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Background
Type II diabetes is widely regarded as a 21st-century epidemic 
and accounts for approximately 90% to 95% of diabetes cases.1 
There are several factors associated with the disease progres-
sion including genetic and environmental factors, and the 
major pathophysiological features include insulin resistance 
and impaired insulin secretion in addition to at least 6 other 
pathophysiological abnormalities, all of which disrupt the 
control of blood glucose levels.2,3 Diabetes (type II) patients 
have a high risk for both microvascular and macrovascular 
complications.2 To maintain normal blood glucose levels, it is 
considered that multiple antidiabetic agents, administered in 
combination, will be required owing to the several pathological 
irregularities present in type II diabetes.2

Protein tyrosine phosphatase 1B (PTP1B) is expressed in 
most cells in the body but overexpressed in cells under diabetic 
conditions.4 The protein is a down-regulator of vital metabolic 
pathways including but not limited to the insulin signaling 
pathway, and plays a crucial role in diabetes.5-7 Inhibition of 
PTP1B has shown promising effects in the treatment of 
diabetes.8-10 Overexpression of PTP1B enhances insulin resist-
ance, but its depletion or inhibition negates insulin resistance, 

promotes insulin sensitivity, and stimulates insulin-regulated 
glucose uptake.11 Hence, PTB1B inhibitors are considered 
good therapeutic molecules in treating diabetes.4

Owing to the substantial dysregulation of the expression of 
dipeptidyl peptidase-4 (DPP-4), DPP-4 inhibitors have risen 
to the limelight as a novel class of antidiabetic agents that show 
promising results in decreasing glucose fluctuations in diabetic 
patients.12 Interestingly, the inhibition of DPP-4 causes the 
plasma concentration of glucagon-like peptide-1 (GLP-1) to 
increase and also stimulate the secretion of insulin in response 
to increased glycemia.13

Alpha-amylase (α-amylase) is a lytic enzyme that degrades 
complex molecules of sugar into constituent glucose molecules 
in the body thereby elevating the sugar levels in the blood and 
resulting in hyperglycemia.14 The brain solely depends on sugar 
as biofuel for various metabolisms. However, the complex mol-
ecules of sugar in food cannot be absorbed and would not cross 
the blood-brain barrier. To overcome this hurdle, alpha-amylase 
degrades the polymer into smaller constituents to enable the 
entry of the molecules into the brain.15 This is done specifically 
by overseeing the catalytic cleavage of the α-(1,4)-D-glycosidic 
bonds present in the polymeric chain.14 Alpha-amylase is an 
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eminent therapeutic target for the treatment and maintenance 
of hyperglycemia, a predominant symptom of diabetes melli-
tus. Inhibitors of α-amylase delay the degradation of polymers 
of sugars and reduce the postprandial blood sugar level.16 
Acarbose and mitigol are commonly used inhibitors of α-
amylase, but side effects including flatulence, diarrhea, and 
abdominal discomfort have been reported.17 Interestingly, 
flavonoids, a group of chemically similar bioactive compounds 
which includes anthocyanins have a wide range of molecular 
interactions that ultimately lead to the inhibition of 
α-amylase.18

Anthocyanins like cyanidin and its widespread derivatives 
that are naturally occurring constituents of common foods 
have shown beneficial effects in the treatment and prevention 
of diabetes, but the mechanism of action is not yet fully 
understood.19,20 Therefore, it is of interest to study the inhibi-
tory effect of a wide range of anthocyanins on different molec-
ular targets of therapeutic intervention in diabetes.

Structure-based virtual screening of small molecular weight 
compounds including but not limited to molecular docking 
and molecular mechanics generalized Born surface area (MM/
GBSA) calculations scores and ranks compounds on the basis 
of their complementary binding to the binding site of the tar-
get protein and the result obtainable can be employed in rec-
ommending compounds for experimental testing at a relatively 
lower cost.21,22 Herein, an integrated computational workflow 
including molecular docking, MM/GBSA calculation, phar-
macophore modeling, and ADMETox screening was employed 
to screen a library of anthocyanins to specifically identify com-
pounds with individual inhibitory effects against 3 molecular 
targets in the treatment of diabetes namely, PTP1B, dipepti-
dyl-peptidase 4 (DPP4), and α-amylase.

Methodology
Ligands and protein targets

A library of 118 anthocyanins was obtained from phytohub 
database in SMILES format and converted to 2D (sdf ) format 
using Marvin sketch.23 The compounds were incorporated into 
Maestro (2017 release) and subsequently prepared using the 
Ligprep functional tool. Similarly, the 3D structures of the pro-
tein targets (depiptidyl peptidase IV PDB ID: 3VJM, pancre-
atic alpha-amylase PDB ID: 4GQR, and PTP1B PDB ID: 
1KAV) were obtained from an online repository (rcsb.org). 
The files were incorporated into Maestro and subsequently 
prepared using the protein preparation wizard. Furthermore, a 
grid box was generated with respect to the position of the co-
crystallized ligand in preparation for molecular docking.

Molecular docking

The molecular docking protocol was carried out using Glide 
script in Schrödinger suite. The procedure was done across the 
3 levels of precision with the protein targets treated as rigid 

bodies and the ligands, flexible. Initially, high throughput vir-
tual screening (HTVS) was employed to briefly score and rank 
the compounds; this is the least rigorous level of the scoring 
function. Around 70% of the docked compounds were subse-
quently subjected to a more rigorous standard precision (SP). 
Thereafter, two-thirds of the compounds were subjected to the 
most rigorous extra precision (XP). The binding poses of the 
protein-ligand complexes were further analyzed and the dock-
ing scores were exported.

MM/GBSA calculation

The relative binding energy calculations, in which the ligand 
( )L  binds to the protein receptor ( )R  to form the complex 
( )RL , were performed using the 1-average MM/GBSA tech-
nique implemented in the MOLAICAL code24-26

∆ ∆ ∆ ∆G G G Gbind RL R L= − −

This can be represented by several interactions’ contributions,

∆ ∆ ∆ ∆ ∆ ∆G H T S E G T Sbind MM Sol= − = + −

where the changes in the gas phase molecular mechanics 
∆EMM , solvation Gibbs energy ∆Gsol , and conformational 
entropy ( )−T S∆  are determined as follows: ∆EMM  is the sum 
of the changes in the electrostatic energies ∆Eele , the van der 
Waals energies ∆EvdW , and the internal energies ∆Eint  (bonded 
interactions); ∆Gsol  is the total of both the polar solvation (cal-
culated using the generalized Born model) and the nonpolar 
solvation (calculated using the solvent-accessible surface area), 
and −T S∆  is calculated by the normal mode analysis.

Rotamer search techniques from Prime were used in con-
junction with the OPLS3 force field and the VSGB solvent 
model to accomplish this procedure.

Pharmacophore modeling

The receptor-ligand complex of the top-scoring compound 
against each protein target was analyzed and an E-pharmacophore 
was generated in each case using phase graphical user interface 
in Schrodinger’s suite. This is done to identify or highlight the 
major molecular interactions that substantially contribute to 
the firm binding of the ligands to the active sites of the protein 
targets.

ADMET profiling

The pharmacokinetic properties and drug-likeness of the test 
compounds were profiled using SwissADME and Pro-tox II 
online servers. The major properties analyzed include physico-
chemical properties such as lipophilicity, water solubility, 
molecular refractivity, topological surface area, and the molecu-
lar weight of the compounds. SwissADME Consensus log P 
which is the arithmetic mean of 5 models was adopted as the 
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partition coefficient of n-octanol to water, and water solubility 
was predicted using the ESOL model.27 Furthermore, other 
pharmacokinetic descriptors were also analyzed including 
cytochrome P450 inhibition, blood-brain barrier permeation, 
and skin permeability. An extensive toxicity study was carried 
out on the test compounds using Pro-tox II online server 
whose toxicity study is classified into 5 different categories, 
namely oral acute toxicity, organ toxicity, toxicological and gen-
otoxicological endpoints, toxicological pathways, and stress 
response pathway.28 The oral toxicity predictive model consists 
of 6 different classes ranging from fatal to non-toxic. The 
organ-toxicity-predictive model predominantly includes 
hepatotoxicity. Furthermore, the genotoxicological predictive 
model includes cytotoxicity, mutagenicity, and carcinogenicity 
prediction.

Results and Discussion
A total of 118 anthocyanins were screened to investigate their 
individual binding affinities to 3 molecular targets of therapeu-
tic intervention in diabetes. These compounds were docked 
against the identified active sites of the protein targets to reveal 
the degree of firmness of the protein-ligand complexes using 
the scoring function. Subsequently, the Glide-generated poses 
of the complexes were subjected to an MM/GBSA protocol 
for rescoring. The docking scores and MM/GBSA calculations 
of the top-scoring compounds are presented in Table 1.

The scoring function is used for 2 crucial purposes: (1) to 
identify the correct binding orientation and conformation 
(docking pose) of each small molecular weight ligand out of a 
wide range of several modes and (2) to rank different ligands 
based on their estimated binding affinity.29 Cyanidin 
3-(p-coumaroyl)-diglucoside-5-glucoside, Malvin, Nasunin, 
cyanidin 3-O-xylosyl-rutinoside, and cyanidin 3-O-rutinoside 
are the highest scoring compounds against DPP4 with docking 
scores in the range of −10.813 to −15.272 kcal/mol. Cyanidin 
3-(p-coumaroyl)-diglucoside-5-glucoside showed the highest 
binding affinity to the protein with an impressive docking 
score of −15.272 kcal/mol and exhibited different molecular 
interactions with the amino acid residues in the active site of 
DPP4, such as H-bond, Pi-pi stacking, Pi cation, and Salt 
bridge (Table 2). Dipeptidyl peptidase-4 inhibitors control 
hyperglycaemia by stimulating insulin secretion. Cyanidin and 
its derivatives are widespread metabolites occurring naturally 
in foods and are considered to have potential benefits for the 
treatment of diabetes.19

Furthermore, cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside),  
delphinidin 3-O-(6ʺ-malonyl-glucoside), cyanidin 3-O- 
(6ʺ-malonyl-glucoside), cyanidin 3-(sinapoyl)-diglucoside-
5-glucoside, and delphinidin 3,5-O-diglucoside showed the 
highest binding to PTP1B. With docking scores in the range 
−8.944 to −9.691, the compounds exhibited hydrogen bonds 
and formed a salt bridge with the active site of the protein tar-
get. Inhibition of PTP1B by these compounds will potentially 
increase insulin sensitivity.

However, delphinidin 3,5-O-diglucoside, Malvin, Nasunin, 
cyanidin-3-(6-acetylglucoside), and cyanidin 3-O-xylosyl-
rutinoside were obtained as the top-scoring compounds against 
the third molecular target namely, alpha-amylase hydrogen 
bonding and pi-cation are the general forms of interaction 
observed in the binding of the ligands to the active site of the 
protein. Delphinidin 3,5-O-diglucoside, with a binding affin-
ity of −12.36 kcal/mol had the highest binding to this protein. 
Interestingly, Malvin, Nasunin, and cyanidin 3-O-xylosyl-
rutinoside showed robust binding to both DPP4 and alpha-
amylase. This could open up a window of possible exploration 
of dual inhibitors of both DPP4 and alpha-amylase in diabetes 
chemotherapy. Similarly, delphinidin 3,5-O-diglucoside exhib-
ited impressive binding to both PTP1B and alpha-amylase. 
However, in all cases, the test compounds showed higher dock-
ing scores than the standard inhibitors of the target proteins.

The glide-generated poses of the ligands bound to the active 
site of the protein targets were subjected to an MM/GBSA 
protocol for rescoring. The protocol of using Glide for pose 
generation and an MM/GBSA protocol for rescoring has 
shown promising results in its application to structure-based 
lead optimization of small molecular weight inhibitors.30

The binding energy (∆Gbind) gives an understanding of 
the spontanieity of receptor-ligand complexation. Interactions 
with more negative ∆Gbind are expected to be more spontane-
ous. The calculations suggest that the reaction between DPP-4 
and the highest scoring compound, cyanidin 3-(p-coumaroyl)-
diglucoside-5-glucoside is expected to be the most spontane-
ous. This is because this interaction exhibited a ∆Gbind 
value of −88.945 kcal/mol. This is followed by cyanidin 
3-O-rutinoside which had a binding energy of −78.402 kcal/
mol. Intiguingly, all the reported anthocyanins had higher 
binding energy tham the standard compound (Saxagliptin). 
The spontaneity of the reactions is predicted to be in the order 
cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside > cyanidin 
3-O-rutinoside > Malvin > cyanidin 3-O-xylosyl-rutinoside >  
Nasunin > Saxagliptin.

Also, per the MM/GBSA calculations, the spontaneity of 
complexation of the test compounds with PTP-1B is expected to 
be in the order cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside) 
(−72.034 kcal/mol) > delphinidin 3-O-(6ʺ-malonyl-glucoside) 
(−68.434 kcal/mol) > cyanidin 3-O-(6ʺ-malonyl-glucoside) 
(−68.34 kcal/mol) > cyanidin 3-(sinapoyl)-diglucoside-5- 
glucoside (−63.864 kcal/mol) > Ertiprotafib (−45.018 kcal/mol) 
 > delphinidin 3,5-O-diglucoside (−37.071 kcal/mol). Finally, the 
spontaneity of the interaction between the reported compounds 
and α-amylase is predicted to be in the order cyanidin-3- 
(6-acetylglucoside) (−70.251 kcal/mol) > delphinidin 3,5-O- 
diglucoside (−66.095 kcal/mol) > Acarbose (−62.835 kcal/mol)  
> Malvin (−55.313 kcal/mol) > Nasunin (−45.345 kcal/mol) >  
cyanidin 3-O-xylosyl-rutinoside (−40.144 kcal/mol).

Intermolecular interactions have gained wide recognition 
from experimental and theoretical standpoints primarily 
because of their basic roles in shaping the 3D structures of 
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several biomolecules and in controlling the molecular recog-
nition, binding, and interaction between 2 complementary 
molecules.31 Molecular drug design identifies and optimizes 
the chemical architecture in the binding platform of small 
molecular weight drug candidates and their complementary 
molecules, primarily proteins. Molecular identification in liv-
ing systems relies on appropriate interactions between 2 com-
plementary molecules. The predominant aim of drug design 
is the identification and optimization of ligand-protein inter-
actions.32 The potential optimization of these molecules 
requires prior knowledge of the chemical nature, structure, 
and strength of the interactions between the molecules.33 The 
molecular interactions of the test compounds with the active 
sites of the target proteins are presented in Figures 1 to 3 and 
Table 2. The interactions observed include hydrogen bond-
ing, pi-pi stacking, pi cation, and salt bridge. Above all, hydro-
gen bonding is the major form of interaction observed.

Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside, 
Malvin, and cyanidin 3-O-rutinoside interacted with Arg358 

via hydrogen bond in the active pocket of DPP-4. Recently, 
attention has been drawn to the interaction with Arg358 in the 
design of DPP-4 inhibitors. Sitagliptin was found to interact 
with the guanidine moiety of Arg358, which interacts via its 
trifluoromethyl substituent, and this interaction was suggested 
to increase its activity.34

All the test compounds and Saxagliptin (Standard) made 
hydrogen bond contact with at least one of Glu205 and Glu206. 
In addition to this, cyanidin 3-(p-coumaroyl)-diglucoside-
5-glucoside formed a salt bridge with Glu206. Previously, the 
design of some quinoline and isoquinoline derivates showed 
that the most potent derivative (8 g) formed a salt bridge with 
Glu205 and Glu206.35

Cyanidin 3-O-rutinoside, cyanidin 3-O-xylosyl-rutinoside, 
and cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside made 
hydrogen contact with Phe357. Cyanidin 3-(p-coumaroyl)-
diglucoside-5-glucoside and cyanidin 3-O-rutinoside formed 
additional pi-pi stacking interaction between an aromatic ring 
in its structure and aromatic amino acid residues Trp629. 

Table 1. Docking scores and MM/GBSA calculattions of test compounds.

COMPOUNDS XP DOCkING SCORE MM/GBSA

DPP-4 (3VJM)

Cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside −15.272 −88.945

Malvin −13.388 −75.136

Nasunin −13 −49.394

Cyanidin 3-O-xylosyl-rutinoside −10.964 −64.005

Cyanidin 3-O-rutinoside −10.813 −78.402

Saxagliptin −8.122 −47.135

 PTP1B (1kAV)

Cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside) −9.691 −72.034

Delphinidin 3-O-(6ʺ-malonyl-glucoside) −9.259 −68.434

Cyanidin 3-O-(6ʺ-malonyl-glucoside) −9.259 −68.34

Cyanidin 3-(sinapoyl)-diglucoside-5-glucoside −9.139 −63.864

Delphinidin 3,5-O-diglucoside −8.944 −37.071

Ertiprotafib −2.416 −45.018

 ALPhA−AMYLASE (4GQR)

Delphinidin 3,5-O-diglucoside −12.36 −66.095

Malvin −11.702 −55.313

Nasunin (-cis) −11.646 −45.345

Cyanidin-3-(6-acetylglucoside) −11.371 −70.251

Cyanidin 3-O-xylosyl-rutinoside −10.997 −40.144

Acarbose −10.173 −62.835

Abbreviations: DPP-4, dipeptidyl peptidase-4; MM/GBSA, molecular mechanics generalized Born surface area; XP, extra precision.
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Another pi-pi stacking was observed in the binding of cyanidin 
3-(p-coumaroyl)-diglucoside-5-glucoside to the binding pocket 
of DPP-4 via Phe357. Similarly, cyanidin 3-O-rutinoside 
formed a second pi-pi stacking interaction with Tyr666.

In the interaction with PTP-1B, cyanidin 3-O-(6ʺ-malonyl-
3ʺ-glucosyl-glucoside), delphinidin 3-O-(6ʺ-malonyl-
glucoside), cyanidin 3-O-(6ʺ-malonyl-glucoside), and cyanidin 

Figure 1. Interactions of the lead ligands with the ligand binding site of DPP-4: (A) cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside, (B) Malvin,  

(C) Nasunin, (D) cyanidin 3-O-xylosyl-rutinoside, (E) cyanidin 3-O-rutinoside, and (F) standard (Saxagliptin).
DPP-4 indicates dipeptidyl peptidase-4.

3-O-(6ʺ-malonyl-glucoside) formed hydrogen bond contacts 
with Asp48, Arg221, Ala217, Ser216, and Cys215 as well as a 
salt bridge with Arg221. Cyanidin 3-(sinapoyl)-diglucoside-
5-glucoside and delphinidin 3,5-O-diglucoside formed interac-
tions with Asp181, Lys116, and Gln262. In addition, an 
interaction was seen with Asp48 in both compounds; cyanidin 
3-(sinapoyl)-diglucoside-5-glucoside through salt bridge and 
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delphinidin 3,5-O-diglucoside through hydrogen bond. The 
standard (Ertiproafib) had hhydrogen bond interactions with 
Arg24 and Gln262 in the binding pocket of PTP-1B.

Delphinidin 3,5-O-diglucoside, Malvin, Nasunin, and 
cyanidin-3-(6-acetylglucoside) established contacts with 

His305 and Asp300 in the active pocket of alpha-amylase. All 
but Nasunin had hydrogen bond contact with Gln63 and 
formed a pi-cation interaction with at least one of His305 and 
Trp59. In addition, all the lead compounds except delphinidin 
3,5-O-diglucoside had interacted with Asp197. Likewise, 

Figure 2. 2D amino acid interaction of top-scoring compounds with PTP1B: (A) cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside), (B) delphinidin 

3-O-(6ʺ-malonyl-glucoside), (C) cyanidin 3-O-(6ʺ-malonyl-glucoside), (D) cyanidin 3-(sinapoyl)-diglucoside-5-glucoside, (E) delphinidin 3,5-O-diglucoside, 

and (F) standard (Ertiprotafib).
PTP1B indicates protein tyrosine phosphatase 1B.
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cyanidin 3-O-xylosyl-rutinoside made additional contacts 
with Glu233, Asp356, Trp59, and Thr163, cyanidin-3-(6-
acetylglucoside), with Asp 336 and Glu233, Nasunin, with 
Asp147 and Gly306, Malvin with Tyr151 and Glu233, and 
delphinidin 3,5-O-diglucoside with Asp356. In the same vein, 

Acarbose formed hydrogen bond interactions with residues 
Glu233, Asp197, His209, Arg195, Thr163, and Asp147 while 
interacing with the target enzyme.

Of all interactions, hydrogen bond is one of the most stabi-
lizing and most specific interactions in living systems.36 The 

Figure 3. 2D amino acid interactions of top-scoring compounds with α amylase: (A) delphinidin 3,5-O-diglucoside, (B) Malvin, (C) Nasunin, (D) cyanidin-

3-(6-acetylglucoside), (E) cyanidin 3-O-xylosyl-rutinoside, and (F) standard (Acarbose).
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major effects and responsibilities of hydrogen bond interaction 
in ligand binding include but are not limited to ligand-protein 
binding recognition and protein affinity for ligands.36 Salt 
bridges are also another form of noncovalent interaction 
between 2 charged molecules. In ligand-receptor interactions, 
the proton may move from a carboxylic acid side chain to an 
amine portion (or the amino acid functional group) or vice 
versa.31 π-stacking interactions between aromatic rings con-
tribute massively to ligand binding and play an essential role in 
medicinal chemistry.33,37 The distinct π-electron cloud over 

and below the rings offer different interaction prospect and 
give room for overcoming particular problems in target 
recognition.37,38

Pharmacophore model

The pharmacophore model generated from the molecular 
interactions of the compounds with the target proteins showed 
that hydrogen bonds (acceptor and donor) and aromatic rings 
are the major features that contribute to the strong binding 

Table 2. The molecular interactions of the top-scoring compounds with the target proteins.

COMPOUNDS h-BOND PI-PI STACkING PI CATION SALT BRIDGE

DPP4

Cyanidin 3-(p-coumaroyl)-diglucoside-
5-glucoside

TYR662, TYR547, GLN553, LYS554, 
GLY741, PhE357, ARG358, GLU 206

TRP629, PhE357 ARG125 GLU206

Malvin GLN553, GLU205, GLU206, SER209, 
ARG669

– ARG125  

Nasunin ARG429, TYR456, GLU361, SER209, 
GLU205

– – –

Cyanidin 3-O-xylosyl-rutinoside GLU205, GLU206, PhE357, ARG358, 
GLN553, TYR585

– – –

Cyanidin 3-O-rutinoside PhE357, ARG358, TYR585, GLU206, 
SER209

PhE357, TYR666 – –

Saxagliptin GLU205, GLU206 – – –

 PTP1B

Cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-
glucoside)

ARG47, ASP48, ASP181, PhE182, 
CYS215, SER216, ALA217, ARG221, 
GLN266

– – ARG 221

Delphinidin 3-O-(6ʺ-malonyl-glucoside) ASP48, ARG221, ALA217, SER216, 
CYS215

– – ARG221

Cyanidin 3-O-(6ʺ-malonyl-glucoside) ASP48, ARG221, ALA217, SER216, 
CYS215

– – ARG221

Cyanidin 3-(sinapoyl)-diglucoside-5-
glucoside

TYR20, ARG24, ASP181, LYS116, 
LYS120, GLN262

– – ASP48

Delphinidin 3,5-O-diglucoside LYS116, ASP181, ARG47, ASP48, 
GLN262

– – –

Ertiproafib ARG24, GLN262 – – ARG24

 ALPhA-AMYLASE

Delphinidin 3,5-O-diglucoside ASP356, hIS305, ASP300, GLN63 TRP59, hIS305 TRP59, hIS305 –

Malvin TYR151, ASP300, ASP197, GLU233, 
GLN63, hIS305

– TRP59  

Nasunin ASP147, ASP300, hIS305, GLY306, 
ThR163, ASP197

– – –

Cyanidin-3-(6-acetylglucoside) ASP336, hIS305, ASP197, ASP300, 
GLU233, GLN63

TRP59, hIS305 TRP59, hIS305 –

Cyanidin 3-O-xylosyl-rutinoside ASP197, GLU233, ASP356, TRP59, 
GLN63, ThR163

– hIS305 –

Acarbose GLU233, ASP197, hIS209, ARG195, 
ThR163, ASP147

– – –

Abbreviations: DPP-4, dipeptidyl peptidase-4; PTP1B, Protein tyrosine phosphatase 1B.
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Table 3. SWISSADME and Pro-Tox II predicted physicochemical properties.

COMPOUNDS MOLECULAR 
WEIGhT (G/MOL)

MOLECULAR 
REFRACTIVITY

TPSA CONSENSUS 
LOG P

ESOL LOG S ESOL CLASS

C1 919.81 214.17 378.04 −2.85 −3.92 Soluble

C2 655.58 151.38 270.82 −2.9 −1.97 Very soluble

C3 905.78 210.23 378.04 −2.59 −3.77 Soluble

C4 727.64 165.93 311.28 −3.53 −1.4 Very soluble

C5 595.53 139.52 252.36 −3.22 −1.73 Very soluble

C6 697.57 156.99 315.96 −2.94 −2.58 Soluble

C7 549.41 123.65 256.71 −1.43 −1.88 Very soluble

C8 549.41 123.65 256.71 −1.43 −1.88 Very soluble

C9 979.86 227.16 396.5 −2.81 −4.11 Moderately soluble

C10 627.52 142.44 298.82 −3.3 −1.53 Very soluble

C11 491.42 118.03 199.51 −0.75 −2.93 Soluble

Abbreviations: C1, cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside; C2, Malvin; C3, Nasunin; C4, cyanidin 3-O-xylosyl-rutinoside; C5, cyanidin 3-O-rutinoside; C6, 
cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside); C7, delphinidin 3-O-(6ʺ-malonyl-glucoside); C8, cyanidin 3-O-(6ʺ-malonyl-glucoside); C9, cyanidin 3-(sinapoyl)-
diglucoside-5-glucoside; C10, delphinidin 3,5-O-diglucoside; C11, cyanidin-3-(6-acetylglucoside); TPSA, total polar surface area; ESOL, estimated solubility.

(Figure 4). The precise details of the molecular architecture of 
the functional groups that actively contribute to the binding of 
ligands to the binding pockets of the target proteins were 
obtained. Although the accuracy of a pharmacophore model 
based on experimentally active compounds is deemed to be 
higher, predictive models are also significant.39

Structure-based ADMET profiling

The predicted physicochemical properties of the lead compounds 
are presented in Table 3. The molecular weight of the compounds 
ranges from 491.42 to 979 g/mol with C11 (cyanidin-3-(6-acetyl-
glucoside)) having the least molecular weight and C9 (cyanidin 
3-(sinapoyl)-diglucoside-5-glucoside) the highest. Furthermore, 
the predicted consensus log P which is an arithmetic mean of 5 
different models ranges from −3.53 to −0.75. The log P value is 
a measure of the lipophilicity of small molecular weight com-
pounds. A high log P value represents a high degree of 

lipophilicity and vice versa.40,41 Oral drug candidates are 
expected to have a sufficient level of lipophilicity to enable 
them to cross the intestine into the systemic circulation.42,43

Also, the Extimated solubility (ESOL) model of water solu-
bility showed that the compounds have an ESOL Log S value 
in the range of −4.11 to −1.4 with C4 (cyanidin 3-O-xylosyl-
rutinoside) being the most soluble. As a result, C2, C4, C5, C7, 
C8, and C10 are predicted to be very soluble. However, C1, C3, 
C6, and C11 are soluble and C9 is predicted to be moderately 
soluble. The ESOL Log S value is a technical representation of 
the extent to which a compound is water soluble. In addition to 
a sufficient level of lipophilicity, a drug candidate should have a 
promising degree of water solubility to aid its movement in the 
hydrophilic condition of the systemic circulation. However, the 
log P value of a compound has an inverse relationship with the 
log S value.44,45 Theoretically, the log P value increases with 
decreasing log S value. This implies that the more lipophilic a 
compound is, the less water soluble it becomes.

Figure 4. Pharmacophore model of the top-scoring ligands: (A) DPP4-cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside complex, (B) PTP1B—cyanidin 

3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside) complex, and (C) alpha-amylase—delphinidin 3,5-O-diglucoside complex.
DPP-4 indicates dipeptidyl peptidase-4; PTP1B, protein tyrosine phosphatase 1B.
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The drug-likeness prediction and bioavailability score of the 
test compounds are shown in Table 4. Two rule-based filters are 
adopted for the drug-likeness prediction, namely the Lipinski 
rule of 5 and the Egan rule-based filter. All the compounds 
violated 3 of the Lipinski rule-based filter except C11 which 
violated 2. The major violation which is general to almost all 
the compounds is a molecular weight of more than 500 g/mol. 
The rule states that drug candidates should have a molecular 
weight less than that value. However, lead optimization may be 
carried out to reduce the bulkiness of the compounds and still 
retain the chemical architecture that contributed to the bind-
ing. Furthermore, the bioavailability score of the compounds is 

mostly 0.17 except for C7 which has a score of 0.11. Abbot 
Bioavailability Score is the likelihood of a compound having 
greater than 10% bioavailability in rats or measurable Caco-2 
permeability.46 Precisely, a bioavailability score of 0.17 suggests 
that the compound has a 17% chance of having greater than 
10% bioavailability in rats or measurable Caco-2 permeability.

The pharmacokinetic profiles of the test compounds are pre-
sented in Table 5. The result showed that none of the compounds 
has a structural orientation that will enable it permeate the blood-
brain barrier. Except the target of a drug is the brain, permeation 
of the blood-brain barrier by the drug is capable of inducing an 
adverse drug reaction. Furthermore, C1, C3, C4, and C9 are 

Table 4. Drug-likeness and bioavailability.

COMPOUNDS LIPINSkI #VIOLATIONS EGAN #VIOLATIONS BIOAVAILABILITY SCORE

C1 3 1 0.17

C2 3 1 0.17

C3 3 1 0.17

C4 3 1 0.17

C5 3 1 0.17

C6 3 1 0.17

C7 3 1 0.11

C8 3 1 0.11

C9 3 1 0.17

C10 3 1 0.17

C11 2 1 0.17

Abbreviations: C1, cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside; C2, Malvin; C3, Nasunin; C4, cyanidin 3-O-xylosyl-rutinoside; C5, cyanidin 3-O-rutinoside;  
C6, cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside); C7, delphinidin 3-O-(6ʺ-malonyl-glucoside); C8, cyanidin 3-O-(6ʺ-malonyl-glucoside); C9, cyanidin 3-(sinapoyl)-
diglucoside-5-glucoside; C10, delphinidin 3,5-O-diglucoside; C11, cyanidin-3-(6-acetylglucoside).

Table 5. Predicted pharmacokinetic properties f the test compounds.

COMPOUNDS BBB 
PERMEANT

PGP 
SUBSTRATE

CYP1A2 
INhIBITOR

CYP2C19 
INhIBITOR

CYP2C9 
INhIBITOR

CYP2D6 
INhIBITOR

CYP3A4 
INhIBITOR

C1 No Yes No No No No No

C2 No No No No No No No

C3 No Yes No No No No No

C4 No Yes No No No No No

C5 No No No No No No No

C6 No No No No No No No

C7 No No No No No No No

C8 No No No No No No No

C9 No Yes No No No No No

C10 No No No No No No No

C11 No No No No No No No

Abbreviations: C1, cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside; C2, Malvin; C3, Nasunin; C4, cyanidin 3-O-xylosyl-rutinoside; C5, cyanidin 3-O-rutinoside;  
C6, cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside); C7, delphinidin 3-O-(6ʺ-malonyl-glucoside); C8, cyanidin 3-O-(6ʺ-malonyl-glucoside); C9, cyanidin 3-(sinapoyl)-
diglucoside-5-glucoside; C10, delphinidin 3,5-O-diglucoside; C11, cyanidin-3-(6-acetylglucoside); BBB, Blood-Brain Barrer.



Akinnusi et al 11

predicted to be substrates of permeability glycoprotein. 
Substrates of permeability glycoprotein are actively effluxed out 
of the cell by the protein, and bioaccumulation is reduced in the 
process. Interestingly, none of the compounds showed an inhibit-
ing potential against the cytochrome P450 isoforms predomi-
nantly involved in phase I biotransformation. Inhibition of any of 
these isoforms is likely to elicit a drug-drug interaction.47

The predicted oral LD50 (mg/kg), Pro tox II toxicity, and 
the accuracy (%) of the predictive model are presented in 

Table 6. All the test compounds have an Oral LD50 value of 
5000 mg/kg and fall into the fifth class (Class V: may be 
harmful if swallowed (2000 < LD50 ⩽ 5000)) of the pro-tox 
II toxicity index.

The 5 different categories namely of Pro tox II toxicological 
study; oral acute toxicity, organ toxicity, toxicological, and gen-
otoxicological endpoints, toxicological pathways, and stress 
response pathway are presented in Table 7. The result showed that 
none of the compounds is hepatotoxic and carcinogenic. However, 

Table 6. Oral acute toxicity predictive model.

COMPOUNDS ORAL LD50 (MG/kG) PREDICTION ACCURACY (%)

C1 A 69.26

C2 A 69.26

C3 A 69.26

C4 A 70.97

C5 A 70.97

C6 A 69.26

C7 A 69.26

C8 A 69.26

C9 A 69.26

C10 A 69.26

C11 A 69.26

Abbreviations: A, 5000 mg/kg; C1, cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside; C2, Malvin; C3, Nasunin; C4, cyanidin 3-O-xylosyl-rutinoside; C5, cyanidin 
3-O-rutinoside; C6, cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside); C7, delphinidin 3-O-(6ʺ-malonyl-glucoside); C8, cyanidin 3-O-(6ʺ-malonyl-glucoside); C9, cyanidin 
3-(sinapoyl)-diglucoside-5-glucoside; C10, delphinidin 3,5-O-diglucoside; C11, cyanidin-3-(6-acetylglucoside).

Table 7. Organ toxicity, toxicological, and genotoxicological endpoints, toxicological pathways and stress response pathway activities.

A B C D E F G h I J k L

C1 – – – – – – – – – – – –

C2 – – – + – – – – – – – –

C3 – – – – – – – – – – – –

C4 – – – – – – – – – – – –

C5 – – – – – – – – – – – –

C6 – – + – – – – – – – – –

C7 – – – – – – – – – – – –

C8 – – – – – – – – – – – –

C9 – – – – – – – – – – – –

C10 – – – – – – – – – – – –

C11 – – – – – – – – – – – –

Abbreviations: A, hepatotoxicity; B, carcinogenicity; C, mutagenicity; C1, cyanidin 3-(p-coumaroyl)-diglucoside-5-glucoside; C2, Malvin; C3, Nasunin; C4, cyanidin 
3-O-xylosyl-rutinoside; C5, cyanidin 3-O-rutinoside; C6, cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside); C7, delphinidin 3-O-(6ʺ-malonyl-glucoside); C8, cyanidin 
3-O-(6ʺ-malonyl-glucoside); C9, cyanidin 3-(sinapoyl)-diglucoside-5-glucoside; C10, delphinidin 3,5-O-diglucoside; C11, cyanidin-3-(6-acetylglucoside); D, cytotoxicity; 
E, Aryl hydrocarbon receptor (AhR); F, androgen receptor (AR); G, androgen receptor ligand binding domain (AR-LBD); h, estrogen receptor alpha (ER); I, estrogen 
receptor ligand binding domain (ER-LBD); J, heat shock factor response element (hSE); k, mitochondrial membrane potential (MMP); L, phosphoprotein (tumor 
supressor) p53; +, active; –, inactive.
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C6 (cyanidin 3-O-(6ʺ-malonyl-3ʺ-glucosyl-glucoside)) was 
found to be mutagenic and C2 (Malvin), cytotoxic ; LD, Lethal 
Dose.

In the same vein, all the compounds showed no activity 
against the studied stress response pathway such as Heat shock 
factor response element, mitochondrial membrane potential, 
and phosphoprotein (tumor suppressor) p53, and may not give 
rise to reactive oxygen species (ROS).48-50 Adaptive stress 
response pathways are signaling pathways that ultimately result 
in the transcriptional activation of genes that protect the integ-
rity of a cell under stressful conditions.50

Similarly, none of the compounds showed activity against 
the tested nuclear receptor (NR) signaling or toxicological 
pathway descriptors namely; Aryl hydrocarbon receptor 
(AhR), androgen receptor (AR), androgen receptor ligand 
binding domain (AR-LBD), estrogen receptor alpha (ER), 
and estrogen receptor ligand binding domain (ER-LBD). 
Nuclear receptor signaling is activated to maintain develop-
ment, cellular growth, inflammation, and metabolism.51

Conclusion
Anthocyanins on several occasions have been considered a 
class of compounds with numerous health benefits. In this 
study, the antidiabetic potential of anthocyanins was pre-
dicted using an integrated computer-aided approach. The 
reported compounds showed promising binding affinity to 
the protein targets examined. Further ADMETox screening 
anticipates no significant toxic activity against several toxicity 
descriptors. The reported compounds could be explored as 
antidiabetic agents with individual and/or combined activity 
to mitigate or eradicate glucose fluctuations; however, further 
analyses must be carried out to validate these findings.

Author Contributions
PAA, SOO—study concept and design; Adebowale AA, 
Aderemi AA—Target retrieval/Data collection; PAA, 
Adebowale AA, SOO—Software and analysis; OLO, AOA, 
APE—Original Draft; SAS, OYA—Supervision, Review & 
Editing. All authors reviewed the results and approved the final 
version of the manuscript.

RefeRenCes
 1. Jaacks LM, Siegel KR, Gujral UP, Narayan KM. Type 2 diabetes: a 21st century 

epidemic. Best Pract Res Clin Endocrinol Metab. 2016;30:331-343. doi:10.1016/j.
beem.2016.05.003

 2. DeFronzo RA, Ferrannini E, Groop L, et al. Type 2 diabetes mellitus. Nat Rev 
Dis Primers. 2015;1:15019. doi:10.1038/nrdp.2015.19

 3. Deacon CF, Carr RD, Holst JJ. DPP-4 inhibitor therapy: new directions in the 
treatment of type 2 diabetes. Front Biosci. 2008;13:1780-1794. doi:10.2741/2799

 4. Figueiredo A, Leal EC, Carvalho E. Protein tyrosine phosphatase 1B inhibition 
as a potential therapeutic target for chronic wounds in diabetes. Pharmacol Res. 
2020;159:104977. doi:10.1016/j.phrs.2020.104977

 5. Cho H. Protein tyrosine phosphatase 1B (PTP1B) and obesity. Vitam Horm. 
2013;91:405-424. doi:10.1016/B978-0-12-407766-9.00017-1

 6. Bradshaw RA, Dennis EA, eds. Handbook of Cell Signaling. Academic Press; 
2009.

 7. Zhang J, Li L, Li J, et al. Protein tyrosine phosphatase 1B impairs diabetic wound heal-
ing through vascular endothelial growth factor receptor 2 dephosphorylation. 
Arterioscler Thromb Vasc Biol. 2015;35:163-174. doi:10.1161/ATVBAHA.114.304705

 8. Shi K, Egawa K, Maegawa H, et al. Protein-tyrosine phosphatase 1B associates 
with insulin receptor and negatively regulates insulin signaling without receptor 
internalization. J Biochem. 2004;136:89-96. doi:10.1093/jb/mvh094

 9. Galic S, Hauser C, Kahn BB, et al. Coordinated regulation of insulin signaling 
by the protein tyrosine phosphatases PTP1B and TCPTP. Mol Cell Biol. 
2005;25:819-829. doi:10.1128/MCB.25.2.819-829.2005

 10. Liu ZQ , Liu T, Chen C, et al. Fumosorinone, a novel PTP1B inhibitor, activates 
insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic 
effect in diabetic KKAy mice. Toxicol Appl Pharmacol. 2015;285:61-70. 
doi:10.1016/j.taap.2015.03.011

 11. Paudel P, Yu T, Seong SH, Kuk EB, Jung HA, Choi JS. Protein tyrosine phos-
phatase 1B inhibition and glucose uptake potentials of mulberrofuran G, albanol 
B, and kuwanon G from root bark of morus alba L. in insulin-resistant HepG2 
cells: an in vitro and in silico study. Int J Mol Sci. 2018;19:1542. doi:10.3390/
ijms19051542

 12. Röhrborn D, Wronkowitz N, Eckel J. DPP4 in diabetes. Front Immunol. 
2015;6:386. doi:10.3389/fimmu.2015.00386

 13. Pospisilik JA, Stafford SG, Demuth H-U, et al. Long-term treatment with the 
dipeptidyl peptidase IV inhibitor P32/98 causes sustained improvements in glu-
cose tolerance, insulin sensitivity, hyperinsulinemia, and β-cell glucose respon-
siveness in VDF (fa/fa) Zucker rats. Diabetes. 2002;51:943-950.

 14. Kaur N, Kumar V, Nayak SK, Wadhwa P, Kaur P, Sahu SK. Alpha-amylase as 
molecular target for treatment of diabetes mellitus: a comprehensive review. 
Chem Biol Drug Des. 2021;98:539-560. doi:10.1111/cbdd.13909

 15. Agarwal P, Gupta R. Alpha-amylase inhibition can treat diabetes mellitus. Res 
Rev J Med Health Sci. 2016;5:1-8.

 16. Kazeem MI, Ogunbiyi JV, Ashafa AO. In vitro studies on the inhibition of α-
amylase and α-glucosidase by leaf extracts of picralima nitida (Stapf). Trop J 
Pharm Res. 2013;12:719-725.

 17. Hemlata B, Pornima G, Tukaram K, Pankaj B. In vitro anti-amylase activity of 
some Indian dietary spices. J Appl Biol Biotechnol. 2019;7:7-4.

 18. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K. alpha-Glucosi-
dase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pig-
ments with potent inhibitory activity. J Agric Food Chem. 2001;49:1948-1951. 
doi:10.1021/jf001251u

 19. Akkarachiyasit S, Charoenlertkul P, Yibchok-Anun S, Adisakwattana S. Inhibi-
tory activities of cyanidin and its glycosides and synergistic effect with acarbose 
against intestinal α-glucosidase and pancreatic α-amylase. Int J Mol Sci. 
2010;11:3387-3396. doi:10.3390/ijms11093387

 20. Chen JG, Wu SF, Zhang QF, Yin ZP, Zhang L. α-glucosidase inhibitory effect 
of anthocyanins from Cinnamomum camphora fruit: inhibition kinetics and 
mechanistic insights through in vitro and in silico studies. Int J Biol Macromol. 
2020;143:696-703. doi:10.1016/j.ijbiomac.2019.09.091

 21. Shoichet BK, McGovern SL, Wei B, Irwin JJ. Lead discovery using molecu-
lar docking. Curr Opin Chem Biol. 2002;6:439-446. doi:10.1016/s1367 
-5931(02)00339-3

 22. Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432:862-865. 
doi:10.1038/nature03197

 23. Akinnusi PA, Olubode SO, Salaudeen WA. Molecular binding studies of antho-
cyanins with multiple antiviral activities against SARS-CoV-2. Bull Natl Res 
Cent. 2022;46:102. doi:10.1186/s42269-022-00786-0

 24. Genheden S, Ryde U. Comparison of end-point continuum-solvation methods 
for the calculation of protein-ligand binding free energies. Proteins. 2012;80: 
1326-1342. doi:10.1002/prot.24029

 25. Wang E, Sun H, Wang J, et al. End-point binding free energy calculation with 
MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem 
Rev. 2019;119:9478-9508. doi:10.1021/acs.chemrev.9b00055

 26. Bai Q , Tan S, Xu T, Liu H, Huang J, Yao X. MolAICal: a soft tool for 3D drug 
design of protein targets by artificial intelligence and classical algorithm. Brief 
Bioinform. 2021;22:bbaa161. doi:10.1093/bib/bbaa161

 27. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate phar-
macokinetics, drug-likeness and medicinal chemistry friendliness of small mol-
ecules. Sci Rep. 2017;7:42717. doi:10.1038/srep42717

 28. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the 
prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46:W257-W263. 
doi:10.1093/nar/gky318

 29. Huang N, Kalyanaraman C, Irwin JJ, Jacobson MP. Physics-based scoring of 
protein-ligand complexes: enrichment of known inhibitors in large-scale virtual 
screening. J Chem Inf Model. 2006;46:243-253. doi:10.1021/ci0502855

 30. Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies 
of members of a series of kinase inhibitors using molecular docking and 
MM/GBSA scoring. J Med Chem. 2006;49:4805-4808. doi:10.1021 
/jm060522a



Akinnusi et al 13

 31. Stone AJ. The Theory of Intermolecular Forces. Oxford University Press; 1997.
 32. Kurczab R, Śliwa P, Rataj K, Kafel R, Bojarski AJ. Salt bridge in ligand-protein 

complexes-systematic theoretical and statistical investigations. J Chem Inf Model. 
2018;58:2224-2238. doi:10.1021/acs.jcim.8b00266

 33. Bissantz C, Kuhn B, Stahl M. A medicinal chemist’s guide to molecular interac-
tions [published correction appears in J Med Chem. 2010 Aug 26;53(16):6241]. J 
Med Chem. 2010;53:5061-5084. doi:10.1021/jm100112j

 34. Kim D, Wang L, Beconi M, et al. (2 R)-4-Oxo-4-[3-(trifluoromethyl)-5, 
6-dihydro [1, 2, 4] triazolo [4, 3-a] pyrazin-7 (8 H)-yl]-1-(2, 4, 5-trifluorophe-
nyl) butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for 
the treatment of type 2 diabetes. Med Chem. 2005;48:141.

 35. Yoshida T, Akahoshi F, Sakashita H, et al. Fused bicyclic heteroarylpiperazine-
substituted L-prolylthiazolidines as highly potent DPP-4 inhibitors lacking the 
electrophilic nitrile group. Bioorg Med Chem 2012;20:5033-5041.

 36. Kubinyi H. Hydrogen bonding: the last mystery in drug design? In:  Testa B, van 
de Waterbeemd H, Folkers G, Guy R, eds. Pharmacokinetic Optimization in Drug 
Research: Biological, Physicochemical, and Computational Strategies Wiley Online 
Library. 2001:513-524.

 37. Meyer EA, Castellano RK, Diederich F. Interactions with aromatic rings in 
chemical and biological recognition [published correction appears in Angew 
Chem Int Ed Engl. 2003 Sep 15;42(35):4120]. Angew Chem Int Ed Engl. 
2003;42:1210-1250. doi:10.1002/anie.200390319

 38. Meanwell NA. A synopsis of the properties and applications of heteroaromatic 
rings in medicinal chemistry. Adv Heterocyclic Chem. 2017;123:245-361.

 39. Akinnusi PA, Olubode SO, Alade AA, et al. A molecular modeling approach for 
structure-based virtual screening and identification of novel anti-hypercholes-
terolemic agents from Grape. Inf Med Unlock. 2022;32:101065.

 40. Adeniran OY, Akinnusi PA, Osadipe TJ, Olubode SO. Computational investi-
gation of compounds of allium cepa as potential inhibitors of transforming 
growth factor-beta signaling in cancer. Sci Lett. 2022;10:32-36.

 41. Olubode SO, Mutolib B, Akinnusi PA, et al. Computational study of the inhibi-
tory potential of Gongronema latifolium (benth) leave on farnesyl pyrophosphate 
synthase, a target enzyme in the treatment of osteoporosis. A molecular model-
ling approach. J Med Herbs. 2022;2213:39-47.

 42. Olubode SO, Bankole MO, Akinnusi PA, et al. Molecular modeling studies of 
natural inhibitors of androgen signaling in prostate cancer. Cancer Inform. 
2022;21:11769351221118556.

 43. Adebesin AO, Ayodele AO, Omotoso O, Akinnusi PA, Olubode SO. Computa-
tional evaluation of bioactive compounds from Vitis vinifera as a novel β-catenin 
inhibitor for cancer treatment. Bull Natl Res Centre. 2022;46:1-9.

 44. Akinnusi PA, Olubode SO, Adebesin AO, et al. Structure-based scoring of 
anthocyanins and molecular modeling of PfLDH, PfDHODH, and  
PfDHFR reveal novel potential P. falciparum inhibitors. Inf Med Unlock. 
2023;38:101206.

 45. Akinnusi PA, Olubode SO, Adebesin AO, Nana TA, Shodehinde SA. Discovery 
of promising inhibitors of epidermal growth factor receptor (EGFR), human epi-
dermal growth factor receptor 2 (HER2), estrogen receptor (ER), and phospha-
tidylinositol-3-kinase a (PI3Ka) for personalized breast cancer treatment. Cancer 
Inform. 2022;21:11769351221127862.

 46. Martin YC. A bioavailability score. J Med Chem. 2005;48:3164-3170. 
doi:10.1021/jm0492002

 47. Hollenberg PF. Characteristics and common properties of inhibitors, inducers, 
and activators of CYP enzymes. Drug Metab Rev. 2002;34:17-35. doi:10.1081/
dmr-120001387

 48. Kang KW, Lee SJ, Kim SG. Molecular mechanism of nrf2 activation by oxida-
tive stress. Antioxid Redox Signal. 2005;7:1664-1673. doi:10.1089/ars.2005 
.7.1664

 49. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmen-
tal stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 
2007;47:89-116. doi:10.1146/annurev.pharmtox.46.120604.141046

 50. Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway sys-
tem as a sentinel ensemble in toxicological screening. Toxicol Sci. 2009;111: 
202-225. doi:10.1093/toxsci/kfp140

 51. Biswas S, Talapatra SN. Microbial volatile organic compounds as indoor air pol-
lutants: prediction of acute oral toxicity, hepatotoxicity, immunotoxicity, genetic 
toxicity endpoints, nuclear receptor signalling and stress response pathways by 
using protox–II webserver. J Adv Sci Res. 2019;10:186-195.


