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Abstract
Marginal maximum likelihood estimation (MMLE) is commonly used for item response theory
item parameter estimation. However, sufficiently large sample sizes are not always possible when
studying rare populations. In this paper, empirical Bayes and hierarchical Bayes are presented as
alternatives to MMLE in small sample sizes, using auxiliary item information to estimate the item
parameters of a graded response model with higher accuracy. Empirical Bayes and hierarchical
Bayes methods are compared with MMLE to determine under what conditions these Bayes
methods can outperform MMLE, and to determine if hierarchical Bayes can act as an acceptable
alternative to MMLE in conditions where MMLE is unable to converge. In addition, empirical Bayes
and hierarchical Bayes methods are compared to show how hierarchical Bayes can result in
estimates of posterior variance with greater accuracy than empirical Bayes by acknowledging the
uncertainty of item parameter estimates. The proposed methods were evaluated via a simulation
study. Simulation results showed that hierarchical Bayes methods can be acceptable alternatives
to MMLE under various testing conditions, and we provide a guideline to indicate which methods
would be recommended in different research situations. R functions are provided to implement
these proposed methods.
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Introduction

Item response theory (IRT) is a popular methodology for developing and evaluating scales used in
educational and psychological research. In IRT, marginal maximum likelihood estimation
(MMLE; Bock & Aitkin, 1981) is commonly used for item parameter estimation (Baker & Kim,
2004). Previous research on MMLE has shown that the accuracy and precision of item parameter
estimates is acceptable in medium and large sample sizes (e.g., > 500 for graded response models
[GRM]; Forero &Maydeu-Olivares, 2009; Reise & Yu, 1990). In small sample sizes, MMLE can
struggle with obtaining accurate and precise item parameter estimates, or may not converge at all.
Unfortunately, it is not uncommon for researchers to struggle with obtaining medium or large
sample sizes. Studies of rare populations (e.g., individuals with Rett syndrome, students with
listening fatigue, and individuals with substance use disorders) can make it difficult to obtain more
participants. With small sample sizes, alternative methods are required to obtain accurate and
precise item parameter estimates with whatever data are available.

Bayesian estimation methods have been used in IRT estimation to increase the accuracy (by
reducing the mean squared error) and precision (by reducing the standard error) of item parameter
estimates (e.g., Fox, 2010). However, prior research on IRT Bayesian estimation methods are
mainly for item response models without auxiliary item information. Mislevy (1988) proposed an
empirical Bayes method using auxiliary item information to increase the stability and precision of
item location (or difficulty) estimates in Rasch models. The method proposed byMislevy (1988) is
considered “empirical Bayes” because it uses both maximum likelihood estimates and regression
estimates (as prior means) to obtain shrinkage estimates using auxiliary item information in three
steps. However, the implementation of this three-step empirical Bayes method differs from the
one-step implementation of empirical Bayes most commonly performed in the literature. We
discuss these differences in the summary and discussion section. Mislevy (1988) used auxiliary
item information (i.e., item domain information such as what mathematical operations were
required to solve items) to compensate for the lack of information available from persons in a
sample size of 150. Auxiliary item information was used by the empirical Bayes method as item
covariates grouping similar items together regarding their content, format, or the skills required to
solve them. In Mislevy’s (1988) study, using auxiliary item information resulted in a 25% increase
in the precision of item location estimates, an increase that otherwise would have required testing
approximately 40 additional persons.

One limitation of the empirical Bayes method used by Mislevy (1988) is that the uncertainty of
item parameter estimates is ignored, which can result in underestimated standard errors. This
underestimation of standard errors is especially problematic with small sample sizes. To in-
corporate the uncertainty of item parameter estimates, hierarchical Bayes methods can be used. As
opposed to empirical Bayes, which uses point priors for item parameters, hierarchical Bayes
methods specify prior distributions on item parameters (called “hyper-priors”). Inverse-gamma (ϵ,
ϵ) distributions are typically selected as hyper-priors on the variance of item parameters for their
conditional conjugacy (having prior and conditional posterior distributions belonging to the same
class), which suggests clean mathematical properties. However, Gelman (2006) does not rec-
ommend using inverse-gamma (ϵ, ϵ) distributions as noninformative priors, because the resulting
inferences when estimating near-zero standard deviations are highly dependent upon the choice of
ϵ. In addition, using diffuse priors on the means of prior distributions results in large errors and
convergence problems even when informative inverse-gamma distributions on variances (Inverse-
gamma (1; 1)) are used in a hierarchical Bayes approach. Instead of inverse-gamma (ϵ, ϵ) dis-
tributions, Gelman (2006) recommends using half-t distributions (specifically half-Cauchy when
the number of groups is small) on standard deviations as weakly informative and conditionally
conjugate priors.
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Likert-type rating scales are common in psychological research. The item response model most
widely used for modeling rating scales is the GRM (Samejima, 1969). The GRM is popular for
being highly flexible in modeling tests where items have unique thresholds (both in number and
location for each item). Although Bayesian analysis has been implemented for the GRM (e.g.,
Curtis, 2010), no previous research has been conducted to apply the empirical Bayes method (as
used byMislevy, 1988) to the GRM or to evaluate the performance of using half-t and half-Cauchy
distributions as hyper-priors in a hierarchical Bayes method for the GRM.

The primary purpose of this study is to apply empirical and hierarchical Bayes methods using
auxiliary item information to a unidimensional GRM to obtain item parameter estimates with
greater accuracy and precision, particularly in small to medium sample sizes. For the purpose of
comparing empirical Bayes and hierarchical Bayes, we extend Mislevy’s (1988) empirical Bayes
method for a Rasch model to a GRM, which requires to provide new estimation code to be
evaluated for a small to medium sample size. The results of the empirical and hierarchical Bayes
methods presented for GRMwill guide how and when to use the methods when a GRM is applied
to Likert-type rating scales, which has not been shown in the literature. Specific research questions
this study plans to answer regarding the GRM are as follows: (1a) Among the estimation methods
of interest (MMLE, empirical Bayes, and hierarchical Bayes), which method results in the most
accurate item parameter estimates in small to medium sample sizes? (1b) Is a hierarchical Bayes
method an acceptable alternative to MMLE in small to medium sample sizes when MMLE is
unable to achieve convergence? (2) How much is the accuracy of item parameter estimates in
small to medium sample sizes increased by using a hierarchical Bayes method with item covariates
compared to a hierarchical Bayes method without item covariates? (3) How much is the un-
derestimation of the standard errors of item parameter estimates reduced in small to medium
sample sizes by including the uncertainty of item parameter estimates with a hierarchical Bayes
method compared to an empirical Bayes method? These research questions will be answered by
comparing the results of MMLE, empirical Bayes, and hierarchical Bayes (with and without the
use of item covariates) via a simulation study. An additional research goal of this study is to
provide R functions for the application of these empirical and hierarchical Bayes methods.

The rest of this paper is structured as follows. First, the GRM with auxiliary item information
and the concept of shrinkage estimators is presented. Second, empirical and hierarchical Bayes
methods are described. Third, a simulation study is conducted to evaluate the relative performance
of the methods described under various simulation conditions. Finally, we conclude with a
summary and discussion.

GRM with Auxiliary Item Information

Samejima’s (1969) GRM specifies the conditional cumulative probability of response yji for
person j (j = 1, …, J) and item i (i = 1, …, I) in category k (k = 0, 1, …, mi � 1), where mi is the
number of categories for item i, as follows

P yji ≥ k
��θj� � ¼ � 1 if k ¼ 0

logit�1 αi θj � βi, k
� �� �

if 1 ≤ k ≤mi � 1,
(1)

where logit�1 denotes the inverse logit link, αi is an item discrimination parameter, βi,k is an item
threshold parameter, and θj is the latent variable.

Variability in item parameters across items for a unidimensional test can be explained or
predicted using auxiliary item information such as item format, item contents (or domains), or the
skills required to solve items (De Boeck & Wilson, 2004). In this paper, we focus on the use of
auxiliary item information to obtain stable and precise item parameter estimates of the
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unidimensional GRM using empirical and hierarchical Bayes methods when there is evidence of
unidimensionality in a test. A linear regression model with normal and homoscedastic residuals is
assumed for item parameters, as used in other item regression models (e.g., De Boeck, 2008). The
regression structure of item discrimination parameters can be imposed as follows

αi ¼ γα0 þ
XD
d¼1

γαdxid þ ϵαi, (2)

where d is the index for auxiliary item information (or item covariate) (d = 1, …, D), γα0 is the
intercept parameter, γαd is the effect of item covariate xid on discrimination parameter αi, and ϵαi is
the random item residual (random over items), assumed to follow ðϵα1,…, ϵαI ÞT ∼Nð0, σ2αÞ, where
σ2α is the variance of the random item residual. Similarly, for item threshold parameters

βi, k ¼ γβ0k þ
XD
d¼1

γβdkxid þ ϵβik , (3)

where γβ0k is the intercept parameter, γβdk is the effect of item covariate xid on threshold parameter
βi,k, and ϵβik is the random item residual (random over items), assumed to follow

ðϵβ1k ,…, ϵβIkÞT ∼Nð0, σ2βkÞ, where σ2βk is the variance of the random item residual across items for

category k.

Methods

In this section, we describe the empirical Bayes and hierarchical Bayes methods implemented in
this study, and how these methods can be used to obtain estimates of GRM item parameters by
using auxiliary item information. We extend Mislevy (1988)’s empirical Bayes method for the
Rasch model to the GRM and then discuss the specification of the prior and posterior distributions
for hierarchical Bayes.

Empirical Bayes Method

The estimation of GRM item parameters with an empirical Bayes method takes place over three
steps, as described below.

Step 1. Marginal Maximum Likelihood Estimates of Item Parameters. Item parameters (αi and βi,k) and
corresponding standard errors (ταi and τβik) were estimated using MMLE to obtain item parameter
estimates based on likelihood without prior distributions on item parameters. MMLE was im-
plemented using the mirt package (Chalmers, 2012) in R (R Core Team, 2018).

Step 2. Maximum Likelihood Estimates of the Regression Parameters and the Residual Variance. We
consider item regression models (Equations (2) and (3)) using the maximum likelihood estimates
of item parameters obtained in Step 1 (bαi and bβik). Because we use the maximum likelihood
estimates from Step 1, the uncertainty of these estimates is ignored in Step 2. Maximum likelihood
estimates of the regression parameters of these item regression models were obtained using the lm
function in R. The regression structure is imposed on item discrimination estimates as follows

bαi ¼ γα0 þ ΣD
d¼1γαdxid þ hαi, (4)

where ðhα1,…, hαI ÞT ∼Nð0,f2
αÞ. Similarly, for item threshold estimates
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bβik ¼ γβ0k þ ΣD
d¼1γβdkxid þ hβik , (5)

where ðhβ1k ,…, hβIkÞT ∼Nð0,f2
βkÞ. Unbiased estimates of the residual variances (f2

α and f2
βk)

were calculated using the following equation (Rencher, 2000, p. 143): bf2

α ¼
PI

i¼1
~h
2
αi=ðI � D� 1Þ

and bf2

βk ¼
PI

i¼1
~h
2
βik=ðI � D� 1Þ, where ~h2αi and ~h

2
βik are calculated residuals based on parameter

estimates in Equations (4) and (5). In addition, the standard errors of the residual variance for item
discrimination estimates and item threshold estimates were calculated using the following

equation (Rencher, 2000, p. 143): SEf2
α
¼

ffiffiffiffiffiffiffiffiffiffiffi
2f4

α
I�D�1

q
and SEf2

βk
¼

ffiffiffiffiffiffiffiffiffiffiffi
2f4

βk

I�D�1

q
.

Step 3. Empirical Bayes Estimates of Item Parameters. The empirical Bayes estimates of item
parameters and the precision of those estimates are calculated, based on the results obtained from
Steps 1 and 2. The empirical Bayes estimate ~αi is the weighted average of the maximum likelihood
estimate bαi and the regression estimate αi ¼ bγα0 þ ΣD

d¼1bγαdxid with weights proportional to their
respective precisions1

~αi ¼ E
�
α
��bαi,bτ2αi,bγα0,bγαd , bf2

α

� ¼ bαibτ�2
αi þ αibf�2

αbτ�2
αi þ bf�2

α :
(6)

Similarly for item threshold parameters, the empirical Bayes estimate ~βik is the weighted

average of the maximum likelihood estimate bβik and the regression estimate
βik ¼ bγβ0k þ ΣD

d¼1bγβdkxid with weights proportional to their respective precisions

~βik ¼ E
�
β
��bβik ,bτ2βik ,bγβ0k ,bγαd , bf2

βk

� ¼ bβikbτ�2
βik þ β

ik
bf�2

βkbτ�2
βik þ bf�2

βk

: (7)

Each empirical Bayes estimate (~αi, ~βik ) gains precision from both the precision of its maximum

likelihood estimates (bτ�2
αi ,bτ�2

βik ) obtained in Step 1 and from the precision of its regression estimates

(bf�2

α , bf�2

βk ) obtained in Step 2: ~σ�2
αi ¼ bτ�2

αi þ bf�2

α and ~σ�2
βik ¼ bτ�2

βik þ bf�2

βk .

Hierarchical Bayes Method

Specifications of Prior and Posterior Distributions. For the GRM with auxiliary item information
(Equations (1)–(3)), the joint posterior distribution of S ¼ fθj, αi, βik , γα0, γαd , σ2α, γβ0k , γβdk , σ2βkg,
P(S|y), can be written as

P Sjyð Þ} ∏
J

j¼1
∏
I

i¼1
∏
mi�1

k¼0
P yji ¼ k

��S� �I yji¼kð Þ
( )

× ∏
J

j¼1
P θj
� �( )

∏
I

i¼1
P αi

��γα0, γα, σ2α� �� 	
∏
I

i¼1
∏
mi�1

k¼1
P
�
βik
��γβ0k , γβk , σ2

βk

�� 	
� P γα0ð ÞP γαdð ÞP σ2α

� �
∏
mi�1

k¼1
P γβ0k
� �

P γβdk
� �

P σ2βk


 �
,

(8)

where the first quantity in brackets is the likelihood function, and the remaining quantities are the
prior and hyper-prior distributions. A standard normal distribution was set for θj to identify the
GRMwith auxiliary item information (Equations (1)–(3)), following the item regression model of
the 2-parameter logistic item response model (Cho et al., 2013).

Independent priors for θj, αi, and βik were specified as follows
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θj eN 0; 1ð Þ, αi eN γα0 þ
XD
d¼1

γαdxid, σ
2
α

 !
, and βi, k eN γβ0k þ

XD
d¼1

γβdkxid , σ
2
βk

 !
:

The hyper-prior distributions on regression coefficients (γα0, γαd, γβ0k, and γβdk) were set as a
normal distribution with weakly informative priors, N (0, 102). Weakly informative priors should
be selected to intentionally convey less prior information than is readily available, to eliminate or
discourage impossible or improbable parameter values without influencing the posterior in one
particular direction over another (Gelman et al., 2014). The weakly informative prior N (0, 102) on
regression coefficients (as illustrated in Figure A1 [top] in Appendix A) was selected to indicate a
minimal preference towards zero, as these values are typically expected to be relatively small in
magnitude.2

Gelman (2006) recommended the half-t or half-Cauchy distribution on standard deviation
parameters as a weakly informative and conditionally conjugative prior, especially when dealing
with small sample sizes. The half-Cauchy distribution with a scale parameter of 10 was used on
residual SD (RSD) parameters in this study

σα eCauchy 0; 10ð ÞI 0,ð Þ and σβk eCauchy 0; 10ð ÞI 0,ð Þ,

where I (0, ) indicates that the distribution is truncated at 0. As shown in Figure A1 (bottom) in
Appendix A, the distribution becomes a uniform prior density on standard deviations when the
scale parameter of the half-Cauchy increases from 1 to 25. The scale parameter of 10 that we chose
is considered weakly informative because it has a gentle slope in the tail and allows the data to
dominate when the likelihood is strong in the tail.

MCMC sampling was conducted using rStan, the R interface to Stan (Stan Development
Team, 2018). rStan is capable of implementing Euclidean Hamiltonian Monte Carlo (HMC),
and by default uses the no-U-turn sampler (NUTS) extension. Constraints were imposed on
several parameters sampled in rStan to prevent highly improbable or impossible item parameter
values. Item discrimination parameters and residual SDs were constrained to be strictly non-
negative (αi ≥ 0, σα ≥ 0, σβk ≥ 0), and item thresholds were constrained to be in increasing order
(βi1 < βi2 < βi3 < βi4).

In Appendix B, we illustrate the empirical and hierarchical Bayes methods described in the
previous section by applying them to an empirical data set. R code for the empirical data analysis is
available on GitHub (https://github.com/naveirmd/Auxiliary_Item_Information_GRM).

Simulation Study

A simulation study was conducted to answer the research questions regarding the empirical and
hierarchical Bayes methods described as proposed in this paper’s introduction. In this section, we
describe the design and implementation of this simulation study and discuss the results obtained so
as to answer these research questions.

Simulation Factors

In this simulation study, five response categories for each item (mi = 5) was set as a fixed
simulation factor, as it is the most commonly used number of response categories in GRM
applications (e.g., Forero & Maydeu-Olivares, 2009). Four varying simulation factors were
considered that would directly affect item parameter recovery when using the empirical and
hierarchical Bayes methods: (a) the number of persons, (b) the number of items, (c) the RSD of
item parameters, and (d) the item covariate structure. Each of these factors is discussed below:
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Number of Persons. The accuracy of item parameter estimates is mainly affected by the number of
persons (Kieftenbeld & Natesan, 2012). Kieftenbeld and Natesan (2012) showed minimal dif-
ference in GRM item parameter recovery between MMLE and Markov chain Monte Carlo
(MCMC) in sample sizes of 300 or more persons (for 5, 10, 15, and 20 items). Reise and Yu (1990)
recommended a minimum sample size of 500 to accurately estimate GRM item parameters. Based
on this information, sample sizes of 100, 150, 200, 250, 300, and 500 were selected to compare the
effectiveness of empirical Bayes and hierarchical Bayes methods at both small sample sizes (100,
150, 200, 250, and 300), and at a medium sample size of 500. In addition, a sample size of
2000 was considered to be the maximum sample size at which the empirical Bayes and hier-
archical Bayes methods described would be expected to recover item parameters with a per-
formance comparable to MMLE.

Number of Items. The number of items affects the accuracy of item covariate effect estimates, as
well as the residual variance (e.g., Cho et al., 2017). A literature review we conducted on
28 published papers on the use of item covariates in IRT (see Appendix C for review results)
showed that the number of items ranged from 5 to 334, with a median of 27.5 items. To allow for
an equal number of items per item group (to control for the effect of the number of items per item
covariate), 24 items were selected for simulation conditions, with each item group having 4 items
for 6 item covariates (as explained below). To investigate the effect of test length on item pa-
rameter recovery, twice as many items (48) was selected as well, with each item group having
8 items for 6 item covariates (as explained below).

RSD of Item Parameters. The amount of shrinkage is positively affected by the precision of the
prior distribution. In order to indirectly manipulate shrinkage in simulation conditions, the RSD of
item parameter types (σ2α and σ2βk ) are directly manipulated. Fischer and Rose (2019) considered
three levels for the standard deviations of item discrimination and item threshold parameters for
GRMs in normal prior distributions: σα = σβk = .5 (as a weakly informative prior), σα = σβk = .3 (as
a moderately informative prior), and σα = σβk = .1 (as a strongly informative prior). These same
levels of RSD for item discrimination and item threshold parameters were selected for the current
study.

Item Covariate Structure. The two predominant item covariate structures (which can be specified
in matrices called Q-matrices) observed in the literature were the non-mutually exclusive
(NME) binary Q-matrix and the mutually exclusive (ME) binary Q-matrix (see Appendix C).
Binary Q-matrices have values of 0 or 1 for each combination of item (row) and covariate
(column). NME binary Q-matrices can have any combination of zeroes and ones in each row,
whereas ME binary Q-matrices have a single value of 1 for each row (meaning that each item
possesses exactly one item covariate). Baker (1993) showed that a larger sample size is needed
for an ME binary Q-matrix than for an NME binary Q-matrix because there are fewer items
involving the same item covariate in the ME binary Q-matrix. A literature review showed that
the number of item covariates ranged from 2 to 77, with a median of 6 item covariates.
Therefore, 6 item covariates were considered for both Q-matrix designs. The two different item
covariate structures were considered by having different item covariate structures in ME
Q-matrices and NME Q-matrices (one Q-matrix per type for each number of items), and by
having different item covariate effects for each Q-matrix type to have the same overall (additive)
effect of item covariates on item parameters. The effects of item covariates were selected as
γα = [.075, .150, .225, .300, .375, .450]0 and γβ = [.183, .367, .550, .733, .917, 1.100]0 for the ME
Q-matrix conditions, and γα = [.025, .050, .075, .100, .125, .150]0 and γβ = [.061, .1220, .1830,
.2440, .3040, .365]0 for the NME Q-matrix conditions.3 The effects of item covariates for
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thresholds were selected so that the intercepts of the item thresholds were close to the means of
true GRM item thresholds ([�2.369, � 1.334, � .208, 1.981]0) that Kieftenbeld and Natesan
(2012) used in evaluating parameter recovery of GRM item thresholds. In Appendix C, the
explanatory power of the item covariates in the ME and NME binary Q-matrices is reported
using R2 at each level of RSD.

Based on the effects of the item covariates and RSDs described above, true item parameters
were calculated during data generation using Equations (2) and (3). The latent variable was
generated from a standard normal distribution to match it to a model identification constraint.
When generating item responses, the same generated item parameters were used across repli-
cations,4 and the latent variable was generated for each replication. The four simulation factors
were fully crossed, yielding 84 conditions (=7 × 2 × 3 × 2). Five hundred replications were
simulated for each of the 84 conditions. Each generated data set was analyzed using four esti-
mation methods: MMLE, empirical Bayes, hierarchical Bayes with item covariates, and hier-
archical Bayes without item covariates.

Evaluation Measures

Three evaluation measures were used to compare the accuracy of the estimates obtained
using the four estimation methods (MMLE, empirical Bayes, hierarchical Bayes with item
covariates, and hierarchical Bayes without item covariates): absolute relative percentage bias
(RPB), root mean square error (RMSE), and absolute relative percentage SD bias (SDB).5 To
answer research questions 1a and 2, the RPB (where RPB = 100 × jbias=truej) and RMSE of
item parameter estimates are compared between each pair of methods (comparing MMLE,
empirical Bayes, and hierarchical Bayes with item covariates in research question 1a, and
comparing hierarchical Bayes with and without item covariates in research question 2). To
answer research question 1b (regarding the use of hierarchical Bayes as a substitute to MMLE
when MMLE fails to converge), we examine the RPB and the absolute relative percentage
differences between posterior SD estimates and the Monte Carlo standard errors (MCSE) for
hierarchical Bayes (denoted by SDB, where SDB = 100 × jðposterior SDÞ �MCSE=MCSEj).
To answer research question 3 (regarding the estimation of posterior SD), the SDB will
be compared between empirical Bayes and hierarchical Bayes with item covariates. Hy-
potheses of simulation results regarding the evaluation measures were presented in
Appendix D.

Results for Research Questions

For a large proportion of simulation conditions (48 out of 84), MMLE failed to converge for all
500 replications. The most significant factors affecting convergence were RSD and the number of
persons, with most replications that failed to converge occurring in conditions with large RSD and
in conditions with small sample sizes.6 Replications failing to converge were caused by missing
item responses, with MMLE being unable to estimate the first or last item threshold for an item
when the lowest and highest categories for that item had zero responses due to extreme thresholds
being caused by large RSD or small sample sizes resulting in a low probability that responses
would be observed in those categories. Because empirical Bayes estimates are calculated using
maximum likelihood estimates, empirical Bayes estimates are also unobtainable for those rep-
lications in whichMMLE failed to converge. For the following analyses, only the 36 conditions in
which MMLE had 100% convergence are considered for comparisons involving MMLE and/or
empirical Bayes (i.e., research questions 1a and 3). Below, we report simulation results aggregated
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across item parameter types to answer research questions.7 Appendix E includes disaggregated
simulation results.

Research Question 1a: Accuracy of Item Parameter Estimates. Figure 1 (top) presents the RPB and the
RMSE for each method (MMLE, empirical Bayes, and hierarchical Bayes with item covariates) in
the 36 conditions that MMLE had 100% convergence. Each point in Figure 1 (top) represents the
maximum RPB and the maximum RMSE for all item parameter types (αi, βi1, βi2, βi3, and βi4),
with each item parameter type averaged across replications.8

As shown in Figure 1 (top), of the 36 conditions that MMLE had 100% convergence, empirical
Bayes had the lowest RPB of the three methods in 5 of those conditions (24 ME items and RSD =
.3 with 2000 persons, 48 NME items and RSD = .3 with 2000 persons, and 48 NME item and
RSD = .5 with 300, 500, and 2000 persons). Hierarchical Bayes had the lowest RPB in
10 conditions (24 ME items and RSD = .1 with 2000 persons, 24 ME items and RSD = .3 with
300 and 500 persons, 24 ME items and RSD = .5 with 2000 persons, and 48 ME items and RSD =
.1 with all sample sizes ≥150 persons). Although MMLE had the lowest RPB in the remaining
21 conditions, MMLE and hierarchical Bayes had highly comparable RPB (within 1.73%) in 34 of
the 36 conditions (and within 3.56% for all conditions). Empirical Bayes had the highest RPB of
the three methods in 30 of the 36 conditions, and even in the 5 conditions where empirical Bayes

Figure 1. Simulation Results for Research Question 1a (top) and Research Question 1b (bottom). Note.
Horizontal lines indicate cutoff for acceptable RPB and SDB (10%).
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had the lowest RPB it still had comparable RPB to MMLE (within 2.16%). Empirical Bayes had
unacceptably high RPB (RPB > 10%) in 24 conditions. Alternatively, MMLE and hierarchical
Bayes had acceptably low RPB in 33 of the 36 conditions, with these methods only having
unacceptably high RPB in 3 conditions (48 NME items and RSD = .5 with 300, 500, and
2000 persons). These results agree with our hypothesis regarding RPB that hierarchical Bayes <
empirical Bayes, but disagree with our hypothesis that empirical Bayes < MMLE (as empirical
Bayes consistently had the largest RPB of the three methods). This unexpected pattern was evident
in conditions with RSD = .1, whereMMLE obtained accurate item parameter estimates with 100%
convergence in the presence of item parameters with small variability.

As shown in Figure 1 (top), of the 36 conditions that MMLE had 100% convergence, MMLE
had the lowest RMSE in 3 conditions (48 NME items and RSD = .1 with 150, 200, and
250 persons), and empirical Bayes had the lowest RMSE of the three methods in 15 conditions
(24 ME items and RSD = .3 with 300, 500, and 2000 persons, 24 ME items and RSD = .5 with
2000 persons, 48 ME items and RSD = .1 with 2000 persons, 48 ME items and RSD = .3 with
500 and 2000 persons, 24 NME items and RSD = .3 with 300, 500, and 2000 persons, 48 NME
items and RSD = .1 with 2000 persons, 48 NME items and RSD = .3 with 2000 persons, and
48 NME items and RSD = .5 with 300, 500, and 2000 persons). Hierarchical Bayes had the lowest
RMSE of the three methods in 19 conditions, generally having the lowest RMSE in the conditions
with RSD = .1 (except for the condition with 48 ME items, RSD = .1, and 2000 persons, where
empirical Bayes had the lowest RMSE).9 As seen in Figure 1 (top), hierarchical Bayes had lower
or similar RMSE (at most .035 higher than the best method) in every condition. Although
empirical Bayes had lower RMSE than hierarchical Bayes in more conditions, empirical Bayes
had extremely high RMSE in several conditions (most notably those with RSD = .1). Based on
these results, we concluded that hierarchical Bayes was the best of the three methods regarding
RMSE, having lower or comparable RMSE to MMLE and empirical Bayes in all conditions. In
general, MMLE outperformed empirical Bayes (having lower or comparable RMSE) in the
conditions with RSD = .1, whereas empirical Bayes outperformed MMLE in the conditions with
RSD ≥ 0:3. These results agree with our hypotheses regarding RMSE that hierarchical Bayes <
MMLE, and hierarchical Bayes < empirical Bayes (as hierarchical Bayes consistently had the
smallest or comparable RMSE of the three methods). However, these results only somewhat agree
with our hypothesis that empirical Bayes < MMLE, as empirical Bayes only had notably lower
RMSE than MMLE in conditions where RSD ≥ 0:3. Figure 1 (top) illustrates that the accuracy of
empirical Bayes was notably worse relative to MMLE and hierarchical Bayes for conditions with
RSD = .1 and sample sizes less than 2000. However, the differences between the two methods
diminish as RSD and/or sample size increase. To summarize the results for research question 1a,
hierarchical Bayes outperformed both MMLE and empirical Bayes, having RPB generally
comparable to MMLE and lower or comparable RMSE to both MMLE and empirical Bayes
across the conditions analyzed.

Research Question 1b: Acceptability of Hierarchical Bayes. In the following analysis, we evaluate the
acceptability of hierarchical Bayes with item covariates as an alternative to MMLE in the
48 conditions that MMLE failed to achieve 100% convergence. We examine the RPB and SDB of
estimates obtained by hierarchical Bayes with item covariates in these conditions.10 Figure 1
(bottom) shows the RPB and SDB for hierarchical Bayes with covariates in the 48 conditions that
MMLE failed to achieve 100% convergence.

As shown in Figure 1 (bottom), hierarchical Bayes with covariates had acceptable RPB
ð< 10%Þ in 37 of the 48 conditions, having unacceptable RPB in the other 11 conditions (24 ME
items and RSD = .3 with 100, 150, and 200 persons, 24 ME items and RSD = .5 with 100 persons,
48 ME items and RSD = .5 with 100 and 150 persons, 24 NME items and RSD = .5 with
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100 persons, and 48 NME items and RSD = .5 with all sample sizes ≤ 250 persons). The primary
factors affecting the acceptability of RPB in hierarchical Bayes with covariates was the number of
persons and RSD (with hierarchical Bayes only having unacceptable RPB in conditions with
sample sizes ≤ 250 persons and RSD ≥ 0:3). In addition, hierarchical Bayes with covariates had
acceptable SDB ð < 10%Þ in 34 of the 48 conditions, having unacceptable SDB in the other
14 conditions (24 ME items and RSD = .3 with 100 persons, 48 ME items and RSD = .1 with
100 persons, 48 ME items and RSD = .3 with all sample sizes ≤ 250 persons, 48 ME items and
RSD = .5 with 100 persons, 24 NME items and RSD = .1 with 100 persons, 24 NME items and
RSD = .3 with 100 persons, 48 NME items and RSD = .1 with 500 persons, and 48 NME items and
RSD = .3 with all sample sizes ≤ 200 persons). Similar to RPB, the primary factors affecting SDB
in hierarchical Bayes with covariates was the number of persons and RSD (with all but one of the
conditions with unacceptable SDB having a sample size ≤ 300 persons). However, in contrast with
RPB (where conditions with larger RSD were more likely to have unacceptably high RPB), all but
one of the conditions with unacceptably high SDB had smaller RSD ð≤0:3Þ, and all conditions
with RSD = .5 had acceptable SDB.

Taking both RPB and SDB into consideration, hierarchical Bayes with item covariates was an
acceptable alternative to MMLE (having both RPB < 10% and SDB < 10%) in 25 of the
48 conditions that MMLE failed to converge in 100% of replications. In general, hierarchical
Bayes was more likely to be an acceptable alternative to MMLE in conditions with less (24) items,
conditions with larger ð≥0:3Þ RSD, and conditions with larger ð≥250Þ sample sizes.

Research Question 2: Added Accuracy of Item Covariates. Figure 2 (top) presents the RPB and RMSE
for hierarchical Bayes with covariates and hierarchical Bayes without covariates in all 42 ME
Q-matrix conditions.11 Each point in Figure 2 (top) represents the maximum RPB or maximum
RMSE for all item parameter types, with each item parameter type averaged across replications.

As shown in Figure 2 (top), hierarchical Bayes without covariates only had lower RPB than
hierarchical Bayes with covariates in 9 of the 42 conditions (24 ME items and RSD = .3 with
500 and 2000 persons, 24 ME items and RSD = .5 with 150, 200, 300, and 500 persons, and
48 ME items and RSD = .3 with all sample sizes ≤ 200 persons), whereas hierarchical Bayes with
covariates had lower RPB in the other 33 conditions. Additionally, results were largely com-
parable (within 2.58%) between the two methods in the 9 conditions where hierarchical Bayes
without covariates performed better than hierarchical Bayes with covariates. These results agree
with our hypothesis regarding RPB that hierarchical Bayes with item covariates < hierarchical
Bayes without item covariates, as hierarchical Bayes with item covariates had lower (or com-
parable) RPB to hierarchical Bayes without item covariates in all conditions.

Hierarchical Bayes with covariates had unacceptable RPB (≥10%) in 6 of the 42 conditions
(24 ME items and RSD = .3 with all sample sizes ≤ 200 persons, 24 ME items and RSD = .5 with
100 persons, and 48 items and RSD = .5 with 100 and 150 persons), and hierarchical Bayes
without covariates had unacceptable RPB in 16 of the 42 conditions (24 ME items and RSD =
.3 with all sample sizes ≤ 300, 24 ME items and RSD = .5 with 100 persons, 48 ME items and
RSD = .1 with all sample sizes ≤ 500, and 48ME items and RSD = .5 with all sample sizes ≤ 300).
There were no conditions where hierarchical Bayes without covariates had acceptable RPB and
hierarchical Bayes with item covariates had unacceptable RPB. These results agree with our
hypothesis that, regarding RPB, hierarchical Bayes with item covariates < hierarchical Bayes
without item covariates.

As shown in Figure 2 (top), hierarchical Bayes with covariates had lower RMSE than hi-
erarchical Bayes without item covariates in 16 of the 42 conditions. Although hierarchical Bayes
without covariates had lower RMSE in the remaining 26 conditions, results were highly com-
parable between the two methods, with differences in RMSE < 0:06 for all but one condition. In
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one condition (48 ME items and RSD = .5 with 100 persons), hierarchical Bayes without item
covariates had significantly higher RMSE (1.364) than either method in any other condition. The
most significant factor affecting RMSE for both methods was RSD, with both methods having
larger RMSE as RSD increased. To summarize the results for research question 2, hierarchical
Bayes with covariates typically outperformed hierarchical Bayes without covariates, having lower
(or comparable) RPB and lower (or comparable) RMSE in all 42 conditions.

Research Question 3: Accuracy of Posterior SD Estimates. Figure 2 (bottom) presents the SDB for
empirical Bayes and hierarchical Bayes with item covariates in the 36 conditions that MMLE had
100% convergence. Each point in Figure 2 (bottom) represents the maximum SDB for all item
parameter types, with each item parameter type averaged across replications.

As shown in Figure 2 (bottom), of the 36 conditions that MMLE had 100% convergence,
empirical Bayes had lower SDB than hierarchical Bayes with covariates in 5 conditions (24 ME
items and RSD = .3 with 2000 persons, 48 NME items and RSD = .3 with 2000 persons, and
48 NME items and RSD = .5 with 300, 500, and 2000 persons). However, hierarchical Bayes had
similar SDB (within 3.07%) to empirical Bayes in these conditions. Hierarchical Bayes with
covariates had lower SDB than empirical Bayes in the remaining 31 conditions, having SDB as
much as 59.5% lower than empirical Bayes in these conditions. A few noteworthy exceptions to
these results were observed in the condition with 24 ME items and RSD = .1 with 2000 people
(Figure 2 [bottom], top-left) and the condition with 48 ME items and RSD = .1 with 500 persons
(Figure 2 [bottom], fourth column, top), which both had sudden increases in SDB for hierarchical
Bayes relative to similar conditions with different sample sizes. These sudden increases resulted
from scaling artifacts of SDB occurring when theMCSE in the denominator was close to 0, despite
posterior SD estimates and MCSE both decreasing with an increasing number of persons.12

Figure 2. Simulation Results for Research Question 2 (top) and Research Question 3 (bottom). Note.
Horizontal lines indicate cutoff for acceptable RPB and SDB (10%).
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As presented in Figure 2 (bottom), empirical Bayes had unacceptably high SDB (SDB > 10%)
in 24 conditions (including all but one of the conditions with RSD = .1). Hierarchical Bayes had
unacceptably high SDB in 3 conditions (48 NME items and RSD = .5 with 300, 500, and
2000 persons), and acceptably low SDB in the remaining 33 conditions. These results agree with
our hypothesis that, in general, regarding SDB, hierarchical Bayes < empirical Bayes. To
summarize the results for research question 3, hierarchical Bayes with item covariates typically
had lower SDB than empirical Bayes in the conditions that MMLE had 100% convergence.

Results Regarding Simulation Factors

With respect to the four simulation factors, results were largely consistent with our hypotheses
(presented in Appendix D) regarding RPB and SDB with a few exceptions: RPB decreased with
increasing the number of persons, the number of items, and RSD, and with NME Q-matrices; and
SDB decreased with increasing the number of persons and decreasing the number of items. RMSE
was less effected by changes in the simulation factors than expected, either changing as expected
(e.g., increasing for MMLE with an increase in the number of items) or exhibiting minimal
change. This is likely because, as observed in the simulation results, the simulation factor with the
greatest impact on RMSE is RSD (with RMSE increasing as RSD increases for all methods), with
other simulation factors only having a minimal effect on RMSE.

Summary and Discussion

MMLE is commonly used for estimating item parameters within an IRT framework. However,
MMLE’s accuracy, as well as its ability to achieve convergence, is limited in small sample sizes.
Mislevy (1988) showed that auxiliary item information can be used to increase the accuracy of
Rasch item location estimates with an empirical Bayes method. We presented hierarchical Bayes
as an alternative to empirical Bayes both because RSD can be underestimated by empirical Bayes
due to ignoring the uncertainty of item parameter estimates and because empirical Bayes is unable
to obtain item parameter estimates when MMLE fails to achieve convergence. In this paper, we
showed how item covariates can be used in empirical Bayes and hierarchical Bayes to obtain item
parameter estimates of a GRM with higher accuracy and precision in small to medium sample
sizes.

Method Selection Guideline

We provide a general guideline in Figure F1 in Appendix F based on simulation results regarding
which method is recommended for different conditions. Step 1. The first step is to determine
whether or not there are usable item covariates available and whether the test is unidimensional or
multidimensional. If there are no item covariates available, then empirical Bayes and hierarchical
Bayes with item covariates are not viable options. Step 2a. If there are no usable item covariates
and/or the test is multidimensional, then stop considering the proposed method. Step 2b. If there
are usable item covariates and the test is unidimensional, we make the following recommendations
based on the Q-matrix structure, the number of items, and the RSD of those items. Step 3. To
determine which method is recommended (given the availability of item covariates and the number
of items), estimates of the RSD are required. These estimates do not need to be highly accurate, but
rather capable of allowing RSD to be categorizable as small (e.g., RSD = .1), medium (e.g.,
RSD = .3), or large (e.g., RSD = .5). To obtain such estimates of the RSD, classical item dis-
criminations and thresholds can be obtained to calculate linear regression RSD estimates. We provide
an R function to calculate the linear regression RSD estimates based on classical item discriminations
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and thresholds on GitHub (https://github.com/naveirmd/Auxiliary_Item_Information_GRM).
Step 3a. If there are a smaller number of items (e.g., 24), we make the following recom-
mendations based on the RSD of items. If there is a small RSD (e.g., RSD = .1, indicating items
within groups are highly similar), for an ME Q-matrix, we recommend using hierarchical Bayes
with item covariates for sample sizes between 100 and 200 and MMLE for sample sizes ≥ 250,
and for an NME Q-matrix, we recommend using MMLE for sample sizes between 150 and
300 and hierarchical Bayes for sample sizes ≥ 500. If there is a medium RSD (e.g., RSD = .3,
indicating that items within groups are similar yet distinctly different), we recommend hier-
archical Bayes with item covariates for sample sizes ≥ 250 with anMEQ-matrix or ≥ 150 with an
NME Q-matrix. If there is a large RSD (e.g., RSD = .5, indicating that items within groups
are highly dissimilar), we recommend hierarchical Bayes with item covariates for sample
sizes ≥ 150 with either an ME or NME Q-matrix. Step 3b. If there is a larger number of items
(e.g., 48), we make the following recommendations based on the RSD of items. If there is a
small RSD (e.g., RSD = .1), for an ME Q-matrix, we recommend MMLE for sample sizes
≥ 150, and for an NME Q-matrix, we recommend MMLE for sample sizes ≥ 100 and hi-
erarchical Bayes for sample sizes ≥ 2000. If there is a medium RSD (e.g., RSD = .3), we
recommend hierarchical Bayes with item covariates for sample sizes ≥ 300 with an ME
Q-matrix, or ≥ 250 with an NME Q-matrix. If there is a large RSD (e.g., RSD = .5), for an ME
Q-matrix, we recommend hierarchical Bayes with item covariates for sample sizes ≥ 200,
and for an NME Q-matrix, we recommend empirical Bayes for sample sizes ≥ 300 .

Item Covariate Specification

As shown in this study, hierarchical Bayes with item covariates can be an acceptable alternative to
MMLE under certain conditions. However, the effectiveness of hierarchical Bayes is dependent
on the correct specification of the item covariates structure. Both exploratory factor analysis and
observation of the salient features of items are useful for assigning items to their correct groups and
for assuring the item covariate structure is correct. Exploratory factor analysis can be used to
identify how many dimensions (or domains within a single dimension) there are, and factor
loadings can identify which items likely belong to each dimension/domain. The salient features of
items (such as their similarities to other items with similar covariate structures) can be used to
interpret these factors/dimensions in meaningful ways to make the classification of future items
easier. Mislevy (1988) illustrated how imposing a linear model on Rasch item location parameters
based on item groupings can highlight misclassified items. Items with distinctly different
properties than other items in their groups, such as an item with a significantly higher difficulty
than any other item in its group, may indicate an incorrect item covariate structure. Looking at
such items’ salient features may show if (and how) they were misclassified, and what method of
correcting the item covariate structure should be used. In Mislevy’s (1988) empirical example, he
shows three different methods that can be implemented to correct a misidentified item covariate
structure: removing misfit items, creating a new item group, and changing the group status of
certain items. Similar approaches can be applied to identifying and correcting errors in the item
covariate structure of a GRM.

Study Limitations

This study had several methodological limitations that can be addressed in future research on these
topics. First, only two item covariate structures (mutually exclusive binary Q-matrices and non-
mutually-exclusive Q-matrices, both with 6 item covariates and constant covariate effects across
simulation conditions) were used in this simulation study to reflect the predominant covariate
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structures observed from an extensive literature review. In this study, we also make the assumption
that items are unidimensional, with item groups representing domains within a single underlying
dimension. Future research using different item covariate structures, different effects of item
covariates, and generalizing these methods to allow multidimensionality may yield interesting
results.

Second, in this study, we assumed that the item covariate structure was correctly specified. The
purpose of this study was to evaluate the added value of a correctly identified item covariate
structure through the use of empirical Bayes and hierarchical Bayes methods. The preliminary
process of specifying the item covariate structure correctly is outside the scope of this study.
Mislevy (1986) addressed how mispecifying the item covariate structure can result in “ensemble
biases” affecting entire groups of items. Such biases can cause statistical properties (such as
consistency) to no longer apply to item parameter estimates. Future research regarding the full
repercussions of using an incorrect item covariate structure on empirical Bayes and hierarchical
Bayes methods could be of interest.

Third, the levels selected for simulation factors (number of persons, number of items, and
magnitude of RSD) reflect those we considered most relevant based on the literature. However,
using additional levels of these simulation factors (e.g., 36 items, RSD = .7) could show more
clearly how evaluation criteria (RPB, RMSE, and SDB) change as a function of these simulation
factors, such as comparing SDB for conditions with 24, 36, and 48 items.

Fourth, in this study, we extendedMislevy’s (1988) empirical Bayes method for a Rasch model
to a GRM. One advantage of Mislevy’s (1988) three-step approach is that the full item response
data is not needed when MMLE is documented beforehand. However, the use of a three-step
empirical Bayes method made it impossible to obtain results when MMLE was unable to
converge. Because of this limitation, empirical Bayes and hierarchical Bayes could not be
compared in the 48 simulation conditions of which MMLE was unable to achieve convergence in
100% of replications. Empirical Bayes, as it is most commonly used in the literature, is a one-step
procedure similar in implementation to hierarchical Bayes, but with different prior and posterior
distribution specifications. However, a hierarchical Bayes method would allow hyperparameters
to be estimated from hyper-prior distributions (e.g., the second line of Equation (8)), an empirical
Bayes method would treat these hyperparameters as fixed. Both a one-step empirical Bayes
method and a one-step hierarchical Bayes method could be implemented using MCMC (in
software such as rStan), allowing results to be obtainable when MMLE is unable to achieve
convergence. A one-step empirical Bayes method could be used in future research to allow
empirical Bayes to be compared with hierarchical Bayes methods.

Fifth, this study focused on the use of weakly informative priors on means and standard
deviations for a hierarchical Bayes method with auxiliary item information. It is expected that the
use of informative priors on parameters leads to accurate and stable estimates when the prior
distributions are matched with the “true” distributions of the parameters in a one-step empirical
Bayes method (e.g., Natesan et al. [2016] for binary item response models) or in a marginalized
Bayes modal (MAP; Mislevy, 1986; Tsutakawa & Lin, 1986) method without auxiliary item
information. For the purpose of comparing MAP to the hierarchical Bayes approach with auxiliary
item information, MAP with informative priors on item parameters (αi ∼ logN (0, .52); βi1 ∼ N
(�2, 1); βi2 ∼ N (�1, 1); βi3 ∼ N (1, 1); βi4 ∼ N (2, 1), which are matched with the “true”
distributions in the current study) was used to estimate item parameters in the conditions where
MMLE estimates were not obtained. As in MMLE, MAP estimates of item parameters could not
be obtained when item categories had zero responses due to extreme thresholds that were caused
by large RSD or small sample sizes. However, additional simulation studies are required to
evaluate the relative performance of weakly informative priors in a hierarchical Bayes method
with auxiliary item information, with comparisons between multiple hypothesized “true”

492 Applied Psychological Measurement 47(7-8)



distributions driven from empirical studies in a one-step empirical Bayes method with and without
auxiliary item information and in MAP (without auxiliary item information).

Conclusions

In this paper, we have demonstrated the viability of a hierarchical Bayes method as alternatives to
MMLE in small sample sizes. In addition, we have shown how to implement these methods using
item covariates, and in what conditions these methods can result in acceptably accurate estimates
of item parameters and RSD. Despite the aforementioned limitations of this study, we have
demonstrated these methods and their implementation in conditions reflecting those most
commonly found in the literature, and we have presented a framework that can be used in future
research to expand upon these results under various other research conditions. In addition, we have
provided the R functions written and utilized in this study to obtain empirical Bayes and hier-
archical Bayes estimates for researchers to implement these proposed methods to their own
research.
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Notes

1. The precision of an estimate is equal to the inverse of its variance.
2. The N(0, 102) prior is less informative than the Cauchy(0, 2.5) prior for values in the range of (�3.909,

3.909), and is more informative than the Cauchy(0, 2.5) prior outside of this range.
3. γα0 = .738 and γβ0 = [�2.641, � 1.641, .359, 1.359] were selected as the item parameter intercepts for

both ME and NME Q-matrix conditions. Item covariate effects were dummy-variable coded for ME
Q-matrix conditions, using γα0 = .738 + .075 = .813 and γβ0 = [�2.641, � 1.641, .359, 1.359] + .183 =
[�2.458, � 1.458, .542, 1.542].

4. The generated item parameters can be requested from the first author upon request.
5. The absolute values of RPB and SDB are used so that RPB and SDB could be directly comparable among

the three methods and five item parameter types, regardless of whether they were positive or negative.
The original values for RPB, RMSE, and SDB (non-absolute and separated by parameter type) are
provided in Appendix E.
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6. 23 of the 28 conditions with RSD = .1 converged for all 500 replications, as opposed to only 4 of the
28 conditions with RSD = .5. Similarly, 9 of the 12 conditions with 2000 persons converged for all
500 replications, as opposed to only 1 of the 12 conditions with 100 persons.

7. Monte Carlo errors for the 500 replications, estimated via bootstrapping (Koehler et al., 2009), were all
< 0:03 across all item parameters and simulation conditions for MMLE, empirical Bayes, and hier-
archical Bayes, indicating that 500 replications for the conditions that converged was sufficient.

8. We take this approach because we are interested in how accurately each method estimated all item
parameter types, rather than how accurately each method estimated each item parameter type. The
maximum RPB for each condition indicates the range within which all item parameter types were
estimated (e.g., a value of 6% in Figure 1 (top) indicates that all item parameter types for that condition
were estimated by that method with �6% ≤ RPB ≤6%). This approach is used later on when presenting
results for RMSE and SDB.

9. There was one condition (48 NME items and RSD = .1 with 150 persons) where MMLE and hierarchical
Bayes had equal RMSE (.385).

10. RMSE is not used as an evaluation measure for research question 1b because there is no single threshold
for acceptable RMSE in these conditions, as RMSE is largely dependent on the level of RSD.

11. Because the accuracy of item parameter estimates was not found to differ notably between conditions
with different Q-matrix structures, and because the model for hierarchical Bayes without covariates is
identical regardless of the underlying covariate structure, only the results for the MEQ-matrix conditions
are presented here for brevity.

12. In example, for the conditions with 48 ME items and RSD = .1, as the number of persons increased from
300 to 500 persons the average posterior SD estimates decreased from .115 to .097, and average MCSE
decreased from .101 to .085.
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