. We stratified BC
patients into ECMI high and low groups and evaluated their clinical, biological, and
genomic characteristics. We found that the ECMI is highly correlated with long-term BC
survival. In terms of the biological process, this index is positively associated with the cell
cycle, DNA damage repair, and homologous recombination but negatively with processes
involved in angiogenesis and epithelial–mesenchymal transition. Furthermore, the tumor
mutational burden, copy number variation, and DNA methylation levels were found to be
related to the ECMI. In the Metabric cohort, we demonstrated that hormone therapy is
more effective in patients with a low ECMI. Additionally, differentially expressed genes from
the ECM-related gene list were extracted from patients with a pathologic complete
response (pCR) to NAC and with residual disease (RD) to construct a neural network
org July 2022 | Volume 13 | Article 8883391
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model for predicting the chance of achieving pCR individually. Finally, we performed qRT-
PCR to validate our findings and demonstrate the important role of the gene OGN in
predicting the pCR rate. In conclusion, delineation of the ECM signature with immune-
related genes is anticipated to aid in the prediction of the prognosis of patients with BC
and the benefits of hormone therapy and NAC in BC patients.
Keywords: immune, extracellular matrix, breast cancer, neoadjuvant, immune infiltration, microenvironment,
hormone therapy
INTRODUCTION

According to Global Cancer Observatory (GCO) (https://gco.
iarc.fr/), breast cancer (BC) is the most prevalent cancer in
women and the second leading cause of female cancer deaths
globally. Mastectomy, breast-conserving surgery, sentinel lymph
node biopsy (SLNB), and adjuvant or neoadjuvant
chemotherapy (NAC) have all become standard treatments for
BC, and 5-year and 10-year survival rates of BC patients have
significantly improved. However, there is still significant room
for improvement in terms of preventing recurrence and
improving the long-term outcome via a more precise hierarchy
of patients (1). Oncologists have utilized numerous molecular
subtypes based on protein expression [immunohistochemistry
(IHC)] to treat patients for a long time. BC can also be
categorized into five molecular subtypes using Partitioning
Around Medoids (PAM) based on gene expression profiles:
Luminal A, Luminal B, and Basal-like (2). There are significant
differences in tumor heterogeneity, incidence, risk factors,
prognosis, and treatment sensitivity (3). Systematic treatment,
including adjuvant, NAC, and hormone therapy (4), is the
backbone of the BC therapeutic strategy. Several models have
recently been established and validated to predict the efficacy of
chemotherapy response in patients with BC. These models, on
the other hand, did not take into consideration the extracellular
matrix (ECM).

The ECM ismade up of hundreds of different proteins, including
glycoproteins, collagens, and proteoglycans (5, 6), that surround
cells and form a dynamic and intricate molecular network. This
network plays a critical role in protumorigenic and antitumorigenic
processes (7). Proteomic analysis of the ECM composition
performed on xenograft mice exhibits a unique ECM constitution
in cancers with a high metastatic potential (8). Researchers have
discovered that ECM rigidity is required for normal cells to
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transform into cancer via Yes-associated protein (YAP)/
Transcriptional coactivator with PDZ-binding motif (TAZ)
mechanotransduction (9). However, in pancreatic ductal
adenocarcinoma, the ECM is also a protective factor, as
demonstrated by impairing ECM with an anti-lysyloxidase-like 2
(LOXL2) antibody in vivo, hence accelerating tumor progression
and decreasing overall survival (OS) (10). In essence, both cancer
cells and normal cells can contribute to and be influenced by ECM
deposition and remodeling (11). The deposition of the ECMmay, in
turn, contribute to drug delivery (12).

Intriguingly, in BC, a significant similarity between the
ECM and the matrix undergoing wound healing or
remodeling was discovered (7, 13). This phenomenon occurs
when the mammary gland attempts to revert to its original
state after pregnancy, resulting in a significant alteration of
the ECM, including robust upregulation of fibrillar, collagens,
and certain enzymes (14–16).

To date, several studies have investigated the role of ECM in
cancer progression and tumor growth, and some researchers
have used genes coding for ECM macromolecular to predict
cancer survival and the biological process (3, 3, 17, 18).
However, as a component of the tumor microenvironment
(TME), the ECM highly interacts with other immunologically
relevant components such as chemokines and cytokines, which
may be an important mechanism for the ECM to influence the
biological process of BC (19, 20). Therefore, focusing solely on
the molecular properties of ECM alone will overlook its
important function in cancer immunity. As a result, taking
into account ECM-interacting immune genes is necessary to
delineate a comprehensive landscape of the ECM signature. In
this study, we aimed to identify the highly ECM-related
genes and used them along with the original ECM gene list to
establish a model to predict patient survival and the efficacy of
hormone therapy and NAC and discuss its clinical implications.
MATERIALS AND METHODS

Breast Cancer Data Collection and
Processing
BC samples with complete clinical annotation were obtained
from four databases: The Cancer Genome Atlas (TCGA)
database, Gene Expression Omnibus (GEO), University of
California Santa Cruz (UCSC) Xena platform (18), and
Metabric database. For TCGA cohort (1,092 BC samples),
July 2022 | Volume 13 | Article 888339
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RNA sequencing (RNA-seq) data and corresponding clinical
information were extracted from TCGA database (http://
cancergenome.nih.gov/) and then transformed into
transcripts per kilobase million (TPM). In this analysis, 7
GEO microarray cohorts were used, and expression and
survival data were retrieved from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/) with background adjustment
and normalized using the Robust Multi-Array Average
(RMA) algorithm. Expression matrices of 2 UCSC sets were
retrieved from the UCSC Xena platform (http://xena.ucsc.
edu/). We obtained the Metabric data from cBioPortal (http://
www.cbioportal.org/). Before further analysis, all gene
expression data were log2-transformed and quantile-
normalized using the normality between array techniques in
the R package limma 3.46.0. We eliminated the batch effects
from the analysis when using merged gene expression data
from different datasets via the R package sva 3.36.0.

Gene Set Variation Analysis and Weighted
Gene Co-Expression Network Analysis
Identification of the Extracellular Matrix-
Related Immune Genes
The ECM score of the “core matrisome” gene set downloaded
from MatrisomeDB (http://www.pepchem.org/matrisomedb) was
quantified for each BC sample using the gene set variation analysis
(GSVA) algorithm in the R package GSVA 1.36.2 (21). Weighted
correlation network analysis [weighted gene co-expression
network analysis (WGCNA)] is a systems biology method for
identifying correlation patterns among genes across microarray
samples. WGCNA was performed using the WGCNA package in
R 3.6.1. Gene significance was used to determine the correlation
between individual genes and the ECM score, whereas module
membership represented the relationship between module
eigengenes and gene expression profiles. To ensure a scale-free
topology network, a power of b = 3 and a scale-free R2 = 0.9 were
set as soft threshold parameters. Following the retrieval of six
modules, the Brown module with the most solid relationship was
selected for further analysis. Genes within the Brown module were
included in the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment analyses
using the R package clusterProfiler 3.18.1. Through Metascape
(HTTPS://metascape.org/), we identified all statistically enriched
terms (GO/KEGG terms, Canonical pathways, Hallmark gene
sets) in the Brown module. Accumulative hypergeometric p-
values and enrichment factors were calculated and used
for filtering.

Clinical and Multi-Omics Data Collection
The most recent clinical data for TCGA-BRCA and other
cohorts were directly downloaded as attachment files from
corresponding databases. Multi-omics data of TCGA-BRCA
cohort, including somatic mutation copy number variation
(CNV), somatic mutations [single-nucleotide polymorphisms
(SNPs) and small insertions and deletions (INDELs), 22ct2
Variant Aggregation and Masking], and somatic CNV,
corresponding to the cases with RNA-seq data, were
Frontiers in Immunology | www.frontiersin.org 3
downloaded from Xenahubs (https://figshare.com/articles/
dataset/TCGA-BRCA_mutect2_snv_tsv/19948121). In
addition, a GISTIC analysis was performed to determine the
enrichment of genomic events. CNVs in two clusters and the
threshold copy numbers at alteration peaks were obtained
using Genomic Identification of Significant Targets in Cancer
(GISTIC) 2.0 analysis (https://gatk.broadinstitute.org). DNA
methylation (Illumina Human Methylation 450K) was
obtained from UCSC Xena (https://xenabrowser.net/).

Unsupervised Clustering for the
Extracellular Matrix Constitution
Using the R package ConsensuClusterPlus 1.54, it was possible to
identify robust ECM clusters in TCGA patients using a
consensus clustering technique of partition (based on the
Euclidean distance and Ward’s linkage) in conjunction with
the 11 genes obtained by LASSO regression. The cumulative
distribution function (CDF) and consensus heatmap were used
to determine the optimal K value. This procedure was repeated a
total of 1,000 times to ensure the stabi li ty of the
stratification process.

Construction and Validation of the
Extracellular Matrix Index
TCGA training set was subjected to univariate Cox regression
analysis to identify genes associated with prognosis with a p-
value <0.01. To obtain a quantitative description of the survival
risk of each patient, LASSO regression analysis was further used
to calculate the ECM index (ECMI) of patients using the R
package glmnet 4.1.3, and the dependent variable of LASSO
regression is patient survival days. SurvivalRandomForest with
1,000 trees was used to validate and rank the significance of 11
genes identified by LASSO regression in R version 3.6.4.

Gene Set Enrichment Analysis
The gene set enrichment analysis (GSEA) algorithm assessed
the biological processes that were enriched between different
groups. The data in TCGA were first transformed in
preparation for linear modeling using voom in R package
limma 3.46.0. The differential genes between the two groups
were calculated using the R package limma 3.46.0.
Subsequently, they were preranked by log2 fold change and
delivered to the R package clusterProfiler 3.18.1 for GSEA.
Results with an adjusted p-value <0.05 were considered to be
statistically significant.

Annotation of the Tumor
Microenvironment Cell Infiltration
To examine the immune cell infiltrating microenvironment, we
quantified the enrichment levels of 64 immune signatures using
the xCell algorithm (xCell: digitally portraying the tissue
cellular heterogeneity landscape). We performed more
thorough invest igat ions us ing a lgor i thms such as
CIBERSORT (22), ssGSEA, quanTIseq, TIMER, and MCPcell
in the R package immunedeconv version 2.0.4.
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Construction and Validation of A Neural
Network Model
Differentially expressed genes (DEGs) between the two groups
(PCR and RD) were assessed using the R package limma 3.46.0.
The results were considered statistically significant when the p-
value was <0.01. Using these DEGs, we established a neural
network model using the neural net package in R 1.44.2. The
number of neurons in the hidden layer was 15. We chose resilient
backpropagation without weight backtracking as the core
algorithm. The logistic function was set as the activate
function. As stopping criteria, the threshold for the partial
derivatives of the error function was 1*10-6.

Statistical Analysis
We used independent t-tests and Mann–Whitney U tests to
determine the statistical significance when comparing two
groups with normally distributed and non-normally
distributed variables, respectively. One-way analysis of
variance (ANOVA) and Kruskal–Wallis tests were used to
compare the differences between more than two groups (23).
Spearman and distance correlational analyses were performed
using the R package Hmisc 4.4.1. Objects with a coefficient >0.5
were considered strongly correlated (24). Cox regression
analyses were performed to identify the prognostic factors.
The OS and ECMI were determined using the R package
survival, and cutoff values were determined before generating
all survivorship curves with the R package survminer. The R
package forest plot 2.01 was used to show the univariate
prognostic analysis in different cohorts. Software Cytoscape
v3.9.0 was used to construct the pathway networks. All of the
heatmaps were plotted using the R package Complex Heatmap
2.4.3. OncoPrint was used to delineate the overview of gene
mutation landscape, which was generated using the R package
maftools 2.4.12. Confusion matrix tables were analyzed using
the c2 contingency test. The OS and risk scores were
determined using the R package survival and cutoff values.
Data comparisons were visualized using the R package ggplot2.
OncoPrint was used to delineate the mutation landscape of
TCGA using the maftools R package (25). All statistical
analyses were two-sided and performed using R software.
Statistical significance was defined as a p-value <0.05.
Frontiers in Immunology | www.frontiersin.org 4
Quantitative Real-time Reverse
Transcription Polymerase Chain Reaction
From January 17, 2021, to September 19, 2021, patients with BC
receiving neoadjuvant therapy were recruited in the Breast
Department of Harbin Medical University Cancer Hospital.
Patients were required to have a tumor size >2 cm and <5 cm
before treatment and younger than 70 years (Supplementary Table
S16). In total, 15 patients with pCR and 15 with RD were enrolled,
and their baseline characteristics are shown in Table 1. BC tissue
and tumor-adjacent tissue were obtained by core needle biopsy
before the first cycle of neoadjuvant treatment. RNA was extracted
using an RNeasy kit (Qiagen Sciences, Hilden, Germany), diluted
using nuclease-free water, and electrophoresed on a denaturing
formaldehyde agarose gel to visualize rRNA and ensure overall
sample quality. RNA concentrations and purity were detected on an
ultraviolet spectrophotometer (Harbin Medical University, Harbin,
China). cDNA was obtained using a PrimeScript II 1st-strand
cDNA synthesis kit (TaKaRa, Dalian, China). qPCR was
performed using a LightCycler 480 real-time PCR machine
(Roche) with SYBR. Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) was used as the reference gene, and the relative gene
expression was quantified using the cycle threshold (DDCT)
method. The primer sequences are listed in Table 2. This study
was approved by the ethics committee of Harbin Medical
University, and all patients provided a written informed consent.
RESULTS

Immune-Related Genes that Correlate
With the Extracellular Matrix and Their
Application to Identify the Extracellular
Matrix Signature
A total of 11 BC cohorts (TCGA-BRCA, GSE58812, GSE16446,
GSE48391, GSE69031, GSE32642, GSE50948, GSE66399, UCSC
Caldas, UCSC Vijver, and Metabric-BRCA) were deemed
suitable for our study. To investigate the ECM signature on the
gene level, the “core matrisome” gene set was obtained from
MatrisomeDB. This gene set consists of all ECM-related genes,
including 195 ECM glycoproteins, 44 ECM collagens, and 35
proteoglycans (Supplementary Table S1). The GSVA score of
TABLE 1 | Baseline characteristics of the enrolled patients.

Characteristic Cohort P Value Between pCR and RD cohiorts
All Patients (N=30) pCR (N=15) RD (N=15)

Age, median (range), y 48.5 (28-66) 46 (28-66) 51 (31-65) 0.32
Pre long axis of tumor, median (range), cm 3.2 (2-5) 3.1 (2-5) 3.2 (2-4.7) 0.55
Pre short axis of lymph node, median (range), cm 1.1 (0-2.4) 1.3 (0.5-2.1) 0.8 (0-2.4) 0.26
Hormone receptor status, No. (%)
Positive (>1%) 14 (47) 6 (40) 8 (53) 0.71
Negative 16 (53) 9 (60) 7 (46)

Her2 status No. (%)
Positive (IHC:3+/ISH:+) 20 (67) 12 (80) 8 (53) 0.25
Negative (IHC:1+/ISH:-) 10 (33) 3 (20) 7 (47)
IHC, immunohistochemistry; ISH, in situ hybridization; pCR, pathologic complete response; RD, residule disease.
July 2022 | Volume 13 | Article 888339
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this gene set was calculated to determine the level of ECM in each
sample, and this value was designated as the ECM score
(Supplementary Table S2).

ECM remodeling has a significant impact on the
development of an immunosuppressive TME (26) ,
Frontiers in Immunology | www.frontiersin.org 5
demonstrating that there is a strong link between the ECM
and immunity; hence, we attempted to include ECM-specific
immune genes into ECM-related genes. Two thousand four
hundred eighty-three immune genes (Supplementary Table
S3) were extracted from the public gene dataset (www.
immport.org). We used WGCNA to identify the ECM-related
immune genes. The scale-free topology fit index was set to 0.9
for scale-free network construction (Supplementary Figures
S1A, B), and correspondingly, the best power value was 3. Six
modules were identified using the clustering dendrogram
(Figure 1A). The correlation coefficient between the Brown
module and the ECM score was 0.8 (Figure 1B), suggesting that
the Brown module is selectively expressed in samples with a
A
B

D

E F

C

FIGURE 1 | WGCNA for the ECM-related immune genes. (A) Cluster dendrogram generating gene modules. (B) Correlation analysis of modules and ECM score,
and other clinical information. (C) Metascape for the functional annotation of the genes in the Brown module. (D) PPI network for significant protein–protein
interactions among genes in the Brown module. (E) GO functional enrichment analysis of genes in the Brown module. (F) KEGG functional enrichment analysis of
genes in the Brown module.
TABLE 2 | Real-time qPCR primers.

Primer Sequence (5′–3′)

OGN-qPCR-F TCCTCTACTTGGACCATAATGC
OGN-qPCR-R TGTAACTGGTGTCATTAGCCTT
GAPDH-qPCR-F GAAGGTGAAGGTCGGAGTCA
GAPDH-qPCR-R TTGAGGTCAATGAAGGGGTC
July 2022 | Volume 13 | Article 888339
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high degree of the ECM component. In addition, this module
has a strong correlation with the PAM50 subtype and
pathologic N stage of BC, indicating its clinical significance.
There were 213 genes in the Brown module (Supplementary
Table S4), and only one gene (OGN) was shared between this
module and the original ECM-related gene list.

To perform a comprehensive analysis of the genes in the Brown
module, we used Metascape, an online omics data analysis portal,
to functionally enrich these genes to GO, KEGG, Canonical
pathways, Hallmark gene sets, etc. The top 20 enriched terms
were listed (Supplementary Figure S1A), demonstrating that the
Brown module genes were primarily enriched in Matrisome-
associated signaling pathways and enzyme-linked receptor
protein signaling pathways (Figure 1C). All protein–protein
Frontiers in Immunology | www.frontiersin.org 6
interactions (PPIs) among input genes were extracted from PPI
data sources and used to construct a PPI network. The network
was subjected to GO enrichment analysis to extract “biological”
meanings. The MCODE algorithm was then used to identify
neighborhoods where proteins were densely connected
(Figure 1D). On the cellular component level, GO functional
enrichment analysis revealed that these genes were enriched in
pathways involving collagen-containing ECM and outer plasma
membrane (Figure 1E, Supplementary Figure S1C). KEGG
analysis revealed that the genes were enriched in the
cytokine–receptor interaction and other pathways associated
with cancer progression such as Mitogen-Activated Protein
Kinase (MAPK) and Phosphoinositide-3-kinase (PI3K-Akt)
pathways (Figure 1F).
A B D

E FG

I

H

J

C

FIGURE 2 | Identification of the ECM signature in TCGA. (A) Sample clustering by PCA in TCGA dataset. (B) Kaplan–Meier survival analysis of the two clusters in
TCGA. (C, D) The Kaplan–Meier survival analysis and ROC curve analysis in the training sets, respectively. (E, F) The Kaplan–Meier survival analysis and ROC curve
analysis in the testing sets, respectively. (G) The relation between the error rate and the number of trees in the process of running SurvivalRandomForest algorithm.
(H) The relative importance of 9 of the genes consisting the ECMI. (I) Heatmap exhibiting unsupervised clustering of 11 prominent ECMI-related genes for patients in
TCGA. Tumor stage, IHC subtype, ECM group, ECMI, ECM score, and PAM50 subtypes are shown as patient annotation. (J) Sanky plot showing the different ECM
groups in the ECMI groups, ECM clusters, and tumor stages.
July 2022 | Volume 13 | Article 888339
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In light of the significant role played by the Brown module in
the development and biological process of BC, we merged the
Brown module and genes from MatrisomeDB to form a new
ECM-related gene list. To determine the potential value of the
ECM-related genes, we first randomly divided TCGA data into
training and testing groups in a 7:3 ratio (Supplementary Tables
S5, S6). We attempted to make this combined ECM-related gene
list as concise as possible to obtain a more exhaustive list of the
ECM-related genes. Therefore, we performed univariate Cox
Frontiers in Immunology | www.frontiersin.org 7
regression in the training group to first filter out 477 survival-
related genes with log-rank p < 0.01 (Supplementary Table S7).
To create a more interpretable model and improve the prediction
accuracy, LASSO regression was used to force the sum of the
absolute value of the regression coefficients to be less than a fixed
value. This forces coefficients of certain genes to zero, thereby
excluding them from influencing predictions. Consequently, 11
prominent genes (TSLP, NOS2, SDC1, TPT1, PXDNL, TECTA,
TNN, VWA5B2, ZP1, ZP2, and CHAD) with non-zero
A B

D E

F

C

FIGURE 3 | Clinical value of the ECMI. (A) The ECMI levels in four different IHC subtypes in TCGA. (B) The ECMI levels in four different clinical stages in TCGA. (C)
Boxplot of the ECM score in different clinical subgroups in TCGA. *p < 0.05, ***p < 0.001, ****p < 0.0001. ns, not statistically significant. (D) Forestplot was plotted
to present the predictive value of the ECMI in each subtype and cohort. (E) Kaplan–Meier survival analysis of the ECMI high group and ECMI low group in merged
HR+HER2+ cohort. (F) Kaplan–Meier survival analysis of the ECMI high group and ECMI low group patients in merged HR+HER2- cohort.
July 2022 | Volume 13 | Article 888339
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coefficients were identified. Four of these genes (PXDNL, TECTA,
TNN, and VWA5B2) were in the original list of the ECM-related
genes. These 11 genes were determined to score both training set
and testing set samples using the following formula: -0.4127*TSLP
+ 0.2746*NOS2 + 0.1489*SDC1 + -0.0853*TPT1 +
0.1189*PXDNL + 0.9493*TECTA + -0.1793*TNN +
0.2093*VWA5B2 + 0.1448*ZP1 + 0.1773*ZP2 + -0.0698*CHAD.
Among these 11 genes, the Brown module contributed to TSLP,
NOS2, SDC1, and TPT1. The score was designated as the ECMI,
and the 11 genes were designated as the ECMI genes.

To further validate the clinical and transcriptomic
characterization of the 11 ECMI genes consisting of ECMI, we
clustered TCGA samples into ECM clusters A and B using an
unsupervised clustering algorithm (Supplementary Figures
S1D–G). The optimal number of clusters was evaluated using
the ConsensusClusterPlus package (Supplementary Figure
S1F). The clustering findings were most consistent when the
number of clusters was set to two (K = 2) (Supplementary
Frontiers in Immunology | www.frontiersin.org 8
Figures S1G, H). Principal Components Analysis (PCA)
differentiated the samples within TCGA dataset (Figure 2A).
The delineated groups based on the 11 ECMI genes also
confirmed a lower survival probability curve for cluster B
(Figure 2B). Heatmaps (Supplementary Figure S1I) show the
11 gene expression patterns, of which CHAD (immunologically
relevant component) and TNN (ECM macromolecular) levels
were significantly higher in cluster A, whereas SDC1, an
immune-related gene, was more abundant in cluster B.

Using a median cutoff, patients in the training group were
stratified into low- and high-risk groups, and Kaplan−Meier
(KM) plots were generated, as shown in Figure 2C. A more
specific finding was that those in the group with reduced ECMI
had significantly improved survival results. To further examine
the efficacy of the ECMI, receiver operating characteristic (ROC)
curve analyses were performed, yielding a 1-, 3-, and 5-year area
under the curve (AUC) values of 0.777, 0.755, and 0.744,
respectively (Figure 2D). Contrary to expectations, the AUC
A B

D E F

G IH

C

FIGURE 4 | Biological value of the ECMI. (A–C) GSEA running plot showing the biological process of Hallmark, GO, and KEGG enriched in ECM high and low. (D–
F) Ridge plots showing the top enriched biological process of GO, KEGG, and Hallmark in TCGA. (G) GSVA exhibiting the different expressed gene sets between
the two groups. (H, I) The correlation between biological process and the ECMI in both TCGA and Metabric cohorts (the row annotation and column annotation are
the abbreviation of the gene sets).
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was similarly significant in the testing set, with 1-, 3-, and 5- year
AUC values of 0.748, 0.639, and 0.703, respectively (Figure 2E),
and the KM curve was also clearly separated in patients from the
testing set, with a p-value <0.05 (Figure 2F). The findings
demonstrated that ECMI was a reliable prognostic biomarker
for predicting the 3- and 5-year survival status of BC patients. A
SurvivalRandomForest algorithm was used to validate the
LASSO regression results. The number of trees was initially set
to 1,000 (Supplementary Figure S2A), and the lowest error rate
was reached when the tree number was 687, at which point the
Frontiers in Immunology | www.frontiersin.org 9
absolute and relative importance of these genes was extracted
(Figures 2G, H; Supplementary Figure S2B). The ECM group
(separated by median GSVA score), ECMI group (separated by
median ECMI), and ECM cluster were highly congruent, as
measured by the sanky plot (Figure 2J).

Clinical and Biological Value of the
Extracellular Matrix Index
Tumors belonging to the Luminal-A PAM50 subtype have a
relatively lower ECMI than those of Basal-like, HER2-enriched,
A
B

D

E

C

FIGURE 5 | The landscape of immune infiltration based on the ECMI. (A) Heatmap for the infiltration of immune cells with row representing different kinds of immune
cells and column representing different samples with the ECMI increasing from left to right. (B–E) Box plots showing the immune infiltration levels in ECM high and
ECMI low based on MCPcells, CIBERSORT, TIMER, and xCell algorithm. *p < 0.05, ***p < 0.001, ****p < 0.0001. ns, not statistically significant.
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and Luminal B tumors (Supplementary Figure S3A). Similarly,
the IHCmolecular subtypes showed that the HR+HER2- subtype
had the lowest ECMI (Figure 3A). These findings demonstrate
that the ECM composition of HR+ BC differs from that found in
Frontiers in Immunology | www.frontiersin.org 10
previous studies (27). This has previously been demonstrated by
other studies. In addition, patients in TCGA with a high ECMI
had a high risk for all subtypes except HR-HER2+
(Supplementary Figures S3B–E). However, the American
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C

FIGURE 6 | Genomic features of the ECMI high and low groups. (A, B) List of the most frequently mutated genes in ECMI high and low groups. (C) Global distribution of
gain- or loss-of-function mutation in the 22 human chromosomes in the two groups. Amplification of genes is marked in red. Deletion of genes is marked in turquoise. The
above diagram represents the arm-level CNV, and the bottom represents the focal-level CNV. (D, E) Correlation between the ECMI and total CNV or TMB in TCGA. (F, G)
Methylation difference between the ECMI high and low groups in different CGI coordinates and feature types. (H) Heatmap exhibiting the DNA methylation pattern of the ECMI
high and ECMI low groups. The location of each DNA methylation site is annotated on the left. The IHC subtype is shown in the top annotation.
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Joint Committee on Cancer (AJCC) stage did not indicate a
significant difference in ECMI; there was only a marginally
significant difference between patients in stage II and stage I
(Figure 3B). In TCGA cohort, patients with more event
occurrences of 5-year OS, disease-specific survival (DSS),
disease-free survival (DFS), and progression-free survival (PFS)
had a significantly higher ECMI, although the pathologic N stage
(pN) and the presence of the metastatic disease did not correlate
with the ECMI (Figure 3C).

To better validate the efficacy of the ECMI, we performed an
external validation on 7 additional BC cohorts. Initially, we
eliminated the batch effect for these eight cohorts, including
TCGA group (Supplementary Table S8). Upon dividing the
specific datasets by the best cutoff value of the ECMI, significant
differences in OS were observed between the ECMI low and high
groups for all BC datasets except for the UCSC Caldas set and
GSE69031 (Supplementary Figures S3F–J). Because BC has
robust heterogeneity between different IHC subtypes, we
performed subtype analysis (Supplementary Figures S4A–D)
and deleted data resulting in excessive heterogeneity before
merging data from different datasets. A forest plot (Figure 3D)
was generated to illustrate the predictive value of ECMI in each
subtype and cohort. The hazard ratio (HR) was statistically
significant in HR+HER2+ (HR = 1.18, p < 0.001) and HR
+HER2-, demonstrating that the ECMI is a reliable risk factor
in BC when both hormone receptor and HER2 are positive.
However, there was no statistical significance in the Triple
Negative Breast Cancer (TNBC) and HR-HER2+ subtypes,
indicating that the hormone receptor is essential for the ECM
to perform its function. The survival curve showed the risk effect
of the ECMI in the HR+/HER2+ group (Figure 3E). In contrast,
there were no significant differences between the ECMI high and
low groups in other subtypes (Figure 3F; Supplementary
Figures S3E, F). The significant difference in the HR+/HER2+
group may also show a robust association between HER2 and the
ECM. For example, in the study by Hanker et al. (28), the ECM
component was associated with a significantly inferior clinical
response to neoadjuvant anti-HER2 therapy in HER2+ BC
patients. Collectively, these findings indicated that the ECMI
may be a significant predictive factor in BC, particularly in the
HR+/HER2+ subtype.

We aimed to gain a deeper understanding of the relationship
between ECM phenotypes and key biological processes,
particularly in light of the remarkable performance of the ECMI
on the clinical outcomes of BC patients. GSEA was performed to
determine the most highly enriched gene set in the GO gene set,
KEGG gene set, and Hallmark gene set (Supplementary Tables
S9–S11). The top 20 enriched gene sets with adjusted p-value
<0.001 in GO, KEGG, and Hallmark were listed (Figures 4A–C),
and the ridge plots (Figures 4D–F) and bubble plots
(Supplementary Figures S5A, B) were plotted to indicate the
significant degree of each pathway in the three gene sets. The
findings revealed that the ECMI negatively correlated with ECM
assembly and ECM component processes and positively correlated
with processes involved in DNA replication and DNA repair
(Figure 4B). Moreover, in the hallmark gene set, the ECMI was
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positively related to estrogen response early and late process,
confirming our previous hypothesis that the ECM composition
is more active in HR+ BC (Figure 4A). To further compare the
different biological characteristics between the ECMI low and high
groups, we performed GSVA to extract the DEG set. The top 14
significant pathways are shown in Figure 4G, and we found that
most of the processes were involved in the cell cycle and DNA
replication. We also attempted to determine if a correlation existed
between the ECM-relevant gene signatures and the ECMI. We
found that the ECMI correlated negatively with blood vessel
endothelial cell proliferation, collagen metabolism, Transforming
Growth Factor-b (TGF-b) production, and angiogenesis but
positively with processes involved in DNA replication and
leukocyte adhesion (Figure 4H). The Metabric cohort also
confirmed the validity of this finding (Figure 4I). Due to the
strong association between the TME and the ECM (29), we
analyzed the immune infiltration pattern of the ECM
phenotypes using 6 different algorithms (Figure 5A ;
Supplementary Table S12). In total, a higher ECMI showed a
scarce TME with significantly low stromal score and
microenvironment score, and the relation between ECMI and
immune cells and the relationship between immune cells were
presented under the algorithm of xCell (Supplementary
Figure S3C). However, the monocytic lineage cells were found
to be more abundant in the ECMI high group based on MCP,
CIBERSORT, and xCell algorithms (Figures 5B, C, E).
Specifically, CIBERSORT and xCell exhibited a higher M0 in the
ECMI high group. In contrast, the ECMI high group exhibited a
higher M1 in CIBERSORT but a higher M2 in xCell, a finding that
will require further study to validate. Surprisingly, CD8+ T cells
were enriched in the ECM low group in all six algorithms,
indicating an antitumor TME that could improve the long-term
survival of patients (Figures 5B–E; Supplementary Figures
S5D, E).

Multi-Omics Features of The Extracellular
Matrix Phenotypes in TCGA Cohort
Somatic variation analysis (SVA) and CNV were performed in
TCGA dataset to investigate the genomic characteristics of the
ECMI high and low groups. According to SVA, mutations in TP53
(22%), PI3KCA (14%), TTN (9%), and GATA3 (6%) were most
highly enriched in the ECMI high group (Figure 6A). In contrast,
PI3KCA (18%), TP53 (12%), CDH1 (9%), and TTN (7%)
mutations were enriched in the ECMI low group (Figure 6B).
TP53 mutations are more prevalent in the ECMI high group,
whereas PI3KCA mutations are more prevalent in the ECMI low
group. All of these genes, except for CDH1, had missense mutations
as the predominant gene mutation type, with frameshifting deletion
being more prevalent in the ECMI high group and frameshifting
insertion being more common in the ECMI low group.

A global CNV and focal Somatic Copy Number Alterations
(SCNA) level profile was generated by comparing the two groups
(Figure 6C), which revealed a significant difference in both arm
and focal levels. The total CNV was also positively correlated
with the ECMI (Figure 6D; Spearman correlation, r = 0.39, p =
3.03e−39), and the correlation was more predominant in the HR
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+/HER2+ subtype (Supplementary Figures S6A–D; Spearman
correlation, r = 0.42, p = 3.15e−07) and insignificant in the HR-/
HER2+ group (p = 0.811).

Similarly, the tumor mutational burden (TMB) is correlated
with immune recognition and clearance, immune checkpoint
inhibitor response (30, 31), and chemotherapeutic drug function.
Examining the TMB is therefore necessary for the accurate
selection of systemic therapy (30, 31). We observed a positive
correlation between the TMB and the ECMI (Figure 6E;
Spearman correlation, r = 0.28, p = 2.89e−18). While different
IHC subtypes demonstrate varying degrees of correlation
between the ECMI and the TMB (Supplementary Figures
S6E–H), the highest correlation was observed in the TNBC
group (Spearman correlation, r = 0.3, p = 3.27e−04).

Epigenetics has long been recognized as a vital element
contributing to tumor maintenance and in the development of
cancer’s well-known characteristics. Epigenetic abnormalities
have long been identified as an essential factor contributing to
tumorigenesis and immune surveillance among all tumor types.
Therefore, we attempted to establish the relationship between
ECMI and DNA methylation. The ECMI high group had a
higher level of DNA methylation in nearly all DNA sites except
for the 5′ untranslated region, TS1500, and the 1st Exon, which is
associated with inhibiting mRNA translation, which was
enriched in the ECMI low group (Figures 6F–H).

Extracellular Matrix Signature for
Predicting Hormone Therapy and
Neoadjuvant Treatment Benefits
To improve survival outcomes for BC patients, it is critical to use a
systematic approach that includes adjuvant and neoadjuvant
chemotherapy as well as hormone therapy. Currently, there is no
biomarker that can accurately predict the benefits of each of these
systemic treatments and further guide the selection of patients who
can benefit the most. Given the efficacy of the ECM-related genes in
predicting the survival outcomes for HR+HER2+ patients, we
assessed their performance in predicting the therapeutic effects of
hormone therapy and NAC. The Metabric cohort was used in this
study. First, patients who were hormone receptor-positive and
HER2+ and had received hormone therapy but no chemotherapy
were assigned into the ECMI low and high groups by the best cutoff
value based on their OS time. The same cutoff value was also used to
separate patients who had not received both hormone therapy and
chemotherapy. After combining group information and the history
of hormone therapy, the Metabric cohort was further divided into
Hormone+/ECMI high, Hormone−/ECMI high, Hormone+/ECMI
low, and Hormone−/ECMI low groups. Surprisingly, there were no
marked benefits from hormone therapy for patients in the ECMI
high groups probably due to more risk factors for these patients
(Figure 7A; p = 0.205). However, when ECMI was low, there were
significant differences between the hormone therapy and non-
hormone therapy groups (Figure 7B; p < 0.01), indicating better
hormone therapy responses than those in patients with a
high ECMI.

NAC is also a critical strategy for patients. It is aimed at
increasing the likelihood of tumor control via rapid assessment
Frontiers in Immunology | www.frontiersin.org 12
of drug efficacy and can accelerate the development and approval
of treatments for early BC (32). The indicator for the therapeutic
effects of NAC is a pathologic complete response (pCR), which is
considerably associated with long-term clinical benefits in BC
(33). To investigate the value of the ECM-related genes in
predicting responses to neoadjuvants, we selected 4 datasets
(GSE16446, GSE32642, GSE50948, and GSE66399) containing
pCR information in GEO and excluded the batch effects from
analysis. The total number of patients were assigned into two
groups based on whether or not they had their pCR data. Next,
we identified the DEGs from the ECM-related gene list
(Supplementary Table S13, p < 0.01, log FC >0). In total, 20
DEGs were extracted, with THSD4, COL4A4, COL4A3,
SPOCK2, and OGN being the top 5 significant genes
(Figure 7C). To predict the pCR, patients were randomized
into training and testing cohorts. Then, the neural network
carried out by resilient backpropagation with weight
backtracking was applied to establish the model (Figure 7D).
The hidden layer contained 15 neurons, the threshold was set to
0.000001, logistic regression was chosen as the activated
function, and Scatter diagrams plotted the generalized weights
for the 5 prominent genes (Supplementary Figures S7A–E). The
training group exhibited a notable stratification with 100%
accuracy in both specificity and sensitivity, as revealed by
confusion matrix construction (Figure 7E; Supplementary
Table S14). In the testing group, due to the low rate of pCR
(only about 20%) in BC patients, we focused on the positive
predictive value (44%) and negative predictive value (75%),
which were acceptable (Figure 7F; Supplementary Table S15).
Thus, our model can be used in conjunction with other clinical
factors to identify patients who can benefit the most from
neoadjuvant treatment to receive treatment before surgery and
perform surgery first for those resistant to chemotherapy.

This result was validated in a cohort obtained from January
17, 2021, to September 19, 2021. Since OGN has the foremost
predictive significance and is also the representative gene of the
new ECM-related gene list, we performed qRT-PCR to assess
OGN expressions in each sample (Supplementary Table S17).
Compared to normal tissues, OGN was significantly suppressed
in BC tissues from both TCGA and our cohorts (Figures 7G, H).
Patients with pCRs to neoadjuvants exhibited significantly low
levels of OGN compared to those with residual disease (RD)
(Figure 7I). Furthermore, we used Miller–Payne (MP) grading,
which is a more accurate evaluation system to assess responses to
NAC. There were significant differences in OGN expressions
between MP: 2 and MP: 5 groups (Figure 7J), implying that
OGN has a marked effect in inhibiting drug delivery.

Additionally, we determined whether the ECMI can be used
to predict the success of immunotherapy treatments. In the
IMgivor 210 cohort, we did not find any differences in the
ECMI between patients achieving Partial Response (PR), Stable
Disease (SD), Complete Response (CR), or Progressive Disease
(PD) (Supplementary Figure S7F). These findings provide
compelling evidence that the ECMI and the neural model
based on our ECM-related gene list predict poor prognosis and
responses to hormone therapy and NAC.
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DISCUSSION

As a major component of the TME (5, 34), the abnormal
composition of the ECM mediates (35) all of the cellular
processes involved in cancer progression, migration, and
invasion. In BC, Wishart et al. (36) found that the ECM
scaffold extracted from tissues after decellularization has a
significant value in studying the biological behaviors of TNBC.
Some of the genes with the ability for comodulating the ECM-
associated matrisome networks, like BRD4, are oncogenic but
not tumor-suppressive in TNBC, implying that targeting the
ECM or its network may be a viable method for disease
treatment. However, the ECM is heterogeneous among diverse
tumor types, and interactions between the ECM and another
component of the TME are a mystery. For instance, in gastric
cancer (GC), the stiffness of the ECM interplays with DNA
methylation of promoter regions of the mechanosensitive YAP,
and this epigenetic regulation of the biophysical properties of the
ECM of GC may be a potential therapeutic strategy for cancer
Frontiers in Immunology | www.frontiersin.org 13
progression inhibition (37). In contrast, in pancreatic ductal
adenocarcinoma, the ECM is a protective factor. Impairment of
the ECM with an anti-LOXL2 antibody in vivo facilitated tumor
progression and lowered the OS outcomes (38). In small-cell
lung cancer (SCLC) (39), based on differentially expressed ECM
proteins in patient samples with non-small cell lung carcinoma, a
five-gene prognostic signature was generated with independent
prognostic value to identify patients in need of further adjuvant
therapy after surgical resection.

To date, depiction of the ECM in most studies is based on the
ECM component-related genes, regardless of other
immunomodulating factors that could have a great impact on
the ECM. The potential efficacy of the ECM in predicting the
prognosis and systemic treatment outcomes has not been
investigated. We used WGCNA to assess the overall ECM
condition by evaluating the ECM-related immune genes.
Through LASSO regression and machine learning, we
shortened the gene list to facilitate the ECM composition
pattern analysis and generated the ECMI. Then, we used the
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FIGURE 7 | The prediction of hormone and neoadjuvant chemotherapeutic efficacy based on the ECM signature. (A, B) Kaplan–Meier survival analysis of the
patients with or without hormone therapy in ECMI high and low groups. (C) Volcano plot showing the differentially expressed genes (DEGs) between patients with
pCR and non-pCR. (D) Schematic diagram of the neural network established by the 20 DEGs. (E, F) Contingency tables show the consistency between the
predicted clusters and the actual clusters. (G, H) Violin plots showing the different levels of OGN between Normal and Tumor tissues in TCGA cohort and Harbin
Medical University cohort. (I) Violin plots exhibiting the different levels of OGN between pCR and RD tissues. (J) Violin plots exhibiting the different levels of OGN
among different MP scores.
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ECMI to depict the comprehensive landscape of clinical and
multi-omics traits of the ECM in BC. In addition, the ECMI was
used to predict long-term survival and systematic therapy
benefits in BC. In general, the ECMI is a decisive risk factor in
different IHC subtypes of BC and other datasets.

Findings from TCGAwere validated by the Metabric cohort and
UCSC Vijver. In the Metabric cohort, hormone therapy exhibited
inferior effects in those with high ECMI. In the cohort merged by
GSE16446, GSE32642, GSE50948, and GSE66399, we identified
DEGs from the ECM-related gene list between pCR and RD groups.
These DEGs exhibited better performance in predicting responses
to neoadjuvant therapy. Previous findings found that the ECM has a
substantial influence on TNBC. In this study, the ECMI performed
well in predicting survival outcomes, particularly for HR+/HER2+
BC patients. GSEA revealed positive correlations between the ECMI
and the biological process: estrogen response. The correlation
between the CNV and the TMB was more significant in HR
+/HER2+ BC than that in the other subtypes. Thus, further
studies should be performed if there is an interplay between the
ECM component and HR or HER2.

Angiogenesis and vessel endothelial cell proliferation are two
biological processes that are highly correlated with the ECMI in
both TCGA and Metabric cohorts. ECM deposition enhances
angiogenesis and antiangiogenic therapy resistance (40). This
could be because gradients of soluble Vascular Endothelial
Growth Factor A (VEGFA) induce the generation of some
specific active endothelial cells, which resolve the surrounding
ECM and cause the growth of new vascular sprouts toward
VEGFA (41). Therefore, the ECMI can be used as a biomarker to
identify patients who might receive antiangiogenic therapies,
such as bevacizumab.

Our results showed that BCs with a higher ECMI exhibited
markedly higher levels of gene enrichment in DNA replication
and a high level of mismatch repair and homologous
recombination, which might be attributed to protection of the
rapidly proliferating BC cells by the ECM. We hypothesized that
the high DNA repair capacity might limit the efficiency of
chemotherapeutic medications because chemotherapy causes
DNA damage in rapidly proliferating cancer cells (42).
Combined with close correlations between the ECMI with
CNV and TMB, the capacity of our ECM gene list to predict
systemic therapy benefits can be established.

Macrophages can be polarized into two distinct phenotypes:
pro-inflammatory M1 and protumor M2. In the study by
Witherel et al. (43), hybrid M1/M2 macrophage-conditioned
medium controlled the ECM formation by generating a matrix
with thicker and less aligned fibers. In comparison, M2
macrophage-conditioned media resulted in the formation of a
more aligned matrix with thinner fibers. Therefore, altering the
M1/M2 balance toward M2 may induce architectural and
constitutional changes in the ECM with enhanced potential for
downstream remodeling (43). In this study, we used six different
algorithms to assess immune cell infiltrations. Interestingly,
CIBERSORT and xCell exhibited a higher M0 in the ECMI
high group, while the ECMI low group exhibited a higher M1 in
CIBERSORT but a higher M2 in xCell. Low stromal and
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microenvironment scores were found in the ECMI high group,
which helped us evaluate the TME status.

Given the vital role of epigenetics in regulating cancer
progression and drug resistance (44–46), we investigated if the
ECM features may change the epigenetic state of breast tumors
and hence influence medication sensitivity. According to our
findings, the ECMI high group had a greater variety of
methylation sites.

In conclusion, we identified an ECM gene expression
signature (ECMI) consisting of 11 ECM-related genes and
established its prognostic value in BC. We comprehensively
studied the landscape of clinical, biological, and multi-omics
traits of the ECM compositional patterns in BC. A higher ECMI
was closely correlated with the constitution of TME cells,
angiogenesis, DNA replication, and IHC molecular subtypes,
notably higher somatic mutation rates, and higher levels of DNA
methylation and CNVs. Moreover, the ECMI was established to
be a robust prognostic indicator and a predictive factor for
benefits of hormone therapy. Lastly, OGN was extracted as the
foremost valuable gene in our new ECM gene list by machine
learning, and its predictive value for neoadjuvant treatment was
validated by qRT-PCR. Establishment of the ECMI and neuron
network based on DEGs will inform the application of suitable
hormone therapy and NAC and form the basis for the
development of innovative therapeutic approaches.

This study has some limitations. One important drawback
was the absence of external real-world RNA-seq data that might
be used to corroborate and verify our findings. Another
limitation was that in-depth mechanisms such as the
regulation of the processes of angiogenesis, cell cycle, and
DNA replication were undetermined, and further tests should
be performed to confirm these findings. Moreover, single-cell
sequencing should be performed to assess the relationships
between the ECM and alternation of the TME.
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