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ABSTRACT A fundamental problem of asexual adaptation is that beneficial substitutions are not efficiently accumulated in large
populations: Beneficial mutations often go extinct because they compete with one another in going to fixation. It has been argued that
such clonal interference may have led to the evolution of sex and recombination in well-mixed populations. Here, we study clonal
interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection
pressure. Clonal interference is much more prevalent with spatial structure than without, due to the slow wave-like spread of beneficial
mutations through space. We find that the adaptation speed of asexuals saturates when the linear habitat size exceeds a characteristic
interference length, which becomes shorter with smaller migration and larger mutation rate. The limiting speed is proportional to m1/2

and m1/3 in linear and planar habitats, respectively, where the mutational supply m is the product of mutation rate and local population
density. This scaling and the existence of a speed limit should be amenable to experimental tests as they fall far below predicted
adaptation speeds for well-mixed populations (that scale as the logarithm of population size). Finally, we show that not only re-
combination, but also long-range migration is a highly efficient mechanism of relaxing clonal competition in structured populations.
Our conservative estimates of the interference length predict prevalent clonal interference in microbial colonies and biofilms, so clonal
competition should be a strong driver of both genetic and spatial mixing in those contexts.

ONE of the most basic questions of evolutionary biology
that can be studied in controlled evolution experiments

is: How fast do microbial populations adapt to new environ-
ments by the accumulation of beneficial mutations? Tradi-
tionally, it was thought that the accumulation process is
limited by the supply of beneficial mutations (Novick and
Szilard 1950; Atwood et al. 1951). If a rare beneficial mu-
tation arises and becomes sufficiently frequent, it will ex-
pand rapidly until it is present in all individuals of the
population. After the completion of such a selective sweep,
the population is stationary again until the next beneficial
mutation arises. The accumulation rate of beneficial muta-
tion should thus be controlled by the appearance of new
beneficial mutations, which is proportional to the popula-
tion size and the mutation rate (Sniegowski and Gerrish
2010). This scenario of “periodic selection” crucially rests

on the assumption that mutation rates are so small that
beneficial mutations occur strictly sequentially. Evolution
experiments of the last decade have shown, however, that
beneficial mutation rates in microbes can be as large as 5 ·
1025 per genome per generation in the bacterium Escheri-
chia coli with typical fitness effects in the range of a few
percent (Desai et al. 2007; Perfeito et al. 2007; Sniegowski
and Gerrish 2010). These high mutation rates have severely
restricted the parameter range of periodic selection. Multi-
ple selective sweeps, simultaneously in progress, are char-
acteristic of a well-mixed microbial population containing
.104 cells (see, e.g., estimates in Appendix D). In the past,
most evolution experiments had effective population sizes
exceeding this threshold, including the Lenski experiment,
in which the bacterium E. coli was evolved for .50,000
generations to adapt to minimal medium (De Visser et al.
1999; Miralles et al. 1999; Barrick et al. 2009). Accordingly,
these experiments did not reveal a linear relation between
adaptation speed and population size, but instead a much
weaker dependence indicative of a mechanism of “diminish-
ing returns” (De Visser et al. 1999; Shaver et al. 2002). The
reason for this behavior is that multiple beneficial mutations
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arise on different genetic backgrounds simultaneously and
compete with one another for sweeping through the popu-
lation. As a consequence, only a small number of arising
beneficial mutations can go to fixation, and most of them
are lost in the competition between clones. It was first noted
by Fisher (1930) and Muller (1932) that sex relaxes clonal
competition and speeds up the process of adaptation as it
allows beneficial mutations to be combined in a single ge-
nome even if they first appeared in different lineages. Today,
this Fisher–Muller advantage of sex is one of the most im-
portant explanation for why most organisms engage in some
form of genetic exchange.

In recent years, extensive research efforts have been
invested in modeling clonal interference (Rouzine et al. 2003;
Desai and Fisher 2007; Park and Krug 2007; Hallatschek
2011) with the goal to quantitatively explain adaptation
speeds and genetic diversities measured for well-mixed mi-
crobial populations (Gerrish and Lenski 1998; Desai et al.
2007). Although theoretical models depend on largely un-
known effect distributions of beneficial mutations, they all
predict that key quantities of interest, including the speed of
adaptation and the genetic diversity, depend only weakly
(logarithmically) on population size and mutation rates.
While these predictions shape our current view of adapta-
tion in large asexual populations, they primarily apply to
well-mixed test tube populations of microbes. Many natu-
rally occurring microbial populations attach to surfaces in
the form of biofilms exhibiting a pronounced spatial struc-
ture (Tolker-Nielsen and Molin 2000; Watnick and Kolter
2000). Even in laboratories microbes are routinely grown on
agar plates by which they acquire spatial structure. More
complicated spatial structure is relevant to the evolution of
viral populations such as influenza and severe acute respi-
ratory syndrome (SARS), which spread in space via human
transportation networks (Hufnagel et al. 2004; Eggo et al.
2011). Moreover, there is increasing evidence that spatial
structure is also important to the evolutionary processes in-
volved in cancer progression (Greaves et al. 2006; Merlo
et al. 2006; Salk et al. 2009). One might thus wonder
whether clonal interference is relevant to spatially extended
populations and, if so, whether its effect on adaptation dif-
fers from that in well-mixed populations.

Although some simulation studies have considered the
case of structured populations with one individual per deme
(Gordo and Campos 2006; Gonçalves et al. 2007), a crucial
fact about spatially continuous populations has been ignored
so far: Beneficial mutations spread in the form of waves, first
described by Fisher (1937) and Kolmogorov et al. (1937).
Since these adaptation waves spread at a constant speed,
mutant clones grow linearly with time and hence much
slower than they would if they grew in well-mixed popula-
tions. The slowness of selective sweeps has the consequence
that growing clones are much more likely to interfere than in
well-mixed populations. The link between slow adaptive
waves and the potential importance of clonal interference
was in fact anticipated by Fisher (1937) in his seminal article

on “The wave of advance of advantageous genes.” Therein,
he considers the concrete example of a mutation with selec-
tive advantage s = 1% spreading along a continuously occu-
pied shoreline. He estimates that spreading over 100 miles
might take 10,000–100,000 generations and concludes that “.
. . at any one time, the number of such waves of selective
advance, simultaneously in progress, must be large” (Fisher
1937, p. 367). This suggests to consider a scenario of clonal
interference characterized by many interfering adaptation
waves, as illustrated in Figure 1B.

In the following, we will use simulations and analytical
arguments to answer the following key questions: What is
the effect of interfering Fisher waves on the speed of
adaptation and the genetic diversity in an asexual popula-
tion? Are there simple mechanisms of mitigating clonal
interference and thus accelerating adaptation? Are these
effects relevant to microbial colonies and biofilms, and
perhaps measurable in evolution experiments?

Figure 1 Simulations of asexual adaptation in a spatially extended popu-
lation with absorbing boundary conditions. Stars denote the spatial location
(horizontal axis) and the instant of time (vertical axis) at which new bene-
ficial mutations become established. These events give rise to new mutant
subpopulations (“clones”), which expand by waves traveling at a constant
mean speed. Two drastically different adaptation scenarios are shown: (A)
Periodic selection. When beneficial mutations arise sufficiently rarely, muta-
tions sweep strictly sequentially because the waiting time for a new bene-
ficial mutation exceeds the “fixation” time needed for a mutation to spread
through the entire population. (B) Clonal interference. When the waiting
time for beneficial mutations is much smaller than the fixation time, differ-
ent clones compete for fixation. As a consequence, beneficial mutations are
wasted (gray) unless they happen to arrive on the winning clone. Simula-
tions were carried out with parameters L = 100, s0 = 0.25, and m = 1025

in A and m = 1024 in B; with exponentially distributed selective coefficients;
and with deterministic adaptation waves.
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Model of Interfering Adaptation Waves

To investigate clonal interference in spatially extended
populations, our model is set up to allow for an efficient
simulation of many adaptation waves simultaneously in
progress. The habitat is modeled by a lattice with periodic
boundary conditions and is always fully populated. Each
lattice site records the genetic identity of the locally domi-
nating clone in a subpopulation. This approximate description
of the gene pool of the whole population, which accelerates
our simulations, is appropriate if subpopulations are strongly
dominated by single clones; see Appendix A andDiscussion for
an explicit range of validity.

We first consider a linear habitat, where the genetic
state of the population is represented by a lattice of length
L. Natural selection is implemented so that adaptation
waves run across sites and shift the spatial extent of dif-
ferent clones: In each generation, the clone at site i is
replaced by the neighboring clone at site j with a probabil-
ity proportional to 1 + sgn(DW)c(|DW|), where c is the
speed of a Fisher wave driven by a fitness difference DW =
Wj 2 Wi, where the sign of DW defines the direction of the
wave.

In effect, the replacement rule generates adaptation
waves traveling at an average velocity given by c = c(DW).
The function c(DW) is chosen to represent the classical Fisher
wave speed cðDWÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
mDW

p
(with migration rate m = 1

4),
valid for large populations with negligible genetic drift
(Fisher 1937; Kolmogorov et al. 1937). Alternatively, we
use the wave speed given by c � 2rmDW for strong noise
(Doering et al. 2003; Hallatschek and Korolev 2009) with
rm = 1, where r represents the population density (see Ap-
pendix A for further details).

To simulate planar habitats, we represent the population
on a hexagonal lattice of size L · L. Natural selection is
implemented such that the clone at site i is replaced by
one of the neighboring clones j with a probability propor-
tional to its fitness, Wj (normalized by the fitness summed
over all neighbors). This replacement rule generates adap-
tation waves traveling at an average velocity c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
mDW

p
with a migration rate of m = 1

4, consistent with the classical
Fisher–Kolmogorov wave theory (see also Appendix A).

New beneficial mutations appear at a rate m per site (m
thus represents the product of population density r and
beneficial mutation rate per genome) and survive genetic
drift with probability 2s (Maruyama 1974), where s is the
selective fitness advantage. When a mutation becomes
established at position i, the fitness Wi of the i-th clone is
updated according to Wi(t) = Wi(t 2 1) � (1 + s). Effects of
epistasis are absent, and the habitat is homogeneous such
that selective pressures are the same throughout the habitat.
The selective fitness advantage s of a mutation is chosen to
be either constant s0 or drawn from a distribution with mean
value s0. We choose either an exponential distribution or
a hump-shaped gamma distribution with shape parameter
k = 2, which are both frequently used in theoretical evolu-

tion models (Eyre-Walker and Keightley 2007). See inset in
Figure 3 for the shape of these distributions.

In our simulations of interfering Fisher waves, we vary
the following parameters: the beneficial mutation rate m per
site, the habitat size L, the relation between speed c of trav-
eling waves and fitness differences (linear habitat only), and
the mean selective fitness advantage s0.

Results

Speed limit for asexuals

Starting from a population devoid of genetic variation, our
model generates a population of genotypes that differ in the
amount and type of beneficial mutations they carry. After
a transient period, in which genetic diversity builds up, the
mean fitness in the population increases at a steady pace by
the fixation of beneficial mutations. We quantify the speed V
of adaptation by the mean fitness increase per generation.

Figure 2 shows the adaptation speed as a function of the
habitat size L for various mutation rates and selection coef-
ficients. For small habitat sizes, the adaptation speed is lin-
ear in the habitat size, which indicates that adaptation is
limited by the occurrence of mutations: Doubling the habitat
size, and thus the influx of beneficial mutations, doubles the
adaptation speed. We thus recover the classical regime of
periodic selection, in which beneficial mutations sweep
strictly sequentially, as illustrated in Figure 1A. In this re-
gime, the dynamics of individual sweeps are irrelevant, and
the mean fitness increase per generation is given by 2NUbs20,
just as in the corresponding well-mixed case. However, as
the habitat size exceeds a characteristic length scale Lc, we
observe that the adaptation speed begins to saturate due to
clonal interference. For very large systems, the adaptation
speed approaches a limiting value Vmax.

These results call for an explanation of the “interference”
scale Lc at which clonal interference sets in and of how the
magnitude of the “speed limit” Vmax depends on the param-
eters, in particular mutation rates and Fisher wave speed. It
turns out that—for constant fitness effects—relatively sim-
ple estimations can be given for both quantities.

The condition for clonal interference, and hence the
characteristic scale Lc, can be determined by comparing two
important timescales. The first timescale estimates how long
it takes for a single adaptation wave to run across the length
L of the habitat. This fixation time is given by tfix � L/c0,
where the traveling speed c0 depends on the selection co-
efficient s0. The second timescale is the waiting time tmut for
a new beneficial mutation to become established, which is
inversely proportional to both the establishment probability
2s and the rate mbLd at which beneficial mutations appear.
The latter depends on the dimension d of the habitat (d = 1
and d= 2 for a linear and a planar habitat, respectively). We
thus obtain the mutation waiting time tmut � (2s0Ldm)21.
Now, the mode of adaptation depends on the relative size
of tfix and tmut: If the fixation time is smaller than the mu-
tation waiting time (tmut , tfix), we expect periodic
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selection. In the opposite case, we expect clonal competi-
tion. The crossover from periodic selection to clonal inter-
ference occurs just when tfix � tmut, implying a characteristic
”interference scale” of

Lc ¼
�

c0
2ms0

�1=ðdþ1Þ
}

�
m21=2; linear habitat
m21=3; planar habitat:

(1)

Next, we use this estimate to find an approximate
expression for the adaptation speed limit Vmax observed in
Figure 2. To this end, it is convenient to express the adap-
tation speed in the following general form:

V ¼ 2s20L
dm � F

�
L
Lc

�
: (2)

The factor 2s20L
dm on the right-hand side is the rate at which

beneficial mutations accumulate in the absence of clonal
interference. The function F represents the probability that
a mutation reaches fixation once established. When muta-
tions arise sequentially, each established mutation also rea-
ches fixation; hence F � 1 for small habitats, L > Lc. On the
other hand, for large habitats (L? Lc) clones interfere and F
becomes very small. How small? Given that the adaptation
speed saturates at large system sizes, as inferred from our
simulation results in Figure 2, we must require that the
habitat length L drops out of Equation 2 for large habitats.
This can occur only if F(L/Lc) � (Lc/L)d for large L. Hence,
we estimate the speed limit for large systems by

Vmax � s20L
d
cm}

�
m1=2; linear habitat
m1=3; planar habitat:

(3)

It can be seen from Equation 2 that the scaled adaptation
speed V/V0 with V0 = s0c0/L should be a unique function of
the scaled mutation rate m/m0 with m0 = c0/(2s0Ld+1).
Therefore, if we plot our data sets for different parameters
in one figure using axes V/V0 and m/m0, they should all
collapse on a single master curve. The resulting scaling plots
for linear and planar habitats are shown in Figure 3. Data
corresponding to constant selection coefficients (Figure 3,
black line) do indeed collapse on a single master curve, even
though we varied m, s0, and the type of adaptation wave
(weak/strong genetic drift). Note also the transition from
a linear regime to the sublinear regimes with power law
exponents 1

2 and 1
3 in one and two dimensions, respectively.

These exponents are consistent with our prediction in Equa-
tion 3.

Moreover, Figure 3 displays results for simulations in
which the fitness effects of new mutations were drawn from
an exponential and a gamma distribution (with shape pa-
rameter k = 2), respectively. Note that although data for the
different distributions follow our scaling predictions individ-
ually, they are slightly shifted with respect to each other.
This indicates that the prefactors of the adaptation speed
depend on the tails of the distribution. Broader distributions
tend to yield larger adaptation speeds, apparently because
they will more frequently give rise to the sampling of un-
usually large-s clones that outcompete average-s clones. As
a consequence, fixations are more frequent and the adapta-
tion speed is higher (see also Appendix F). The effect is
stronger in the clonal interference than in the periodic se-
lection regime.

Both the existence of a speed limit Vmax for large habitats
and its dependence on mutation rates contrast with the
well-mixed case, where the adaptation speed depends log-
arithmically on both population size and mutation rates (see
Discussion).

To further characterize the clonal interference regime,
we have measured fixation times and fitness correlations in
linear habitats as a function of habitat size; see Appendixes B
and C. We find that tfix � L3/2 for clonal interference and
that the fitness variance scales linearly with the size of the
habitat. Both observations suggest that our model shares
some universal features with certain types of crystal growth
models that have been extensively studied in physics (Kardar
et al. 1986).

Genetic and spatial mixing

We investigate two strategies of mitigating clonal interfer-
ence and increasing adaptation speeds. The classical solu-
tion to clonal interference is recombination, which allows us
to combine beneficial mutations arising on different genetic
backgrounds. For well-mixed populations, it has been
predicted that the adaptation speed increases with the

Figure 2 The speed of adaptation in a linearly extended population. For
small habitat sizes, the adaptation speed V (mean fitness increase per
generation) grows linearly with the habitat size L, as expected for the
periodic selection regime. As the habitat exceeds a characteristic size Lc,
the adaptation speed saturates at a limiting value Vmax. Both the cross-
over scale and the adaptation speed limit depend on the selection ad-
vantage s0 of beneficial mutations and the mutation supply rate m. The
simulations were run assuming a constant selection coefficient and de-
terministic adaptation waves. The same saturation behavior is observed
when selection coefficients are distributed (exponential distribution and
gamma distribution). Data represent the average over �2000 fixation
events.
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recombination rate as V } r2 for large populations where
clones interfere (Neher et al. 2010). This result demon-
strates that increasing recombination rates can strongly
speed up evolution. The effectiveness of this strategy can
be appreciated from Figure 4A, which displays the adapta-
tion speed as a function of habitat size for various recombi-
nation rates. To generate these data, we have incorporated
recombination in our simulations as follows. Recombinants
are produced at a rate r per site from two (haploid) individ-
uals randomly selected from the nearest neighborhood in
the parent generation (selfing is allowed). Recombinant
genotypes are formed from the parental genotypes by one-
point recombination: The parent chromosomes are paired
and a point is randomly chosen by which both chromosomes
are split. The mutations to both sides of the recombination

point are then exchanged between the two chromosomes,
forming the recombinant genotype (see Appendix A for fur-
ther details).

Next, we study spatial mixing as an alternative way of
mitigating clonal interference. Spatial mixing is imple-
mented so that any given clone competes at a small rate
ml with a randomly chosen clone rather than with its imme-
diate neighbor (see Appendix A for details of the implemen-
tation). The effect of these long-range jumps on the
adaptation speed is shown in Figure 4B. Long-range migra-
tion has no effect on the periodic selection regime, because
it does not change the limiting supply of beneficial muta-
tions. In the clonal interference regime, however, adaptation
speeds are continually increasing as a function of jump rate.
The effect is large: Allowing for long-range jumps only every
1000 generations approximately yields a fivefold increased
adaptation speed in the clonal interference regime.

Figure 3 Scaling plots summarizing simulation data. The rescaled adap-
tation speed V/V0 is shown as a function of the rescaled mutation rate
m/m0 (see text for the characteristic speed V0 and mutation rate m0). For
the periodic selection regime (small m), we observe a linear relation be-
tween the adaptation and mutation rate; for clonal interference (large m),
we find the power laws V � m1/2 in linear habitats (A) and V � m1/3 in
planar habitats (B). Simulations were carried out for mean selection coef-
ficients s0 ¼ 0.025, 0.05, and 0.1 and mutation supply rates m ¼ 5 ·
1026, 1.25 · 1026, and 3.125 · 1027. We also varied the type of adap-
tation wave (deterministic/noisy) and the distribution of fitness effects
(black, constant selection coefficients; red, exponential distribution; blue,
gamma distribution with shape parameter k ¼ 2). Note that data for each
type of fitness distributions fall on a single master curve, consistent with
our scaling argument.

Figure 4 Genetic and spatial mixing speed up adaptation. (A) Effect of
recombination on the adaptation speed in a linear habitat. Simulation
runs are shown with various recombination rates (see inset). Note that
the adaptation speed is positively correlated with recombination rate r in
the regime of clonal interference, consistent with the Fisher–Muller hy-
pothesis. Simulations were carried out with s ¼ const., s0 ¼ 0.25, m ¼
3.125 · 1025, and deterministic adaptation waves. (B) Adaptation speeds
vs. habitat size for varying rates ml of long-range jumps. The adaptation
speed in the periodic selection regime is unchanged, but even a small rate
0.001 of long-range jumps led to fivefold increased adaptation speeds in
the clonal interference regime. Simulations were carried out for s ¼
const., s0 ¼ 0.1, m ¼ 5 · 1026, and deterministic adaptation waves.
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Long-range migration seems to be an efficient way to
mitigate clonal interference, which has significant conse-
quences for evolution (see Discussion). The basic mechanism
can be understood as follows: Long-range migration allows
clones to replicate themselves at different locations, which
enables them to effectively grow at a faster rate. In other
words, a clone that has led to a second “seed” by means of
long-range migration will grow twice as fast as a clone with
only one seed. A third seed triples the growth rate, etc. In
effect, when clonal interference is absent, one obtains expo-
nential growth with the rate

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mlc0

p
; (4)

which depends on the selection coefficient through the wave
velocity relation c0 = c(s0). A derivation for this rate is given
in Appendix E. Note that the resulting exponential growth of
mutants mirrors selective sweeps in well-mixed populations,
however, with a quite different effective selection coefficient
se (see also Discussion). Importantly, the resulting fast Mal-
thusian growth accelerates the fixation process of beneficial
mutations. As a consequence, mutations that would inter-
fere without long-range migration are now more likely to
arise sequentially. Consistent with this view, Figure 4 shows
that the linear regime of periodic selection is extended to
a larger parameter range as the long-range migration rate is
increased. Of course, for sufficiently large habitat sizes,
clonal interference also occurs in the presence of long-range
migration. However, the number of simultaneously compet-
ing clones is reduced due to the faster sweeps. This leads to
generally larger adaptation rates than for clonal interference
without long-range migration, as seen in Figure 4.

Discussion

A crucial feature of adaptation in spatially extended
populations is that advantageous mutations spread through
the population by means of traveling waves (Fisher 1937;
Kolmogorov et al. 1937). This wave-like motion implies that
clones grow at a constant speed, in strong contrast to the
accelerating logistic growth characteristic of well-mixed
populations. We have established a model of adaptation
by waves to investigate the rate at which beneficial muta-
tions are accumulated in spatially extended populations.
Our model represents the gene pool of local subpopulations
by the locally dominating genotype. This representation is
appropriate when clonal interference is absent within these
subpopulations. This sets an upper bound to the beneficial
mutation rate Ub>

ffiffiffiffiffiffiffiffiffiffiffi
s0=m

p
=K (see Appendix A). When the

beneficial mutation rate is still larger, one obtains a hybrid
scenario of clonal interference on a local well-mixed scale
and clonal interference by adaptation waves (E. A. Martens
and O. Hallatschek, unpublished results). With the assump-
tions of a homogeneous habitat (constant selection pres-
sure), short-range migration, and negligible epistasis, our
model is a first step toward understanding clonal interfer-

ence in spatially structured populations, such as microbial
colonies or biofilms. We expect that similar phenomena to
those reported here may be observed in other rapidly evolv-
ing populations. Many natural populations are, however,
characterized by more complex migration patterns than
the stepping-stone model used in our work, for instance,
influenza or SARS (Hufnagel et al. 2004; Kaluza et al.
2010; Eggo et al. 2011). For concrete predictions, the exist-
ing model needs to be extended to include these migration
networks. There is also increasing evidence that spatial
structure is relevant in evolutionary processes related to
cancer progression (Salk et al. 2009), suggesting that similar
modeling approaches may apply (Martens et al. 2011). In
the following, we estimate under which conditions clonal
interference might be observable in microbial colonies and
discuss our key predictions and how they may be verified in
microbial evolution experiments.

Clonal interference generally occurs when fixation times
are larger than the waiting time for new beneficial muta-
tions to arise in the population. Since adaptation waves
travel at a constant speed and thus advance much more
slowly than Malthusian sweeps, fixation times are much
larger in spatially extended than in well-mixed populations.
As a consequence, the regime of clonal interference is
inflated in structured populations compared to well-mixed
ones. The condition for clonal interference is made explicit
by comparing the typical fixation time of a single beneficial
mutation with the waiting time for it to arise. We found that
clonal interference occurs when the habitat size is larger
than a characteristic size Lc. The interference scale Lc not
only defines a crossover, but also measures the typical dis-
tance an adaptation wave travels freely before it collides
with another wave that arose independently of the first
one. The tug-of-war between adaptation waves and the role
of the interference scale Lc can be discerned from the simu-
lation results in Figure 5.

Our simple quantitative expression in Equation 1 for the
interference scale was found to increase with the speed of
adaptation waves and decrease with the rate of beneficial
mutations per site. A similar characteristic length appears in
the context of soft sweeps, where m has to be interpreted as
the establishment rate for a particular beneficial mutation
(Ralph and Coop 2010). For L . Lc, multiple clones carrying
the same mutation collide and subdivide the habitat into
patches of size Lc (see Figure 5A). This situation is similar
to our case of s = const. when m is interpreted as the occur-
rence rate of a particular adaptation; in our model, however,
waves belonging to different adaptations keep interfering
with each other until one clone has reached fixation in the
habitat.

To see whether clonal interference is relevant to micro-
bial colonies, we estimate the order of magnitude of Lc (for
details see Appendix D). We assume fitness effects on the
order of 1% and mutation rates in the range of 1026–1024

per genome and generation. Given the large variance of the
thickness of biofilms and microbial colonies, we consider
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a range of cell densities between 1 and 1000 per square cell
diameter. This yields a mutation supply rate m that lies
within the range of 1026 and 1021 per square cell diameter.
For s = 1%, we estimate a deterministic Fisher wave speed
c0 in the range of 0.1–10 cell diameters per generation by
assuming that microbes in dense colonies disperse between
1 and 100 cell diameters per generation. Thus, we estimate
Lc = (c0/(2s0m))1/3 to lie within 4 and 800 cell diameters.
The characteristic interference length scale Lc = (c0/
(2s0m))1/2 for a linear habitat could be relevant for expand-
ing microcolonies. For instance, it has been shown that the
expansion of a colony is driven by a thin layer of pioneer
cells (Hallatschek and Nelson 2010; Nadell et al. 2010). This
pioneer population at the expanding front evolves in an
effectively linear habitat. Applying similar estimates to the
above to the context of an expanding microbial colony, we
estimate an interference scale between 50 and 500 cell
diameters. Importantly, the length scales both for planar
and for linear habitats are much smaller than typical sizes
of microbial colonies or biofilms. We thus expect clonal in-
terference to be a widespread phenomenon—rather than
the exception—in growing dense cellular clusters that con-
serve their spatial structure over time.

Our most important predictions for the regime of clonal
interference may be summarized as follows: When the
habitat size exceeds a characteristic length Lc, multiple ad-
aptation waves are simultaneously in progress at any one
time because beneficial mutations frequently arise on differ-
ent genetic backgrounds. Which of the competing clones
prevails and reaches fixation depends on a tug-of-war be-
tween interfering Fisher waves. Remarkably, we find that in
this “frustrated” situation, increasing the habitat size does
not only lead to an increased loss of beneficial mutation: The
adaptation speed actually even saturates to a limiting value
Vmax, which is seen for both constant and distributed selec-
tive coefficients (see Appendix F). This speed limit of adap-
tation and its dependence on parameters were not revealed
in a previous study (Gordo and Campos 2006), seemingly
because too small habitats were simulated. A simple approx-
imate expression for the speed limit is provided by Equation
3. In particular, we found that Vmax is proportional to m1/2

and m1/3 in linear and planar habitats, respectively. This
scaling was shown to hold for various distributions of fitness
effects, including constant and exponentially distributed fit-
ness effects, for very noisy and for deterministic Fisher
waves. We may thus conclude that the predicted power laws
are very robust toward details of the underlying model.

Both the speed limit and the robust power law scaling with
the mutation rate are in stark contrast to well-mixed standard
models, which predict that adaptation speeds never saturate
and depend logarithmically on both population size and
mutation rates. An experimental comparison of adaptation in
well-mixed and spatially structured habitats should therefore
yield qualitatively and quantitatively different results. Experi-
ments have already found qualitative differences in the
adaptation dynamics of well-mixed and structured E. coli pop-
ulations (Habets et al. 2006, 2007; Perfeito et al. 2008). Our
model suggests that the speed limit of adaptation, Vmax, may
be detected and thus quantified by varying the size of the
microbial colony. The power law dependence of the limiting
adaptation speed on both mutation rate and population den-
sity could be tested by comparing wild type with a mutator
strain (Shaver et al. 2002) and by manipulating the thickness
of the colony, respectively.

The prevalence of clonal interference and the associated
speed limit raises the question of how clonal interference
may be overcome in spatially extended populations. Cer-
tainly, genetic exchange [in bacteria through lateral gene
transfer (Cooper 2007)] provides a mechanism that lessens
clonal interference as it allows one to bring together bene-
ficial mutations that arose on different genetic backgrounds;
see Figure 5B. This hypothesis, originally formulated by
Fisher (1930) and Muller (1932), is corroborated by our
simulation results in Figure 4A. However, our simulations
also show that spatial mixing is a very efficient alternative
mechanism of mitigating clonal interference in structured
populations. Spatial mixing increases the growth rate of fit-
ter clones and thus lowers fixation times. Lowering fixation
times increases the likelihood for beneficial mutations to
occur sequentially on the same background, and therefore
clonal interference is attenuated. In our simulations, spatial
mixing was introduced by allowing for a small rate of long-

Figure 5 How can clonal interference and its deleterious
effects on adaptation be overcome in spatially extended
populations? (A) Standard clonal interference. The scale Lc
is the typical distance at which adaptation waves collide in
the clonal interference regime. (B) Recombination speeds
up adaptation by combining beneficial variants (Fisher–
Muller hypothesis). Two clones (red and blue) share inter-
faces (highlighted white) until recombination occurs (5),
and a more fit recombinant arises (violet); another recom-
bination occurs later (yellow and violet result in the green
mutant). (C) An alternative mechanism of mitigating
clonal interference is provided by spatial mixing, e.g.,
through long-range migration. Long-range jumps (arrows)
accelerate selective sweeps and therefore increase both

the interference scale and the fixation probability of beneficial mutations. If clonal interference is strong, spatial mixing is thus predicted to be under
strong selection. Stars denote only mutations that eventually reach fixation.
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range jumps. These jumps enable clones to replicate them-
selves at distant locations in the habitat, which was shown
to lead to accelerated clonal growth, as illustrated in Figure
5C. When clones do not interfere, the growth is exponential.
The rate of this exponential growth, or effective selection
coefficient se, was found to depend on both the actual selec-
tion coefficient and the rate of long-range jumps (cf. Equa-
tion 4). Importantly, we found that, due to these fast
Malthusian sweeps, even very small rates of long-range
jumps strongly increased adaptation speeds in the clonal
interference regime (cf. Figure 4B). Thus, long-range migra-
tion seems highly beneficial in spatially extended popula-
tions with homogeneous selection pressures. Nevertheless,
it remains to be seen in future work whether alleles confer-
ring the ability of long-range migration are actually selected,
even if large jumps impose a danger (for instance, a long-
range jump could be fatal to a cell if the cell is swept away to
a harmful environment). This evolutionary mechanism
could be relevant for biofilm-forming bacteria and select
for occasional switching from the biofilm state to the more
efficiently dispersing planctonic phenotype.

In summary, we have analyzed a model of interfering
waves. Our model suggests that clonal interference is
widespread in biofilms and leads to markedly different
adaptation dynamics than in well-mixed populations. In
particular, the speed limit Vmax and its power law depen-
dence on mutation rates should be quantifiable in evolving
microbial colonies. Finally, we found spatial mixing to be
highly beneficial in structured populations as it relaxes
clonal interference and speeds up adaptation.
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Appendix A: Model Description

We represent the habitat by a linear lattice of length L in one
dimension and a planar hexagonal lattice of side length L in
two dimensions. In both cases we choose periodic boundary
conditions. Each site represents the identity of the dominat-
ing clone (represented by one haploid genome). The habitat
is homogeneous and the selection pressure is the same ev-
erywhere. The habitat is fully populated at any time. Gen-
erations are nonoverlapping, such that the genome at site i
descends from the genomes of the neighboring sites of the
parent generation.

The algorithm stores at each lattice site the genotype of
the locally dominating clone, which represents a subpopula-
tion of K individuals in a well-mixed deme. This represen-
tation is valid when (i) clones within the deme do not
interfere and (ii) the growth of a clone within the deme
generates expanding clonal waves. These conditions are
quantified as follows. If a beneficial mutation becomes
established, it grows into an expanding wave after a time-
scale of test = O(1/s). During this establishment time, the
clone spreads diffusively over a length scale

j ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
m  test

p
: (A1)

The establishment time test can be estimated by test � log
(Kjs0)/s0, which is the time it takes for a beneficial mutation
to fix in a well-mixed population of size Kj. As a conse-
quence, the length scale j is determined self-consistently via

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m  logðKjs0Þ

s0

s
: (A2)

Up to logarithmic corrections, we thus have test � 1/s0 and
j � ffiffiffiffiffiffiffiffiffiffiffi

m=s0
p

, which corresponds to the width of a Fisher
wave (Fisher 1937). For Fisher waves to occur, we have to
require that the habitat size L . j and that j ? 1, i.e., that
wave fronts are much broader than a single deme size. The
representation in terms of locally dominating genotypes at
each lattice site is appropriate only when clones do not in-
terfere on the length scale j. In other words, our model is
valid when the time between the establishment of two suc-
cessive beneficial mutations in a habitat region of size j,
estimated by (KjUb2s0)21, is larger than the expected estab-
lishment time test. This condition is equivalent to

KjUblogðKjs0Þ>1; (A3)

which—up to logarithmic corrections—amounts to
K

ffiffiffiffiffiffiffiffiffiffiffiffi
m=  s0

p
Ub>1. This condition defines an upper bound for

the mutation rate, given by

Ub>

ffiffiffiffiffiffiffiffiffiffiffi
s0=m

p
K

: (A4)

Simulations are started with a population devoid of
genetic variation. As time passes, beneficial mutations occur
at a constant rate m per site and generation. The selective
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fitness advantage s of a mutation is chosen to be either
constant or drawn from a distribution with mean value s0.
We choose either an exponential distribution or a hump-
shaped gamma distribution with shape parameter k = 2,
which are both frequently used in theoretical evolution
models (Eyre-Walker and Keightley 2007).

Fitness is updated according to Wi / Wi(1 + s) when
a mutation with effect s is drawn at site i (hence epistasis is
neglected). To avoid numerical overflow we compute the
logarithmic fitness. The speed of adaptation on the popula-
tion is defined by the rate of change of logarithmic fitness;
i.e., V ¼ log½ �Wðt þ 1Þ =  �WðtÞ�, where �W ¼ 1=N

PN
i¼1Wi, where

N is the number of sites.

Simulation of the Linear Habitat

For the simulation of the linear habitat, we devised an
algorithm that enables us to control the speed of advancing
clonal waves. This allows us to check the robustness of our
scaling hypotheses toward the different wave velocity
relations for strong selection, c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
mDW

p
(Fisher 1937;

Kolmogorov et al. 1937) (m represents the migration rate
between sites), and for weak selection, c � 2rmDW, respec-
tively (Doering et al. 2003; Hallatschek and Korolev 2009).
Natural selection is implemented such that waves run across
sites with the velocity c = c(DW) (DW is the fitness differ-
ence between the clones on both sides of the wave front)

and alter the spatial extent of different clones. We use an
auxiliary lattice every half generation, shifted by half a lattice
site, as shown in Figure A1. As a consequence, an individual
at location i in the offspring generation (t + 1

2) may descend
from only two individuals in the parent generation (t), i.e.,
the neighbor to the left or to the right (see Figure A1). The
fitness difference between the left and right sites is then
defined as DW = Wl 2 Wr. The lattice formed by full and
half generations forms a hexagonal lattice in space–time
coordinates.

In Figure A1, a more advantageous clone is shown on the
left (red) and a less fit wild type on the right (white). The
fitter clone is more likely to reproduce and therefore, on
average, tends to move to the right. The genome to be
passed on to site i in the offspring generation t + 1

2 descends
from either the left or the right immediate neighbor in the
parent generation t, depending on its fitness difference DW.
To determine from which site the genome is passed on, we
assign two probabilities pl and pr to the left and right parents.
The probabilities must sum to unity; i.e., pl + pr = 1. To
obtain a resulting motion of the advantageous clone ac-
cording to a given velocity relation c(DW), we let the differ-
ence of the two probabilities be equal to the wave velocity; i.e.,
|c(DW)| = |pl 2 pr|. As a consequence, the advantageous
clone moves with an average velocity of c(DW).

To confirm that our algorithm reproduces the correct wave
velocity relations, we have measured ensemble averages of

Figure A1 Simulation scheme in the linear habitat. Mutant
waves advance with a prescribed velocity relation c¼ c(DW),
corresponding to weak or strong selection. The fitness dif-
ference DW ¼ Wl 2 Wr defines a velocity according to the
wave velocity relation c(DW) (chosen for either strong or
weak selection). The offspring is picked from the two im-
mediate neighbors in the parent generation at t. An auxil-
iary lattice is used every half generation (t + 1

2), shifted by
half a lattice site (corresponding to a hexagonal lattice in
space–time coordinates). The probabilities of picking either
left or right neighbor are defined via |pl 2 pr| ¼ |c(DW)| and
pl + pr ¼ 1. Long-range migration occurs at a rate ml (per
site and generation), whereas the distances of the jumps are
drawn uniformly. Selection occurs in the parent generation
between one of the neighboring parent individuals and the
randomly chosen distant parent (blue arrow).

Figure A2 Wave velocity relations c ¼
c(DW) and fixation probabilities of aris-
ing mutations (for the linear habitat)
were measured to check the expected
wave velocity in our simulations. (A)
Data match the linear and square-root
behavior, corresponding to the regimes
of strong genetic drift and strong selec-
tion, respectively. (B) The fixation prob-
ability is given by 2s for small selective
advantages s. Simulations were carried
out for a habitat size of L ¼ 1000, and
measurements represent averages over
4000 fixation events.
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the wave velocity c in the absence of clonal interference; see
Figure A2A. For the deterministic Fisher wave speed the
migration rate is m = 1/4, and for the noisy Fisher wave
speed the product of migration rate and population density
is rm = 1.

For the case of nonstructured populations in the absence of
clonal interference, it is known that the probability of fixation
of amutant with a small fitness effect s is equal to 2s (Haldane
1927; Kimura 1962). Maruyama showed that the fixation
probability is the same for spatially structured populations
(Maruyama 1974), under the assumptions of a structurally
subdivided populationwith symmetricmigration and haploid
individuals that evolve according to theMoranprocess in each
subpopulation. This result was later also confirmed in simu-
lations of spatially structured habitats (Gordo and Campos
2006; Gonçalves et al. 2007) (see also Drossel 2001 and
Patwa and Wahl 2008 for detailed reviews of fixation proba-
bilities). However, when we choose to use the linear wave
velocity relation for weak selection, we find that our algo-
rithm yields a fixation probability that deviates from 2s.

We therefore made an adjustment to our simulation to
compensate for this deviation, such that mutations fixate
with probability 2s. To accomplish this, we imposed a sur-
vival probability on every new mutation. We first measured
the fixation probability for a given velocity, Pfix(c). Given
that a new mutation must survive with probability 2s, we
determine a survival probability via Psurv(s, c) = 2s/Pfix(c).
Accordingly, in the adjusted algorithm, we allow only new
mutations to survive the next generation with probability
Psurv. The resulting fixation probability approximates the re-

quired fixation probability of 2s well for small s, as shown in
Figure A2B.

Long-Range Migration

Spatial mixing is implemented so that any given clone
competes at a small rate ml with a randomly chosen clone
rather than with its immediate neighbor. Such a long-range
migration event is indicated by the blue arrow in Figure A1.
Accordingly, we determine the probabilities for passing on
the genomes from the two competing sites by calculating the
fitness difference DW between the randomly chosen site and
a neighboring site.

Recombination

The implementation of recombination is shown in Figure
A3. Recombinants are produced at a rate r per site from two
(haploid) individuals randomly selected from the nearest
neighborhood in the parent generation (selfing is allowed)
by determining the probabilities pl and pr, according to the
rules described above without recombination. Recombinant
genotypes are formed from the parental genotypes A and B
by one-point recombination: The parent chromosomes are
paired and a point xexc is randomly chosen by which both
chromosomes are split. The mutations to both sides of the
recombination point are then exchanged between the two
chromosomes, forming the recombinant genotypes A1B2 and
A2B1. One of these two genomes is chosen randomly and
passed on to the offspring generation.

To perform recombination of two genomes, we need to
keep track of all mutations and any time. Doing so is
computationally expensive when many clones are sweeping
simultaneously in the population. In this situation, the
algorithm exceeds the complexity of O(L) that is expected
otherwise and scales also with the number of present clones.
As a consequence, simulation times explode when we try to
obtain results deep in the clonal interference regime, i.e., for
L ? Lc.

Figure A3 Recombination occurs at a rate r per site and generation. Sites
occupied by the wild type are shown in white and sites occupied by
advantageous mutations are shown in red. Two parent genomes are
selected from the parent generation. Subsequently, their genomes are
separated at a random position xexc and the resulting genome parts are
swapped to form the recombined genomes A1B2 and A2B1. One of them
is chosen randomly and passed on to the next generation.

Figure A4 Planar habitats are represented by a hexagonal lattice. An
auxiliary shifted lattice is used every half generation just as in the linear
case. The offspring site inherits genomes from the three surrounding sites
with probabilities pk ¼ Wk/(W1 + W2 + W3) with k ¼ 1, 2, 3.
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Simulation of the Planar Habitat

For planar habitats we do not directly control the wave
velocity relation, but use a simplified scheme. The habitat is
represented using a hexagonal planar lattice. As in the
simulation of the linear habitat, we use an auxiliary shifted
lattice at every half time step (t + 1

2), as shown in Figure A4.
Thus we have three sites in the parent generation t sur-
rounding the offspring site at t + 1

2. Selection is performed
such that the offspring site inherits the genome of one of the
neighboring sites proportional to their fitness differences.
This means that we need to compute three probabilities pk
= Wk/(W1 + W2 + W3) for inheriting the genome from the
parent at site k.

We measured the velocity relation c(DW) resulting from
this algorithm, shown in Figure A5A. The relation matches
the behavior expected from a deterministic Fisher wave,
c ¼ k

ffiffiffiffiffiffiffiffi
DW

p
, with a prefactor k = 1

4. We also measured the
fixation probabilities, shown Figure A5B. The fixation prob-
ability assumes the expected behavior of 2s for small selec-
tive coefficients (Maruyama 1974; Gordo and Campos
2006).

Appendix B: Fixation Times in the Clonal
Interference Regime

The time to fixation in the periodic selection regime is given
by tfix � L/c. For the clonal interference regime, we expect
that in general, fixation times should be larger, but it is not

obvious how much larger they should be. For the linear
habitat we measured the mean fixation time in dependence
of the relative habitat size L/Lc, shown in Figure B1. Simu-
lations have been carried out for a large range of habitat
sizes L, using the deterministic wave speed c � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
mDW

p
and

s = const. Different data sets for a range of beneficial mu-
tation rates m and selective coefficients s were generated
(see Figure B1 legend). Rescaling the fixation time, tfixc/
Lc, we find that all data sets collapse on a single master
curve and recover the following power law behavior:

tfix
c
Lc e

(
L=Lc   L>Lc

ðL=LcÞ3=2 L?Lc:
(B1)

This result suggests the following fixation scenario: On
length scales smaller than Lc, the growth of clones is ballistic;
that is, they grow linearly in time at a constant speed. As soon
as clones reach the size Lc, they start to collide with neigh-
boring clones, which may have higher or lower fitness
depending on the mutations they have accumulated in the
past. As a consequence, the size of a clone follows a random
walk on length scales larger than Lc. The variance of the size
of the winning clones increases over time until it becomes of
order L2, upon which fixation occurs. Now, if the random
walk of the clone size was a normal random walk (similar
to, e.g., Brownian motion), we would expect the clone size
variance to grow linear with time. Hence, fixation should
occur after a time of order L2. By contrast, we find much

Figure A5 Measurement of the wave
velocity relation and fixation probability
in the simulation model of the planar
habitat. (A) The wave velocity matches
the behavior of the deterministic Fisher
wave speed c ¼ 2

ffiffiffiffiffiffiffiffiffi
DW

p
with a migration

rate of m = 1
4. (B) The fixation probability

behaves like 2s for small selective coeffi-
cients s. The wave velocity was measured
for a habitat of N = L · L = 1024 · 1024
sites over two fixation events. The fixa-
tion probability wasmeasured in a smaller
habitat with L = 256.

Figure B1 Measurements of
fixation times in a linear habi-
tat. (A) Simulations reveal that
fixation times in the clonal in-
terference regime scale like tfix
� L3/2. All data collapse when
using rescaled variables tfix� c/Lc
and L/Lc. (B) Standard deviation
of the fixation times in depen-
dence of the relative habitat
size L/Lc. Simulations are car-
ried out with s0 ¼ 0.25 with m

¼ 3.125 · 1023, 5.6 · 1023,
and 7.8 · 1024 and s0 ¼ 0.1 with m ¼ 1.25 · 1026, 7.8 · 1024, 5.6 · 1023, and 3.125 · 1023; clonal waves travel with the deterministic
Fisher wave speed c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mDW

p
; and selective coefficients are constant.
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earlier fixation after a time of order L3/2. This indicates that
the random walk of the clone size is superdiffusive and
(with the dynamical exponent of 3

2) belongs to the Kardar-
Parisi-Zhang universality class that describes a wide range of
surface growth models (Kardar et al. 1986). Indeed, if fitness
as a function of time is interpreted as the height of a crystal,
then our asexual model with constant selective advantage s0
and deterministic adaptation waves maps to the so-called
polynuclear growth model (Prähofer and Spohn 2000).

Appendix C: Fitness Correlation Function and
Interference Scale LC

We also measured the space-dependent mean-squared
fitness variance (MSFV),

GðxÞ ¼
D
ðlogWðx þ jÞ2logWðjÞÞ2

E
j
; (C1)

which correlates the log fitness W at a location separated
by a distance x. The angle brackets indicate that the average
is taken over all positions j in the habitat. As shown in
Figure C1, the MSFV is linear in distance for large habitats
and obeys the scaling relation

GðxÞ � x s20
Lc

; (C2)

depending on the mean selective fitness advantage s0 and
the interference scale Lc. Since Equation C2 predicts
GðLcÞ ¼ s20, it is consistent with the view that clones expand
over a characteristic length Lc until they collide with neigh-
boring clones, which differ in log fitness (typically) by s0.
Furthermore, Equation C2 allows us to calculate the global
variance in log fitness as

Var½logW� �
Z L

0
dx   GðxÞ � s20

L
Lc
; (C3)

in large systems. The fitness variance in large systems is thus
proportional to the total habitat size and is inversely
proportional to the interference scale Lc.

Appendix D: Estimates of Critical Habitat Sizes for
Clonal Interference

Mutation Rate and Selective Coefficient in Microbes

While many studies provide estimates for the mutation
rates in microbes, fewer results are available regarding the
beneficial mutation rate U (per generation and per genome)
(Elena et al. 1996; Desai et al. 2007; Perfeito et al. 2007)
and their selective coefficients. Some results that are rele-
vant to us are compiled in Table D1 (for a review see Snie-
gowski and Gerrish 2010).

Some studies suggest mutation rates as low as U � 1029

or 1028 per genome per generation (Gerrish and Lenski
1998; Imhof and Schlötterer 2001; Rozen et al. 2002). How-

ever, these studies were carried out for large effective pop-
ulation sizes (Ne � 107) that had not been previously
exposed to the used growth environment (and adapted ac-
cordingly). Under such circumstances, one expects that the
supply rate NU is rather high; at the same time, effects of
clonal interference are predicted to be very strong. In this
case, not taking into account effects of genetic drift and
clonal interference would lead to an underestimate of m

and an overestimate of the average effect of beneficial muta-
tions (Sniegowski and Gerrish 2010).

More recent studies suggest that the rate of beneficial
mutations is much higher. Experiments with E. coli (Perfeito
et al. 2007) and Saccharomyces cerevisiae (Desai et al. 2007)
find for smaller effective population sizes (Ne � 104)—thus
avoiding clonal interference—beneficial mutation rates of U
� 1025. Data from previous studies yielding the lower esti-
mates of U � 1029 (Elena et al. 1996; Gerrish and Lenski
1998) have been reanalyzed (Sniegowski and Gerrish 2010)
by using a likelihood model that accounts for both drift and
clonal interference. One then obtains a much higher value of
U � 1025, which is in line with recent estimates (Wloch
et al. 2001; Desai et al. 2007; Perfeito et al. 2007).

Considering an estimate for the rate of all mutations (i.e.,
including neutral and deleterious mutations) of order 1023

(Drake et al. 1998) means that beneficial mutations make up
�1% of the total number of mutations. Still, the matter is
not quite that simple. Even if we restrict our attention to
habitats on petri dishes, we may expect that different envi-
ronments may yield different U. Moreover, spatial structure
may also play a role. Thus, to estimate Lc, we use a range of
U � 1026 . . . 1024 for the mutation rate. For the selective
coefficient we use s0 = 0.01, which compares well with the
estimates in Table D1.

Figure C1 The distance-dependent mean squared variance G(x) in log
fitness for a population in a linear habitat when clonal interference is
rampant. Note that the data corresponding to different habitat sizes
(asymptotically) approach a straight line (dashed line) with slope of order
O(1) for large habitats L > Lc. Simulations were carried out for a range of
habitat sizes, using the deterministic Fisher wave velocity c ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mDW

p
;

s ¼ const.; s0 ¼ 0.1; and m ¼ 1024, 5 · 1025, and 1025 and the
corresponding values for the interference scales are Lc � 89 (red lines),
125 (blue lines), and 281 (black lines).
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Characteristic Population Size for
Well-Mixed Populations

The crossover condition between periodic selection and
clonal interference regimes is tfix � tmut, which allows us to
determine a characteristic population size above which
clonal interference is expected. For a nonstructured popula-
tion, the waiting time for successful mutations is

tmut � ðNUpÞ21; (D1)

where the fixation probability is p = 2s0. In nonstructured
populations the fixation time differs from the one in spatial
structures and is given by

tfix � logðNs=2Þ
s

: (D2)

(Crow and Kimura 1970). The crossover condition becomes
the implicit equation 2NU log(Ns/2) � 1. Using a selective
coefficient of order s0 � 0.01 and a mutation rate in the
range of U = 1026 . . . 1024, we find a lower and an upper
bound for the characteristic population size as follows:

Nmin � 2 · 103; (D3)

Nmax � 8 · 104: (D4)

Upper and Lower Boundary for Lc in a Planar Habitat

To estimate the interference scale Lc for microbial popu-
lations, we are going to need estimates for the population
density r and the wave velocity c. In the forthcoming, we
measure length in units of cell length, which for the rod-
shaped E. coli are of order 3 mm and for S. cerevisiae of order
5–10 mm.

Population Density

Provided that cells are packed densely, the absolute lower
boundary of the population density must be r= 1 per square
cell lengths. To estimate the population density in a planar
population of E. coli, we refer to experimental data (Perfeito
et al. 2007), where bacteria are grown on a petri dish as
a lawn (diameter 6 cm = 60,000 cell lengths, i.e., a radius of
R = 30,000 cell lengths). The area of a petri dish occupies
�A = pR2 � 109 square cell lengths. The population in this
experiment grows to a final size of Nf = 1010. Thus the
population density r [ Nf/A is in this case r � 10 per square
cell lengths. However, microbial colonies on rich medium
can certainly grow to larger thicknesses. For instance,
a thickness of 1000 cell diameters is not uncommon for
a colony of S. cerevisiae. To account for a range of situations
we consider a range of densities bounded by

rmin   �   1; (D5)

rmax � 1000: (D6)

Estimating the Wave Velocity

The wave velocity is a function not only of the selective
coefficient s0 and the population density r, but also of the
diffusion constant m. The relevant diffusion constant in two
dimensions is given by

m  ¼  
1
4

�
DX2�; (D7)

where DX is the expected dislocation distance to occur per
generation. For a densely packed population of bacteria, it is
reasonable to assume that DX is at least of the order of 1 cell
length and at most of the order of 10 cell lengths (far dis-
placement is possible in street formations of rod-shaped E.
coli); i.e., DX = 1 . . . 100 cells. Thus, we expect m = 0.25 . . .

2500 square cell diameters per generation. To estimate the
Fisher wave velocity we use the deterministic wave velocity
relation c ¼ 2

ffiffiffiffiffiffi
sm

p
. We find a lower bound of cmin = 0.1 and

for the upper bound cmax = 10 cells per generation. In con-
clusion, we find the following upper and lower bounds for
the interference scale Lc in a planar habitat:

Lmin
c ¼

 
cmin

mb;max   2s0;max

!1=3

� 4    cells; (D8)

Lmax
c ¼

 
cmax

mb;min   2s0;min

!1=3

� 800    cells: (D9)

These are the estimates that we provide in the Discussion of
the main text.

Appendix E: Long-Range Migration

As discussed in the main text, small rates of long-range
jumps drastically increase the adaptation speed V. Figure E1
shows the increase of the adaptation speed V relative to the
adaptation speed without long-range migration, Vjml¼0.

Long-range jumps generate “seeds” with identical
genomes far off the ancestral clone and thus multiply the

Table D1 Estimates of beneficial mutation rates and their selective
coefficients, obtained from microbial experiments in recent
literature

U (per genome
per generation) s0 Type

Gerrish and Lenski (1998),
Rozen et al. (2002), and
Imhof and Schlötterer (2001)

1029 . . . 1028 — E. coli

Elena et al. (1996) 2 · 1029 0.03 E. coli

Desai et al. (2007) 2.4 · 1025 0.01 S. cerevisiae
Perfeito et al. (2007) 2 · 1025 0.02 E. coli
Sniegowski and Gerrish (2010)
(data from Elena et al. 1996)

5.7 · 1025 0.003 E. coli
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growth rate of the ancestral clone. Long-range migration has
no effect on the periodic selection regime, because it does
not change the limiting supply of beneficial mutations. How-
ever, generating seeds may reduce the time for the clone to
fixate. As a consequence, effects of clonal interference are
mitigated (and thus, the adaptation speed is increased).
Moreover, the range of parameters over which periodic se-
lection occurs, characterized by tfix > tmut, becomes larger
with increasing rates of long-range migration.

We briefly investigate a simple model that explains how
long-range migration may lead to an exponential growth of
a clone. We assume that waves propagate deterministically
(i.e., on straight lines) and that jumps occur before the first
(ancestral) clone reaches fixation. Furthermore we assume
that at any time there is no more than one mutation present
in the habitat (i.e., absence of clonal interference). To effec-
tively generate a seed, an individual must jump from a re-
gion already occupied by the ancestral clone to an
unoccupied region in the habitat. We denote the average
number of such clonal seeds, present at time t, by the vari-
able �nðtÞ. Furthermore, �xðtÞ is the average length in a linear
habitat (or the area in a planar habitat) that is occupied by
the clone. The growth of a clone follows from the following
considerations: First, the rate of change of the number of
seeds is given by the product of the spatial occupation of the
clone, �xðtÞ, and the rate at which long-range migration
events occur per site, i.e., ml. Second, the rate at which
the spatial occupation increases, i.e., the effective growth rate
of the clone, d�x=dt, is twice the velocity of a single wave
front times the number of waves present in the population.
We denote the velocity of the ancestral clone by c0. These
considerations are summarized in the following ordinary
differential equations:

d�x
dt

¼ 2c0�n (E1)

d�n
dt

¼ ml�x: (E2)

At time t = 0, just after a mutation has occurred in the
habitat, space is unoccupied, �xð0Þ ¼ 0, and the number of
clonal waves is �nð0Þ ¼ 1. With this initial condition, the
exact solution of Equations E1 and E2 is

�xðtÞ ¼
ffiffiffiffiffiffiffi
2c0
ml

s
sinhðsetÞ; (E3)

where we define the effective growth rate

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2c0ml

p
: (E4)

This is Equation 3 in the Results section of the main text.
The growth rate se is related to the time it takes for

a second mutation to appear. Solving for the condition
n(t2) = 2 yields

t2 ¼ arccoshð2Þ
se

: (E5)

The growing number of seeds eventually results in
fixation of the clone once space is fully occupied by the
clone; i.e., �xð~tfixÞ ¼ L. This condition yields a characteristic
timescale for the fixation process,

etfix ¼ 1
se
  arcsinh

h ffiffiffiffiffiffiffi
ml

2c0

r
L
i
: (E6)

Equation E3 describes exponential growth at rate se when
t?s21

e . The solution is a reasonable approximation until
�xð~tfixÞ � L. For larger times, the assumption that new seeds
are born into unoccupied regions cannot be maintained.
When the seeds start merging, the effective wave velocity
d�x=dt also slows down because the number of traveling
wave fronts decreases until the growth of the clone comes
to a complete halt.

Appendix F: Selective Fitness Distributions and
Their Effects

We have discussed above that the speed of adaptation
saturates for large habitats when clones interfere. Figure F1
demonstrates the same saturation phenomenon when the
selective fitness is exponentially distributed. We expect that
the saturation behavior documented for constant and expo-
nentially distributed selection coefficients occurs for all sub-
exponential fitness effect distributions. At this point, it is
unclear how superexponential distributions might affect
the adaptation dynamics.

Compared to the case of the constant selection coeffi-
cient, a nonzero variance of the distribution of fitness effects
g(s) increases the speed of adaptation. For periodic selec-
tion, this can be easily understood as follows. The expecta-
tion value of the adaptation speed is given by hVi = hNUb

2s2i or, more precisely, by

Figure E1 Relative increase of the adaptation speed V due to long-range
migration. Even a small rate ml = 0.001 of long-range migration drasti-
cally increases the speed of adaptation by a factor of �5. Simulations are
run with s = const. and parameters s0 = 0.1, m = 5 · 1026, and the
deterministic wave velocity valid for strong selection.

Interfering Waves of Adaptation 1059



Figure F1 Saturation of the adaptation speed for large habitats for ex-
ponentially distributed selective fitness effects. The adaptation speed sat-
urates for large habitat sizes when fitness effects are distributed, just as in
Figure 2 where s = const. Simulations were carried out with mb = 5 · 1026

and the deterministic wave speed for �2000 fixations.

hVi ¼ NUb
�
2s2
�
g[2NUb

Z N

0
s2gðsÞds: (F1)

The mean value of the distribution is m[
RN
0 s  gðsÞds ¼ s0:

Because of the identity
varðsÞ[RN0 ðs2mÞ2gðsÞds ¼ RN0 s2gðsÞds2m2, we have that

hVi[2NUb

Z N

0
s2gðsÞds ¼ 2NUbðm2 þ varðsÞÞ: (F2)

This implies that a nonzero variance increases the adaptation
speed even for the periodic selection regime. When s = const.,
the variance is zero, but we have varðsÞ ¼ s20 for the exponen-
tial and varðsÞ ¼ s20=k for the gamma distribution (in our sim-
ulations, we chose a shape parameter of k = 2). The shifted
values of the adaptation speed hVi seen in Figure 3 can thus be
explained by the differing variance values of the various selec-
tive fitness distributions.
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