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ABSTRACT

Mainstream studies of microbial community focused
on critical organisms and their physiology. Re-
cent advances in large-scale metagenome analy-
sis projects initiated new researches in the com-
plex correlations between large microbial commu-
nities. Specifically, previous studies focused on the
nodes (i.e. species) of the Species-Centric Networks
(SCNs). However, little was understood about the
change of correlation between network members (i.e.
edges of the SCNs) when the network was disturbed.
Here, we introduced a Correlation-Centric Network
(CCN) to the microbial research based on the concept
of edge networks. In CCN, each node represented a
species—species correlation, and edge represented
the species shared by two correlations. In this re-
search, we investigated the CCNs and their corre-
sponding SCNs on two large cohorts of microbiome.
The results showed that CCNs not only retained the
characteristics of SCNs, but also contained infor-
mation that cannot be detected by SCNs. In addi-
tion, when the members of microbial communities
were decreased (i.e. environmental disturbance), the
CCNs fluctuated within a small range in terms of net-
work connectivity. Therefore, by highlighting the im-
portant species correlations, CCNs could unveil new
insights when studying not only the functions of tar-
get species, but also the stabilities of their residing
microbial communities.

INTRODUCTION

As the quantity of microbiome data is growing exponen-
tially, the diversity and complexity of the microbial com-

munity have made the integration and characterizing of mi-
crobial communities even more pressing issue (1,2). Thus,
applying microbial network analysis to identify alterna-
tive community states and niches becomes an increasingly
popular tool to investigate microbial community struc-
tures (3,4). Previous research has shown that microbial
communities often exhibit non-random species—species co-
occurrence patterns, and these observations suggest that a
community structure is imprinted by species and their in-
teractions (5,6). These interactions could provide a system-
level view of a microbial community and a deep insight into
the functional distribution in a microbial community (7,8).

The widely used Species-Centric Networks (SCNs, or
species—species co-occurrence networks) are powerful tools
to detect the co-occurrence correlation between two species
in the microbial community. Specifically, the SCNs are con-
structed based on the relative abundance calculated from
all the samples, and they provide an effective way to initi-
ate species correlations in a microbial community (9,10).
Hence, the SCNs achieve great success in detecting key
species and key subnetworks (11,12), investigating the re-
sponse of microbial community to external disturbances
(13,14) and characterizing the microbial species’ distri-
bution and ecology (12,15). Such foundational works on
species co-occurrences have led to the development of many
methodological tools (16).

Despite the successful applications of the SCNs, one ma-
jor limitation of the SCNs is that the importance of edges
(i.e. species—species correlations) received insufficient atten-
tion (17,18). Previous research has demonstrated the impor-
tance that correlations of the edge distribution and prop-
erties could depict complex biological networks from an-
other point of view and be of great significance in biolog-
ical network researches (19,20). Hence, systematic analy-
sis of species—species correlations is becoming one of the
emerging fronts for microbiome research. This is mainly be-
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cause of their important roles in facilitating the formation
or the adoption of dynamic changes of a microbial commu-
nity (21,22).

To exploit species—species correlations systematically, we
apply the concept of edge networks by introducing the
Correlation-Centric Networks (CCNs) to analyze microbial
networks(16). Formally, each node of a CCN represents a
species—species co-occurrence, and each edge of CCN rep-
resents a species shared between two co-occurrences. Com-
paring to the classic SCN, each node of a CCN is equiv-
alent to an edge of its corresponding SCN and each edge
of a CCN can be mapped to a node of its corresponding
SCN. Thus, a CCN is an edge network representation of its
corresponding SCN. Moreover, one important property of
a CCN is its linear time complexity to be transformed from
its corresponding SCN, and vice versa (20,23). This means
that a CCN contains all the information in its correspond-
ing SCN, and vice versa. Previously, the CCNs have been
applied in another biological network analysis: the CCN is
applied as predictive biomarkers in the gene co-expression
network to predict diseases (24) and also as an indicator for
personalized characterization of diseases (25). Moreover,
the CCN also provides a unique perspective for systems bi-
ology with omics data (26,27). However, to the best of our
knowledge, it has never been applied to analyze microbial
networks.

In order to study the advantages of CCNs, we constructed
them to analyze two well-studied cohorts of microbial com-
munities: human gut microbiome time-series (collected in
1 year, during two dry and wet phases for Hadza hunter-
gatherers) and ocean microbiome spatial series (collected
in five major oceans of the world). In both microbial com-
munities, the environmental factors were recorded. Based
on these records, the relationship between the community
structure and the external changes was investigated. The
results of investigation of global and local properties indi-
cated that the CCN retained all the information from the
SCN and magnified the differences (i.e. two datasets were
constructed with similar SCNs but identified with differ-
ent CCNs). This observation indicated that the CCN was
a better network from which we could detect critical species
and correlations (both can serve as biomarkers) that drive
differences in microbial communities. Moreover, based on
network stability analysis, the CCNs were more robust than
SCNs because CCNs possess more redundant information
to cope with missing information. Specifically, when remov-
ing network members, the CCNs could better reflect the dy-
namic changes in the species—species correlation in order to
cope with the course of environmental disturbance. There-
fore, our results suggested that the CCN is a more powerful
tool for investigating how species correlations would adapt
to environmental disturbance in microbial communities.

MATERIALS AND METHODS
Microbial community cohorts

In order to demonstrate the advantages of CCNs over
SCNs, we used two datasets in the following experi-
ments: one human gut microbiome and one marine micro-
biome. For the human gut microbiome, the Hadza hunter-
gatherers human gut microbiome data were obtained from

the NCBI under accession number SRP110665 (28). All
the 40 samples were divided into four phases as in the
original research (28): dry_13 (dry phase in year 2013),
wet_early_2014 (early wet phase in year 2014), wet_late_2014
(late wet phase in year 2014) and dry_14 (dry phase in year
2014). Previous studies found that their diet and their mi-
crobial communities’ structure underwent a great change
corresponding to the phase’s change (28). After the samples
were processed by MetaPhlAn (version 2.0) (29), taxonom-
ical annotations for all the 40 samples were identified and
calculated on genus level. Only genera with an average rel-
ative abundance over 0.1% in all samples were selected to
filter out the most abundant genera which could play im-
portant roles in the microbial community (30,31). Finally,
64 genera (dry_13), 84 genera (wet_early 2014), 89 genera
(wet_late_2014) and 62 genera (dry_14) were selected for net-
work construction.

The marine microbiome was collected from the Tara
Oceans Project (PRJEB1787 on EBI Metagenomics Portal)
(32). We analyzed the prokaryotic part of this project, in-
cluding 245 runs of more than 1.3 TB public sequencing
data. Based on the physical and chemical information, we
divided the 245 runs into five categories from their sampling
regions: the Pacific Ocean (PO), the Atlantic Ocean (ATO),
the Indian Ocean (I0), the Arctic Ocean (ARO) and the
Mediterranean Sea (MS). To obtain the taxonomical an-
notations of the processed reads and to calculate the taxo-
nomical abundance distribution on the genus level, we used
Parallel-Meta (version 3.0) (33) to select only genera with
an average relative abundance of over 0.1% in all samples,
including 48 genera from PO, 32 genera from ATO, 38 gen-
era from 10, 20 genera from ARO and 40 genera from MS.

Network construction

To quantitatively identify the correlation between species,
the SCN was constructed. Furthermore, based on the corre-
lation distribution in SCN, the CCN was constructed. First,
based on the relative abundance distribution on genus level,
we constructed the species—species co-occurrence networks
using Pearson correlation coefficient as follows:
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where x; and x; represented the relative abundances of two
species detected in different samples, and u represent the
average abundance of the corresponding species across all
samples.

Subsequently, we need to select a suitable threshold to de-
fine whether two species have a correlation or not. If a corre-
lation was detected, a node should be added in the CCN and
an edge should be added in the SCN. Thus, this step deter-
mined the topology of the network (as shown in Figure 1).
To reduce the false positive for detected correlations, the bi-
ological significance of the correlation was needed. Previous
studies reported that the drastic reduction in the number of
edges may lead to the omission of important biological in-
teractions (34). In this research, we found that the number
of nodes and edges for both the CCN and the SCN would
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Figure 1. Correlation threshold analysis on the Hadza gut microbiome community. Here, the horizontal axis represents the threshold for the absolute
species—species correlation, and the vertical axis represents the number of nodes or edges for the constructed network. Specifically, the numbers of nodes
and edges of the constructed SCN are shown in figures (A) and (B), respectively. Similarly, the numbers of nodes and edges of the constructed the CCN

are show in figures (C) and (D), respectively.

drop drastically when setting £0.7 as the threshold. Hence,
40.7 was selected to avoid such negative effects.

A SCN could be represented by an N x L incidence ma-
trix B, where N represented the number of species and L
represented the number of species—species co-occurrences
(as shown in Figure 2A and B). In matrix B, an incidence
(i.e. an element) was set to one if and only if there is a corre-
lation between a pair of network members. Otherwise, the
incidence is set to zero (Figure 2B). Thus, the network graph
can be drawn given the incidence matrix (Figure 2C), and
the incidence matrix can be calculated given the network
graph (Figure 2D). The degree &; of node i and the num-
ber of nodes k, attached to edge a (which always equals 2
since the SCN and CCN are both undirected graph) can be
calculated as follows:

ki:ZBia kaZZBm

where B;, is an element in incidence matrix B.
Similarly, a CCN can be represented by an L x L inci-
dence matrix C, and it can be calculated as follows:

Cap = Y BiaBip(1 — dp)
i

2
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where the a and 3 represents two different edges of the SCN,
and d,p represents the isomorphism mapping (a mapping
between two structures of the same type that can be re-

versed by an inverse mapping) of correlation between a and
B in matrix C. Accordingly, the network graph can be drawn
given the incidence matrix, and the incidence matrix can be
calculated given the network graph.

It is important to note that the CCN retained all the in-
formation from the corresponding SCN while magnifying
the differences. Whitney’s uniqueness theorem (35) states
that the original SCN can be fully recovered from its cor-
responding CCN. That means converting SCN into a CCN
will not suffer information loss. Yet, the connectivity of a
CCN is significantly higher than that of a SCN. Specifically,
the connectivity in CCN can be measured by the number of
edges k., which can be calculated from the degree k; of the
original SCN as follows:

ke= Y ki — 1)/2 (4)

This equation illustrates how connectivity is significantly
boosted by converting a SCN to a CCN. High-degree
species are more frequently associated with other members
in the community, and play the role as a potential ‘hub’
in the microbial community (36). Higher connectivity indi-
cates that the CCN can characterize the high degree species
of the original SCN very well, providing a perspective to
further understand the role of these important members in
microbial networks (36).
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Figure 2. Convertinga SCN to a CCN. (A) A simple SCN to be converted. (B) The incident matrix for the SCN constructed directly from the SCN. (C) The
incidence matrix for the CCN calculated from (Equation 3). (D) The CCN constructed directly from the incident matrix for the CCN. (E) The relationship

between the SCN and the CCN illustrated by merging them into one graph.

The workflow of SCN construction is shown in Algo-
rithm 1, as below:

Algorithm 1. Algorithm for SCN construction

i. Input: relative abundance table of microbial community
(matrix A). x; and x;: two species in different samples. .: the
average abundance of the corresponding species across all
samples.

il. Construct the SCN: for each pair of species, x; and x;,
calculate Pearson correlation coefficient PCCy; 4j as per
(Equation 1).

iii. Convert the network graph of SCN into incidence matrix B,
as exemplified in Figure 2A and B.

iv. Compute the incidence matrix C for CCN.as in (Equation 3).

V. The corresponding network graph for incidence matrix C is
calculated, as exemplified in Figure 2C and D.

Network assessment

After the SCN and the corresponding CCN were con-
structed, a comprehensive comparison of the two networks
was conducted. First, to deduce and quantify the charac-
teristics of the SCNs and CCNs, global network proper-
ties which capture topological features of large complex net-
works were evaluated and compared, including degree dis-
tribution, robustness, network diameter, etc. Second, to find
the network members that mediate the differences, local net-
work properties were investigated. Finally, the impact of
missing information in the networks was explored.

First, the global properties were calculated and the nodes
with high degrees were chosen as hub nodes (19). Based on
these global properties, networks were compared based on
the Jaccard index, which measured the overlap of network
members for any two networks (37). The distance measured
by Jaccard index was proportional to the magnitude of dif-
ference between two compared networks.

Second, to investigate the local properties of networks,
we identified network biomarkers based on the K-nearest
neighbor algorithm (KNN) classifier evaluated by the jack-
knife test (38). Network biomarkers detected the species

with statistically different degree distribution in different
networks. Network biomarkers identified network members
which potentially drove the difference of networks, reflect-
ing the adaptation of microbial community to environmen-
tal disturbance. These biomarkers commonly play an im-
portant role in the microbial community, such as regulat-
ing species balance or maintaining community robustness.
Further investigation of these biomarkers could provide
us an in-depth understanding of the microbial community
changes. Especially in a CCN, the network biomarkers iden-
tified could potentially reflect the important microbial cor-
relations that adapt to environmental disturbance.

Finally, to investigate the network stability, we applied R
package SpiecEasi (version 1.0.4) for a CCN and the cor-
responding SCN to simulate ‘environmental disturbance’
(39). Biological robustness refers to the characteristic that
the biological system keeps its structure and function sta-
ble when it is disturbed by environmental disturbance. Bio-
logical robustness is ubiquitous in biological systems and it
is an important network character worthy of careful inves-
tigation. This simulation removed network members from
high to low in the order of degree distribution across many
replicates. For every degree of ‘environmental disturbance’,
the network connectivity (the connection of various parts
of a network to one another) was calculated to measure the
stability of network. In the simulation experiment, network
member removal implied species removal in the SCN, while
edge removal implied interaction removal. To compare the
SCN and CCN in a fair manner, a CCN network was recon-
structed after nodes were removed from the corresponding
SCNs. It was apparent that when the number of removed
nodes reached a certain amount, the network would col-
lapse, leading to very low connectivity of the network, which
meant network breakdown. Moreover, the networks were
illustrated for SCN (removing 5, 10, 20 and 35% nodes)
and the corresponding CCN (removing 10, 25, 45 and 65%
nodes) for one phase (wet_late_2014) as an example to ex-
plore the dynamic changes in the course of environmental
disturbance.



0.0097

64

dry_13 wet_early_14 wet_late_14 dry_14

pecies-Centric Network

(/» Number of nodes/edges
o = N W A O,
o O o
E
-1
E
»
>
N
~

Cc

Prevotella-Dorea

Prevoteélla-Blautia

Prevotélla-Collinsella

NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 2 5

B = node 0 00051
o 0023
3 M edge
S 500
k) o 0015
$ 400
8 283
Q 300
G 200
S 100
IS 38
S5 0
zZ dry_13 wet_early_14 wet_late_14 dry_14
Correlation-Centric Network
D &
D @ RoseburiéiMe:&-{ghobrevibacter

Y

> &
- 7
— D) : { /\

Blautla Subgghgranulum >

A2

Blautia<Coprococcus Eubacteriu@ﬁp:y oprococcus 27

Prevotella-Ruminococcus

dry 2013
®

BIautia-Methan‘vibacter
b

®
@ Prevotel%:rea @ .
m . ® Colllnselﬁorea
@ @
@ Methanobrevibacter:Blautia
‘j a @ G @ e o
. - —
_—

dry 2014

7
Coprococcus\‘Eubacterium /

wet early 2014 l

Roseburia-Prevotella '

wet_late 2014

Figure 3. The SCNs and the CCNss for the Hadza gut microbiome community. (A) The number of nodes and edges for SCNs. To test whether two networks
are significantly different, the Kruskal-Wallis test was applied for adjacent phases. NS denotes ‘Not Significant’ with P-values greater than 0.05. (B) The
number of nodes and edges of CCNs. Similarly, the Kruskal-Wallis test was applied. (C-F), The CCNs of different phases. Here, the size of a node is
proportional to its degree, and the correlations with high degrees are highlighted in bold.

RESULTS AND DISCUSSIONS

Network construction and observations during the phase tran-
sition

Based on the time-series human gut microbiome data, we
promoted the SCNs for four phases (as shown in Figure
3A). Statistical results demonstrated that the SCNs pro-
vided insufficient resolution to distinguish these networks.
During the phase transition, the topology converted as fol-

lows. For the dry phase of 2013, the network was composed
of 16 genera and 38 correlations. For the wet phase of 2014,
the network was composed of 17 and 18 genera, 40 and 64
correlations in the early and late wet phases, respectively.
For the dry phase in 2014, the network contained 15 gen-
era and 24 correlations, returning to a low complexity state.
This conversion suggested that networks in wet phases were
more complex than those in dry phases as reported pre-
viously (28). The topology conversion exhibited a cyclical
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change in the gut microbial that adapted to environment
change. However, the Kruskal-Wallis test results showed
that the significant difference was only detected between the
networks constructed by the dry phase in 2014 and the late
wet phase (P-value = 0.0097), indicating the SCNs provide
insufficient details to reduce the microbial communities.
The corresponding CCNs were constructed for four
phases (as shown in Figure 3B). Based on the species cor-
relation perspective, the differences between the microbial
communities can be reflected. For the dry phase of year
2013, the CCN was consisted of 38 nodes and 283 edges
(as shown in Figure 3C). For the wet phase in 2014, the
networks were consisted of 40 and 64 nodes, 400 and 561
edges in early and late wet phases, respectively (as shown
in Figure 3D and E). For the dry phase in 2014, the net-
work was composed of 24 genera and 321 correlations (as
shown in Figure 3F). The Kruskal-Wallis test results indi-
cated that networks between dry_13 and wet_early_2014 (P-
value = 0.0015), wet_early_2014 and wet_late_2014 (P-value
= 0.0023), wet_late_2014 and dry_14 (P-value = 0.00051)
were statistically different. According to (Equation 4), a
species with a large degree yields more nodes in the corre-
sponding CCNs, and this species led to the expansion of dif-
ferences in four phases. Hence, we speculated that most of
the important constituent species of gut microbiome could
be preserved during the changing phases, and the changes of
species correlations played a role in adapting to the changes
in the environment, as reported previously (40,41). This re-
sult indicates that the species—species correlations possess a
greater discriminative power than species for distinguishing
samples, which is consistent with previous studies (24).

After investigating the SCNs and the corresponding
CCNs on the system level, the comparison results indicated
that the CCNs could maintain all the information and mag-
nify the differences from the SCNs. During phase transi-
tions, the CCNs possessed a higher network density (0.523
and 0.235 on average of four phases for CCN and SCN, re-
spectively) and cluster coefficient (0.615 and 0.311 on aver-
age of four phases for CCN and SCN, respectively). Based
on their global properties, similarity trees were constructed
for the SCNs (as shown in Figure 4A) and its correspond-
ing CCNss (as shown in Figure 4B). Both the SCNs and the
CCNs constructed for dry phases were clustered in the same
branch and wet phases in the other branch. This observa-
tion suggests that both the SCNs and the CCNs could de-
tect this annual cyclic reconfiguration of the microbiome, as
reported by previous research (28). However, the increase
of Jaccard index in the CCN for the same branch showed
that the differences among networks were magnified by the
species—species correlations. Based on (Equation 4), species
with a large degree (usually considered important members
in the network) corresponded to more nodes than species
with a low degree in the CCN, supporting the hypothesis
that the magnified difference was potentially reflected by
these important species.

To find the network members that potentially reflect this
difference, the network biomarkers among the four phases
were identified as shown in Figure 4C. For the SCNs, gen-
era Prevotella (P-value = 0.0013), Ruminococcus (P-value =
0.0025), Blautia (P-value = 0.0092) and Dorea (P-value =
0.01) were identified as biomarkers. Genera Prevotella, Ru-
minococcus, Blautia are all dominant genera in Hadza gut
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microbiome (12.94 + 12.41%, 3.09 £ 2.25%, 5.91 £ 4.05%,
respectively) and their relative abundance varies at different
phases as shown in Figure 4D. Exemplified by genera Pre-
votella and Ruminococcus, in the wet phases, the abundance
of Prevotella decreased significantly. This might be driven
by diet change (28), which has an inverse abundance dis-
tribution for genus Ruminococcus. Furthermore, for SCNs,
the correlation between Prevotella and Ruminococcus was
identified as biomarker, which indicated that their trade-off
correlation can reflect the changes of the networks. Previous
work has also supported the hypothesis that the two genera
cooperated to respond to dictary changes (42).

Another biomarker that is only detected in the CCN, the
correlation between Blautia and Collinsella, was correlated
with improving host immunity and resisting various dis-
eases (43,44). In the wet phase, the increase of relative abun-
dance for two genera reflected that dietary changes may
cause a disturbance in the microbial community structure.
These two genera remained co-occurred even in the transi-
tion between dry and wet phases, which indicated that the
cooperation of the two genera was important to maintain

the stability of the microbial community. Compared to the
SCN, the biomarkers found by the CCN could interpret
how microbial communities respond to environmental dis-
turbance better than SCNs. Thus, in the case of changes in
the host diet during the seasonal variations, the CCN ap-
proach was shown to provide a deeper microbial network
perspective of the change of microbial community to adapt
to these external changes.

Network stability analysis under external interference

After investigating the network properties, the network sta-
bility was explored by removing network members progres-
sively (as shown in Figure 5A and C). The analysis for
CCNs demonstrates that species correlation had redundan-
cies to maintain the stability of microbial community in the
event that network members were removed. To achieve a
fair comparison, after the members of the SCN were re-
moved, the corresponding CCNs were reconstructed. As
shown in Figure SA, the SCNs constructed in the early and
late wet phases broke down when 31 and 32% of nodes were
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removed, respectively. As shown in Figure 5B, the corre-
sponding CCNs broke down when 33 and 38% of nodes
were removed. Similarly, Figure 5C shows that the corre-
sponding CCNs in early and late wet phases kept in a stable
state until 51 and 60% of nodes were removed, respectively.
Moreover, to compare the stability under different noise dis-
tributions (please see Supplementary Figure S1), various
correlation thresholds were set to introduce different de-
grees of noise, and network stabilities of a SCN and a CCN
were explored when different percentages of nodes were re-
moved (i.e. 5, 10, 15 and 20% members were removed). It
can be observed that a CCN exhibits higher stability than
that of the corresponding SCN because the network con-
nectivity only fluctuated within a small range before break-
ing down. This is mainly because the species—species corre-
lations had redundancies to maintain the network proper-
ties, and they provided a perspective to interpret the stability
of microbial community.

Even under external interference, a CCN could deal with
dynamic change of the relationship between species when
such changes occur. Analysis results indicate that commu-
nity members tend to be associated with multiple mem-
bers under environmental stresses, so that they can main-
tain backup relationships (a network member tends to be
associated with multiple members with similar functions or
taxonomic status) and avoid the collapse of the whole com-
munity. For example, based on the microbial composition
on genus level in late wet phase, four SCNs were constructed
by removing a different percentage of nodes (5, 10, 20 and
35%) (Figure 5SD) and its corresponding CCNs by removing
a different percentage of nodes (10, 25, 45 and 65%) (Fig-
ure SE). In SCNs, genus Coprococcus which was identified
as the dominant genus in all four phases (3.09 + 2.25%),
still existed in the broken-down network. Specifically, pre-
vious studies have illustrated the influence of relationship
between Catenibacterium and Coprococcus to their hosts’
health (45). This correlation disappeared when 20% of the
nodes were removed in the SCN, but still exists when 65%
of the nodes were removed in the CCN. Furthermore, a pre-
vious research has reported that the relationship between
two probiotics (Blautia and genus Collinsella) protects the
stability of the microbial community during environmental
disturbances (46). This important correlation was identified
as network biomarker in our study where it was detected
in all four disrupted CCNs, but not in their corresponding
SCNs. Simply put, the CCNs provide deeper insights to de-
tect the dynamic process of network collapse: SCNs only
detect changes in species composition, while CCNs have the
ability to detect changes in species correlations. Again, these
results indicate that community members tend to be associ-
ated with multiple members under environmental stresses.
This redundancy of species correlation gives them the ad-
vantage of maintaining backup relationships, which could
avoid the collapse of the whole community under environ-
mental stresses, which could be supported by previous re-
searches (2,47).

Analysis based on CCLasso algorithm instead of Pearson
correlation

All preceding analyses in this paper were conducted with the
Pearson correlation. In order to show that our conclusions

still hold for other correlations, we repeated the analysis us-
ing the CCLasso algorithm. The application of CCLasso
algorithm on network analysis could eliminate the effect of
sparse distribution on network construction, which could
accurately reconstruct the microbial networks (48). We re-
constructed the networks based on CCLasso algorithm in-
stead of Pearson correlation, and found that the results can
again confirm the previous results. At first, based on re-
sults in Supplementary Figures S2 and 3, a CCN has the
ability to retain the characteristics of the species—species
co-occurrence network, while at the same time possessing
a greater discriminative power when comparing samples.
Second, based on network stability analysis (as shown in
Supplementary Figure S4), only small fluctuations occurred
(rather than breaking down) when a large number of net-
work members were removed. Although different network
construction methods were performed, similar conclusions
were drawn, indicating the conclusions we deduced in pre-
vious sections are insensitive to methods of calculation.

Analysis based on marine microbiome instead of gut micro-
biome

All preceding analyses in this paper were conducted on the
human gut microbial communities. In order to show that
our conclusions still hold for other datasets, we repeated the
analysis on the marine microbial communities. Specifically,
we reconstructed the network with the same workflow us-
ing Pearson correlation coefficient. As shown in Figure 6,
the marine microbial dataset from the Tara Oceans Project
is divided into five regions: the PO, the ATO, the 10, the
ARO and the MS. The properties of network constructed
with different thresholds were calculated for constructing
the network (as shown in Supplementary Figure S5). The
analysis results lead to similar results based on the human
gut microbiome.

We reanalyzed the network based on marine microbiome
instead of human gut microbiome, and it led to similar con-
clusions: first, the similarity tree results (as shown in Figure
6A and B) indicated that the CCN retained the characteris-
tics of the corresponding SCN and reflected a greater differ-
ence. Second, the network stability was investigated for the
SCNs in Figure 6C and the CCNs in Figure 6E. To com-
pare the stability of the SCNs and their corresponding CCN
fairly, after members of the SCN were removed, these new
networks were then recalculated to derive the correspond-
ing CCN (Figure 6D). Based on different microbial commu-
nities (different taxonomical distribution and environmen-
tal factor), similar conclusions were drawn, indicating the
conclusions we deduced in previous sections are insensitive
to microbial communities.

CONCLUSION

In this work, we introduced the CCN based on the concept
of edge networks in a microbial community. Based on two
cohorts of microbial communities, three features were high-
lighted. At first, a CCN has the ability to retain the char-
acteristics of the corresponding SCN, while possessing a
greater discriminative power when comparing samples. Sec-
ond, only small fluctuations occurred, rather than breaking
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calculated from SCN after node removed. (E) The stability analysis for CCNs. Note that the CCNs are always reconstructed after nodes are removed from

the corresponding SCNss.

down, when a large number of network members were re-
moved from the CCNs. Third, the CCNs provide a micro-
bial network perspective for the dynamic change of network
correlations responding to different external factors.

These results highlight the importance of species—species
correlations for maintaining the functions as well as sta-
bilities of their residing microbial communities. And the
network stability results indicate that community members
tend to be associated with multiple members under envi-
ronmental stresses, so that they can maintain backup re-
lationships and prevent the collapse of the whole com-
munity. Therefore, the CCNs could reveal important eco-
logical patterns, and are especially suitable for longitudi-
nal studies to predict ecological patterns along the time
series.

While our edge-based networks provide a flexible and
valuable tool to gain a deeper understanding of complex
microbial systems, we acknowledge a few limitations. Most
importantly, microbiome datasets are being produced faster
than ever, but we are only beginning to understand the
structure and functioning of microbial communities. Hence,
there exist no appropriate protocols to investigate the cor-
relations among the species in microbial communities, nor
is there a benchmark dataset to measure research tools’
accuracy. One feasible way to detect the accuracy of the
constructed network is to integrate multiple data sources
and to perform multiple tests, which is applied in our re-
search. Networks do not explain causality or even mech-
anisms. Networks are best considered as a generator of
new hypotheses rather than anything to draw solid con-

clusions from. The integration of external data provides
additional support for the hypotheses based on microbial
networks.
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